
CS 516—Software Foundations via Formal Languages—Spring 2025

Problem Set 2

Model Answers

Problem 1

(a) We use induction on X to show that, for all w ∈ X , w ∈ Y . There are four steps to show.

(1) We must show that % ∈ Y . Clearly % ∈ {0, 1}∗. Since the only prefix of % is itself, and

diff % = 0 ≥ 0, it follows that % ∈ Y .

(2) We must show that 1 ∈ Y . Clearly 1 ∈ {0, 1}∗. Since % and 1 are the only prefixes of 1,

diff % = 0 ≥ 0 and diff 1 = 1 ≥ 0, we have that 1 ∈ Y .

(3) Suppose x, y ∈ X , and assume the inductive hypothesis: x, y ∈ Y . We must show that

1x1y0 ∈ Y . Since x, y ∈ {0, 1}∗, we have that 1x1y0 ∈ {0, 1}∗. Suppose that v is a prefix of

1x1y0. We must show that diff v ≥ 0. There are four cases to consider.

• Suppose v = %. Then diff v = diff % = 0 ≥ 0.

• Suppose v = 1u, for some prefix u of x. Because x ∈ Y and u is a prefix of x, we have

that diff u ≥ 0. Thus

diff v = diff(1u) = diff 1+ diff u = 1 + diff u ≥ 1 + 0 ≥ 0.

• Suppose v = 1x1u, for some prefix u of y. Because x ∈ Y and x is a prefix of itself, we

have that diff x ≥ 0. Because y ∈ Y and u is a prefix of y, we have that diff u ≥ 0.

Thus

diff v = diff(1x1u) = diff 1+ diff x+ diff 1+ diff u

= 1 + diff x+ 1 + diff u = 2 + diff x+ diff u ≥ 2 + 0 + 0 ≥ 0.

• Suppose v = 1x1y0. Because x ∈ Y and x is a prefix of itself, we have that diff x ≥ 0.

Because y ∈ Y and y is a prefix of itself, we have that diff y ≥ 0. Thus

diff v = diff(1x1y0) = diff 1+ diff x+ diff 1+ diff y + diff 0

= 1 + diff x+ 1 + diff y +−2 = diff x+ diff y ≥ 0 + 0 ≥ 0.

(4) Suppose x, y ∈ X , and assume the inductive hypothesis: x, y ∈ Y . We must show that xy ∈ Y .

Since x, y ∈ {0, 1}∗, we have that xy ∈ {0, 1}∗. Suppose that v is a prefix of xy. We must

show that diff v ≥ 0. There are two cases to consider.

• Suppose v is a prefix of x. Since x ∈ Y , it follows that diff v ≥ 0.

• Suppose v = xu, for some prefix u of y. Since x ∈ Y and x is a prefix of itself, we have

that diff x ≥ 0. And, since y ∈ Y and u is a prefix of y, we have that diff u ≥ 0. Thus

diff v = diff(xu) = diff x+ diff u ≥ 0 + 0 ≥ 0.

1

(b) We begin by proving a useful lemma.

Lemma PS2.1.1

For all w ∈ {0, 1}∗, if diff w ≥ 1 and w ∈ Y , then there are x, y ∈ Y such that w = x1y.

Proof. Suppose w ∈ {0, 1}∗, diff w ≥ 1 and w ∈ Y . Let x be the longest prefix of w such that

diff x ≤ 0 (x is well-defined because % is a prefix of w and diff % = 0 ≤ 0). Let z ∈ {0, 1}∗ be

such that w = xz. Because diff w ≥ 1 and diff x ≤ 0, we have that z 6= %, so that z = by for some

b ∈ {0, 1} and y ∈ {0, 1}∗. Thus w = xz = xby. Because x is a prefix of w and w ∈ Y , it follows

that diff x ≥ 0. Thus diff x = 0.

Suppose, toward a contradiction, that b = 0. Thus w = x0y. Because w ∈ Y and x0 is a prefix

of w, it follows that −2 = 0+−2 = diff x+−2 = diff(x0) ≥ 0—contradiction. Thus b = 1, so that

w = x1y. It remains to show that x, y ∈ Y .

To see that x ∈ Y , suppose v is a prefix of x. We must show that diff v ≥ 0. Because v is a

prefix of x, and x is a prefix of x1y = w, it follows that v is a prefix of w. And w ∈ Y , so that

diff v ≥ 0.

