CS 516—Software Foundations via Formal Languages—Spring 2025

Problem Set 3
Model Answers

Problem 1

To begin with, we put the following declarations in the file ps3-p1.sml:

val zero = Sym.fromString "O0";
val one = Sym.fromString "1";

fun diff (nil : str) =0
| diff (b :: bs) =
if Sym.equal(b, zero)
then "1 + diff bs
else 1 + diff bs;

fun equal n =
Set.filter
(fn x => diff x = 0)
(StrSet.power(StrSet.fromString "0, 1", n));

fun upto 0 = equal O

| upto n = StrSet.union(equal n, upto(n - 1));
fun locSimp n = Reg.locallySimplify(SOME n, Reg.obviousSubset);

fun assess reg =
(Reg.size reg, Reg.numConcats reg,
Reg.numSyms reg, Reg.standardized reg);

We then load this file into Forlan:

- use "ps3-pl.sml";

[opening ps3-pl.sml]

val zero = - : sym

val one = - : sym

val diff = fn : str -> int

val equal = fn : int -> str set

val upto = fn : int -> str set

val locSimp = fn : int -> reg -> bool * reg

val assess = fn : reg -> int * int * int * bool
val it = () : unit

Given a natural number n:

e equal returns {w € {0,1}* | |w| = n and diff w = 0 }; and



e upto returns {w € {0,1}* | |w| < n and diff w =0 }.

The function locSimp locally simplifies a regular expression using Reg.obviousSubset as the ap-
proximation to subset testing, and considering up to n structural reorganizations at each recursive
call. And the function assess assesses the complexity of a regular expression; it doesn’t return its
argument’s closure complexity, because our regular expressions will not involve closures, and so their
closure complexities will just be lists of zeros.

Thus upto 6 returns X, and we bind xs to X:

- val xs = upto 6;

val xs = - : str set

- Set.size xs;

val it = 29 : int

- StrSet.output("", xs);

%, 01, 10, 0011, 0101, 0110, 1001, 1010, 1100, 000111, 001011, 001101, 001110,
010011, 010101, 010110, 011001, 011010, 011100, 100011, 100101, 100110, 101001,
101010, 101100, 110001, 110010, 110100, 111000

val it = () : unit

To begin our first attempt at finding a simple regular expression generating X, we create a
regular expression, reg, consisting of the union of all the elements of X:

- val reg = Reg.fromStrSet xs;

val reg = - : reg

- Reg.output("", reg);

% + 01 + 10 + 0011 + 0101 + 0110 + 1001 + 1010 + 1100 + 000111 + 001011 +

001101 + 001110 + 010011 + 010101 + 010110 + 011001 + 011010 + 011100 + 100011 +
100101 + 100110 + 101001 + 101010 + 101100 + 110001 + 110010 + 110100 + 111000
val it = () : unit

Then, we can try locally simplifying reg with increasing values of n: 10, 1000, 1500:

- val (b, regl0) = locSimp 10 reg;

val b = false : bool

val regl0 = - : reg

- assess reglO;

val it = (193,68,96,true) : int * int * int * bool

- Reg.output("", reglO);

i+

0

(1 +0(0111 + 1(1 + 011 + 1(01 + 10))) +

1(01 + 0(011 + 1(01 + 10)) + 1(0 + 0(01 + 10) + 100))) +
1

(0 + 001 + 00011 + 00101 + 00110 + 010 + 01001 + 01010 + 01100 +
1(00 + 0001 + 0010 + 0100 + 1000))

val it = () : unit

- val (b, regl000) = locSimp 1000 reg;

val b = false : bool

val regl000 = - : reg

- assess reglO00;



val it = (153,48,68,true) : int * int * int * bool
- Reg.output("", regl000);
L+
0
(0(0111 + 1(011 + 1(% + 01 + 10))) +
1(% + 0(011 + 1(% + 01 + 10)) + 1(0(% + 01 + 10) + 100))) +
1
(0(% + 0(1(01 + 10) + (% + 01)1) + 1(0(% + 01 + 10) + 100)) +
1(0(0(% + 01 + 10) + 100) + 1000))
val it = () : unit
- val (b, regl500) = locSimp 1500 reg;
val b = false : bool
val regl500 = - : reg
- assess reglb500;
val it = (153,48,68,true) : int * int * int * bool
- Reg.output("", regl500);
L+
0
(0(0111 + 1(011 + 1(% + 01 + 10))) +
1(% + 0(011 + 1(% + 01 + 10)) + 1(0(% + 01 + 10) + 100))) +
1
(0(% + 0(011 + 1(% + 01 + 10)) + 1(0(% + 01 + 10) + 100)) +
1(0(0(% + 01 + 10) + 100) + 1000))
val it = () : unit

(It took about 22 minutes to carry out these simplifications on my Apple M1 MacBook Pro with
16GB memory.) Note that reg1000 and reg1500 have the same complexity:

- Reg.compareComplexity(regl000, regl500);
val it = EQUAL : order

But reg1500 is more symmetric than 1000, as can be seen by manually reordering its unions:

% +
0

(0(1(1(% + 01 + 10) + 011) + 0111) +

1(% + 0(1(% + 01 + 10) + 011) + 1(0(% + 01 + 10) + 100))) +
1

(1(0(0(% + 10 + 01) + 100) + 1000) +

0(% + 1(0(% + 10 + 01) + 100) + 0(1(% + 10 + 01) + 011)))

Although reg1500 is nicely symmetric, it seemed unlikely to be optimally simple, so I tried
several approaches to guiding Forlan to a better result. The approach that worked best is detailed
below.

