CS 516—Software Foundations via Formal Languages—Spring 2025

Problem Set 1

Model Answers

Problem 1

(a) Suppose A, B and C are sets. We must show that

$$A - (B \cup C) = (A - B) - C.$$

It will suffice to show that

$$A - (B \cup C) \subseteq (A - B) - C \subseteq A - (B \cup C).$$

 $(A - (B \cup C) \subseteq (A - B) - C)$ Suppose $w \in A - (B \cup C)$. We must show that $w \in (A - B) - C$. By the assumption, we have that $w \in A$ and $w \notin (B \cup C)$.

Suppose, toward a contradiction, that $w \in B$. Then $w \in B \cup C$ —contradiction. Thus $w \notin B$. Suppose, toward a contradiction, that $w \in C$. Then $w \in B \cup C$ —contradiction. Thus $w \notin C$. Because $w \in A$ and $w \notin B$, we have that $w \in A - B$. Then, since $w \notin C$, it follows that $w \in (A - B) - C$.

 $((A - B) - C \subseteq A - (B \cup C))$ Suppose $w \in (A - B) - C$. We must show that $w \in A - (B \cup C)$. By the assumption, we have that $w \in A - B$ and $w \notin C$. Hence $w \in A$ and $w \notin B$.

Suppose, toward a contradiction, that $w \in B \cup C$. There are two cases to consider.

- Suppose $w \in B$. But $w \notin B$ —contradiction.
- Suppose $w \in C$. But $w \notin C$ —contradiction.

Since we obtained a contradiction in both cases, we have an overall contradiction. Thus $w \notin B \cup C$. Because $w \in A$ and $w \notin B \cup C$, we have that $w \in A - (B \cup C)$.

(b) Suppose A, B and C are sets. We must show that

$$A - (B \cap C) = (A - B) \cup (A - C).$$

It will suffice to show that

$$A - (B \cap C) \subseteq (A - B) \cup (A - C) \subseteq A - (B \cap C).$$

 $(A-(B\cap C) \subseteq (A-B)\cup (A-C))$ Suppose $w \in A-(B\cap C)$. We must show that $w \in (A-B)\cup (A-C)$. By the assumption, we have that $w \in A$ and $w \notin B \cap C$. There are two cases to consider.

• Suppose $w \in B$. Suppose, toward a contradiction, that $w \in C$. Thus $w \in B \cap C$ —contradiction. Thus $w \notin C$. And $w \in A$, and thus $w \in A - C \subseteq (A - B) \cup (A - C)$. • Suppose $w \notin B$. Because $w \in A$, it follows that $w \in A - B \subseteq (A - B) \cup (A - C)$.

 $((A - B) \cup (A - C) \subseteq A - (B \cap C))$ Suppose $w \in (A - B) \cup (A - C)$. We must show that $w \in A - (B \cap C)$. By the assumption, there are two cases to consider.

- Suppose $w \in A B$. Hence $w \in A$ and $w \notin B$. Suppose, toward a contradiction, that $w \in B \cap C$. Thus $w \in B$ —contradiction. Hence $w \notin B \cap C$, so that $w \in A (B \cap C)$.
- Suppose $w \in A C$. Hence $w \in A$ and $w \notin C$. Suppose, toward a contradiction, that $w \in B \cap C$. Thus $w \in C$ —contradiction. Hence $w \notin B \cap C$, so that $w \in A (B \cap C)$.

Problem 2

(Basis Step) We have that

$$2(f 0) = 2 \cdot 0 \qquad (\text{definition of } f 0)$$
$$= 0$$
$$= 0^2 - 0.$$

(Inductive Step) Suppose $n \in \mathbb{N}$, and assume the inductive hypothesis: $2(f n) = n^2 - n$. Then,

$$\begin{aligned} 2(f(n+1)) &= 2(fn+n) & (\text{definition of } f(n+1)) \\ &= 2(fn) + 2n \\ &= (n^2 - n) + 2n & (\text{inductive hypothesis}) \\ &= n^2 + -n + 2n \\ &= n^2 + 2n + 1 + -n + -1 \\ &= (n^2 + 2n + 1) - (n+1) \\ &= (n+1)^2 - (n+1). \end{aligned}$$

Problem 3

Suppose $n \in \mathbb{N}$, and assume the inductive hypothesis: for all $m \in \mathbb{N}$, if m < n, then,

if $m \ge 18$, then there are $i, j \in \mathbb{N}$ such that m = 4i + 7j.

We must show that,

if $n \ge 18$, then there are $i, j \in \mathbb{N}$ such that n = 4i + 7j.

Suppose $n \ge 18$. We must show that there are $i, j \in \mathbb{N}$ such that n = 4i + 7j. There are five cases to consider.

- Suppose n = 18. Then $n = 18 = 4 \cdot 1 + 7 \cdot 2$ and $1, 2 \in \mathbb{N}$.
- Suppose n = 19. Then $n = 19 = 4 \cdot 3 + 7 \cdot 1$ and $3, 1 \in \mathbb{N}$.
- Suppose n = 20. Then $n = 20 = 4 \cdot 5 + 7 \cdot 0$ and $5, 0 \in \mathbb{N}$.

- Suppose n = 21. Then $n = 21 = 4 \cdot 0 + 7 \cdot 3$ and $0, 3 \in \mathbb{N}$.
- Suppose $n \ge 22$. Thus $18 \le n-4 < n$. Because $n-4 \in \mathbb{N}$ and n-4 < n, the inductive hypothesis tells us that

if $n-4 \ge 18$, then there are $i, j \in \mathbb{N}$ such that n-4 = 4i + 7j.

But $n-4 \ge 18$, and thus n-4 = 4i + 7j for some $i, j \in \mathbb{N}$. Hence

$$n = (n - 4) + 4 = 4i + 7j + 4 = 4(i + 1) + 7j,$$

and $i+1, j \in \mathbb{N}$.

Problem 4

Because R is a relation on A, but is not well founded, it is not the case that every nonempty subset of A has an R-minimal element. Thus, there exists a nonempty subset X of A, such that X does not have an R-minimal element. In other words, there does not exist an $x \in X$ such that there does not exist a $y \in X$ such that y R x. Thus, for all $x \in X$, it is not the case that there does not exist a $y \in X$ such that y R x. But the two negations cancel out, and so (†): for all $x \in X$, there exists a $y \in X$, such that y R x.

First, we use well-founded induction on R to show that, for all $x \in A$,

if
$$x \in X$$
, then $0 \neq 0$.

Suppose $x \in A$, and assume the inductive hypothesis: for all $y \in A$, if $y \in A$, then

if
$$y \in X$$
, then $0 \neq 0$.

We must show that

if
$$x \in X$$
, then $0 \neq 0$.

Suppose $x \in X$. We must show that $0 \neq 0$. Because $x \in X$, (†) tells us that there is a $y \in X \subseteq A$ such that $y \in X$. Thus the inductive hypothesis tells us that, if $y \in X$, then $0 \neq 0$. But $y \in X$, and so we can conclude $0 \neq 0$.

Now, we use the result of our well-founded induction to show that $0 \neq 0$. Because X is a nonempty subset of A, there is an element x of $X \subseteq A$. By the result of our induction, we have that, if $x \in X$, then $0 \neq 0$. But $x \in X$, and thus $0 \neq 0$.