To see that y ∈ Y , suppose v is a prefix of y. We must show that diff v ≥ 0. Suppose, toward

a contradiction, that diff v ≤ −1. We have that x1v is a prefix of x1y = w and diff(x1v) =

diff x + 1 + diff v = 0 + 1 + diff v = 1 + diff v ≤ 1 + −1 = 0, so that x1v is a prefix of w and

diff(x1v) ≤ 0. But x is the longest prefix of w with a diff that is ≤ 0 and x1v is strictly longer than

x—contradiction. Thus diff v ≥ 0. ✷

Now, we show that Y ⊆ X . Since Y ⊆ {0, 1}∗, it will suffice to show that, for all w ∈ {0, 1}∗,

if w ∈ Y, then w ∈ X.

We proceed by strong string induction. Suppose w ∈ {0, 1}∗, and assume the inductive hypothesis:

for all x ∈ {0, 1}∗, if x is a proper substring of w, then

if x ∈ Y, then x ∈ X.

We must show that

if w ∈ Y, then w ∈ X.

Suppose w ∈ Y . We must show that w ∈ X . There are two cases to consider.

• Suppose w = %. Then w = % ∈ X , by part (1) of the definition of X .

• Suppose w = as, for some a ∈ {0, 1} and s ∈ {0, 1}∗.

Suppose, toward a contradiction, that a = 0, so that w = as = 0s. Because w ∈ Y and 0 is a

prefix of w, we have that −2 = diff 0 ≥ 0—contradiction. Thus a = 1, so that w = as = 1s.

There are two sub-cases to consider.

– Suppose s ∈ Y . By part (2) of the definition of X , we have that 1 ∈ X . And, because s is

a proper substring of w, the inductive hypothesis tells us that s ∈ X . Thus, by part (4)

of the definition of X , we have that w = 1s ∈ X .

2

– Suppose s 6∈ Y . Because s ∈ {0, 1}∗, there is a prefix of s with a negative diff. Let z be

the shortest prefix of s such that diff z ≤ −1, and let t ∈ {0, 1}∗ be such that s = zt.

Since diff z ≤ −1, we have that z 6= %, so that z = ub for some u ∈ {0, 1}∗ and b ∈ {0, 1}.

Thus s = zt = ubt and w = 1s = 1ubt. Because u is a shorter prefix of s than z, it follows

that diff u ≥ 0.

Suppose, toward a contradiction, that b = 1. Since diff u+1 = diff u+diff b = diff(ub) =

diff z ≤ −1, we have diff u ≤ −2, contradicting the fact that diff u ≥ 0. Thus b = 0, so

that z = ub = u0, s = zt = u0t and w = 1s = 1u0t.

Since diff u +−2 = diff(u0) = diff z ≤ −1, we have that diff u ≤ 1. But diff u ≥ 0, so

that diff u ∈ {0, 1}.

Suppose, toward a contradiction, that diff u = 0. Since w ∈ Y and 1u0 is a prefix of w,

it follows that −1 = 1 + 0 +−2 = diff(1u0) ≥ 0—contradiction. Thus diff u = 1.

To see that u ∈ Y , suppose v is a prefix of u. We must show that diff v ≥ 0. Because u

is a shorter prefix of s than z, it follows that v is a shorter prefix of s than z. Thus, by

the definition of z, we have that diff v ≥ 0.

To see that t ∈ Y , suppose v is a prefix of t. We must show that diff v ≥ 0. Because

w = 1u0t, it follows that 1u0v is a prefix of w. But w ∈ Y , and thus diff v = 1 + 1 +

−2 + diff v = diff(1u0v) ≥ 0.

Summarizing, we have that w = 1u0t, u, t ∈ Y and diff u = 1. Since diff u ≥ 1 and

u ∈ Y , Lemma PS2.1.1 tells us that u = x1y, for some x, y ∈ Y . Thus w = 1x1y0t. Since

x, y and t are all proper substrings of w, and x, y, t ∈ Y , the inductive hypothesis tells us

that x, y, t ∈ X . Since x, y ∈ X , we have that 1x1y0 ∈ X , by part (3) of the definition of

X . Thus w = (1x1y0)t ∈ X , by part (4) of the definition of X .

Problem 2

Here is ps2-explain.sml:

(* ps2-explain.sml *)

(* validStrSilent w (silently) tests whether w is in Y *)

val validStrSilent = validStr false

(* val shortestPrefix : (int -> bool) -> str -> str * str

if w is an str of zeros and ones, and there is a prefix x of w

such that f(diff x), then shortestPrefix f w returns (x, y), where x is

the shortest such prefix and y is such that x @ y = w *)

fun shortestPrefix f (w : str) : str * str =

let fun short(bs, n, nil) =

if f n then (bs, nil) else raise Fail "shouldn’t happen"

| short(bs, n, c_cs as c :: cs) =

if f n

3

then (bs, c_cs)

else short(bs @ [c], n + diffSym c, cs)

in short(nil, 0, w) end

(* val shortestNegativePrefix : str -> str * str

if w is an str of zeros and ones, and there is a prefix x of w

such that diff x <= ~1, then shortestNegativePrefix w returns (x, y),

where x is the shortest such prefix and y is such that x @ y = w *)

val shortestNegativePrefix = shortestPrefix(fn n => n <= ~1)

(* longestPrefix : (int -> bool) -> str -> str * str

if w is an str of zeros and ones, and there is a prefix x of w

such that f(diff x), then longestPrefix f w returns (x, y), where x is

the longest such prefix and y is such that x @ y = w *)

fun longestPrefix f (w : str) : str * str =

let fun long(bs, n, lngstOpt, nil) =

if f n

then (bs, nil)

else (case lngstOpt of

NONE => raise Fail "shouldn’t happen"

| SOME long => long)

| long(bs, n, lngstOpt, c_cs as c :: cs) =

long(bs @ [c], n + diffSym c,

if f n then SOME(bs, c_cs) else lngstOpt,

cs)

in long(nil, 0, NONE, w) end

(* val longestNonPositivePrefix : str -> str * str

if w is an str of zeros and ones, then longestNonPositivePrefix w

returns (x, y), where x is the longest prefix such that diff x <= 0

and y is such that x @ y = w *)

val longestNonPositivePrefix = longestPrefix(fn n => n <= 0)

(* val splitPositiveValid : str -> str * str

if w is an str of zeros and ones such that diff w >= 1 and w is in

Y, then splitPositiveValid w returns a pair (x, y) such that w = x @

[one] @ y and x, y are in Y *)

fun splitPositiveValid (w : str) : str * str =

let val (x, z) = longestNonPositivePrefix w

in (x, tl z) end

4

(* val explain : str -> expl

if w is in Y, then strExplained(explain w) = w *)

fun explain (w : str) =

if null w

then Rule1

else if isZero(hd w)

then raise Fail "shouldn’t happen"

else (* isOne(hd w) *)

let val s = tl w (* w = [one] @ s *)

in if validStrSilent s (* if s is in Y *)

then Rule4(Rule2, explain s)

else (* w is not in Y *)

let val (z, t) = shortestNegativePrefix s

(* s = z @ t *)

val u = Str.allButLast z

(* z = u @ [zero], diff u = 1, u is in Y

w = [one] @ u @ [zero] @ t, t is in Y *)

val (x, y) = splitPositiveValid u

(* u = x @ [one] @ y, x is in Y, y is in Y, t is in Y

w = ([one] @ x @ [one] @ y @ [zero]) @ t *)

in Rule4(Rule3(explain x, explain y), explain t) end

end

And here is how explain was tested:

- use "ps2-framework.sml";

[opening ps2-framework.sml]

exception Error

val zero = - : sym

val one = - : sym

val isZero = fn : sym -> bool

val isOne = fn : sym -> bool

val diffSym = fn : sym -> int

val diff = fn : str -> int

val validStr = fn : bool -> str -> bool

datatype expl = Rule1 | Rule2 | Rule3 of expl * expl | Rule4 of expl * expl

val strExplained = fn : expl -> str

val printExplanation = fn : expl -> unit

val test = fn : (str -> expl) -> str -> unit

val it = () : unit

- use "ps2-explain.sml";

[opening ps2-explain.sml]

val validStrSilent = fn : str -> bool

val shortestPrefix = fn : (int -> bool) -> str -> str * str

val shortestNegativePrefix = fn : str -> str * str

val longestPrefix = fn : (int -> bool) -> str -> str * str

5

val longestNonPositivePrefix = fn : str -> str * str

val splitPositiveValid = fn : str -> str * str

val explain = fn : str -> expl

val it = () : unit

- val doit = test explain;

val doit = fn : str -> unit

- doit(Str.fromString "%");

% is in X, by rule (1)

val it = () : unit

- doit(Str.fromString "1");

1 = 1 @ % is in X, by rule (4)

1 is in X, by rule (2)

% is in X, by rule (1)

val it = () : unit

- doit(Str.fromString "11");

11 = 1 @ 1 is in X, by rule (4)

1 is in X, by rule (2)

1 = 1 @ % is in X, by rule (4)

1 is in X, by rule (2)

% is in X, by rule (1)

val it = () : unit

- doit(Str.fromString "110");

110 = 110 @ % is in X, by rule (4)

110 = 1 @ % @ 1 @ % @ 0 is in X, by rule (3)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

val it = () : unit

- doit(Str.fromString "110110");

110110 = 110 @ 110 is in X, by rule (4)

110 = 1 @ % @ 1 @ % @ 0 is in X, by rule (3)

% is in X, by rule (1)

% is in X, by rule (1)

110 = 110 @ % is in X, by rule (4)

110 = 1 @ % @ 1 @ % @ 0 is in X, by rule (3)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

val it = () : unit

- doit(Str.fromString "11101110");

11101110 = 1 @ 1101110 is in X, by rule (4)

1 is in X, by rule (2)

1101110 = 110 @ 1110 is in X, by rule (4)

110 = 1 @ % @ 1 @ % @ 0 is in X, by rule (3)

% is in X, by rule (1)

% is in X, by rule (1)

1110 = 1 @ 110 is in X, by rule (4)

1 is in X, by rule (2)

6

110 = 110 @ % is in X, by rule (4)

110 = 1 @ % @ 1 @ % @ 0 is in X, by rule (3)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

val it = () : unit

- doit(Str.fromString "111011100");

111011100 = 111011100 @ % is in X, by rule (4)

111011100 = 1 @ 110 @ 1 @ 110 @ 0 is in X, by rule (3)

110 = 110 @ % is in X, by rule (4)

110 = 1 @ % @ 1 @ % @ 0 is in X, by rule (3)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

110 = 110 @ % is in X, by rule (4)

110 = 1 @ % @ 1 @ % @ 0 is in X, by rule (3)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

val it = () : unit

- doit(Str.fromString "111011111010");

111011111010 = 1 @ 11011111010 is in X, by rule (4)

1 is in X, by rule (2)

11011111010 = 110 @ 11111010 is in X, by rule (4)

110 = 1 @ % @ 1 @ % @ 0 is in X, by rule (3)

% is in X, by rule (1)

% is in X, by rule (1)

11111010 = 1 @ 1111010 is in X, by rule (4)

1 is in X, by rule (2)

1111010 = 1 @ 111010 is in X, by rule (4)

1 is in X, by rule (2)

111010 = 111010 @ % is in X, by rule (4)

111010 = 1 @ 110 @ 1 @ % @ 0 is in X, by rule (3)

110 = 110 @ % is in X, by rule (4)

110 = 1 @ % @ 1 @ % @ 0 is in X, by rule (3)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

val it = () : unit

- doit(Str.fromString "1111011111001");

1111011111001 = 1 @ 111011111001 is in X, by rule (4)

1 is in X, by rule (2)

111011111001 = 1 @ 11011111001 is in X, by rule (4)

1 is in X, by rule (2)

11011111001 = 110 @ 11111001 is in X, by rule (4)

7

110 = 1 @ % @ 1 @ % @ 0 is in X, by rule (3)

% is in X, by rule (1)

% is in X, by rule (1)

11111001 = 1 @ 1111001 is in X, by rule (4)

1 is in X, by rule (2)

1111001 = 111100 @ 1 is in X, by rule (4)

111100 = 1 @ % @ 1 @ 110 @ 0 is in X, by rule (3)

% is in X, by rule (1)

110 = 110 @ % is in X, by rule (4)

110 = 1 @ % @ 1 @ % @ 0 is in X, by rule (3)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

1 = 1 @ % is in X, by rule (4)

1 is in X, by rule (2)

% is in X, by rule (1)

val it = () : unit

8