First, we bind fours to the result of evaluating equal 4, i.e., to {w € {0,1}* | |w| = 4 and
diff w =10 }:

- val fours = equal 4;
val fours = - : str set
- StrSet.output("", fours);



0011, 0101, 0110, 1001, 1010, 1100
val it = () : unit

Recall the elements of X:

- StrSet.output("", xs);

%, 01, 10, 0011, 0101, 0110, 1001, 1010, 1100, 000111, 001011, 001101, 001110,
010011, 010101, 010110, 011001, 011010, 011100, 100011, 100101, 100110, 101001,
101010, 101100, 110001, 110010, 110100, 111000

val it = () : unit

Because a majority of the elements of X end with one of the elements of fours, we will partition
X into 8 sets: the elements of X ending in each of the 6 elements of fours, the elements of X
with length no more than 2, and the length 6 elements of X that don’t end with an element of
fours:

- fun ends(x, ys) = Set.filter (fn y => Str.suffix(x, y)) ys
= val parts =

= let val ps = Set.mapToList (fn y => ends(y, xs)) fours

= val ws = StrSet.minus(xs, StrSet.genUnion ps)
= val us = Set.filter (fn w => length w <= 2) ws
= val vs = StrSet.minus(ws, us)

= in vs :: us :: ps end;

val ends = fn : str * str set -> str set

val parts = [-,-,-,-,-,—,—,—] : str set list

- app (fn part => StrSet.output("", part)) parts;
ooo111, 001011, 001101, 001110, 110001, 110010, 110100, 111000
%, 01, 10

0011, 010011, 100011

0101, 010101, 100101

0110, 010110, 100110

1001, 011001, 101001

1010, 011010, 101010

1100, 011100, 101100

val it = () : unit

- StrSet.equal(StrSet.genUnion parts, xs);

val it = true : bool

So, the first element of parts consists of the length 6 elements of X that don’t end with an element
of fours, the next element is the elements of X with length no more than 2, and the remaining six
elements are the elements of X ending in 0011, 0101, 0110, 1001, 1010 and 1100, respectively.

Next, we convert each element of parts into a regular expression that’s the union of its elements,
and simplify those regular expressions:

- val regs = map (fn ys => #2(locSimp 1000 (Reg.fromStrSet ys))) parts;
val regs = [-,-,-,-,-,-,—-,-] : reg list

- app (fn reg => Reg.output("", reg)) regs;

00(11(01 + 10) + (01 + 10)11) + 11(00(01 + 10) + (01 + 10)00)

% + 01 + 10

(% + 01 + 10)0011



(4 + 01 + 10)0101
(4 + 01 + 10)0110
(4 + 01 + 10)1001
(4 + 01 + 10)1010
(4 + 01 + 10)1100
val it = () : unit

Because all but the first of our regular expressions have a common subtree, we simplify the result
of unioning those regular expressions together, resulting in reg’:

- val reg’ = #2(locSimp 1000 (Reg.genUnion(tl regs)));

val reg’ = - : reg

- Reg.output("", reg’);

(% + 01 + 10) () + 0(011 + 1(01 + 10)) + 1(001 + (01 + 10)0))
val it = () : unit

Finally, we simplify the union the first element of regs and reg’, calling the result reg’’:

- val reg’’ = #2(locSimp 1000 (Reg.union(hd regs, reg’)));

val reg’’ = - : reg

- assess reg’’;

val it = (103,35,50,true) : int * int * int * bool

- Reg.output("", reg’’);

00(11(01 + 10) + (01 + 10)11) + 11(00(01 + 10) + (01 + 10)00) +
(% + 01 + 10) (% + 0(011 + 1(01 + 10)) + 1(001 + (01 + 10)0))
val it = () : unit

We have that reg’’ is correct by construction, but we can also directly verify its correctness:

- StrSet.equal(Reg.toStrSet reg’’, xs);
val it = true : bool

Problem 2

Our regular expressions are (01)* and 0*1*. We can use Forlan to verify that our solution is correct,
as follows:

- val regl = Reg.fromString "(01)*";
val regl = - : reg

- val reg2 = Reg.fromString "O*1x";
val reg2 = - : reg

- val ccl = Reg.cc regl;

val ccl = - : Reg.cc

- val cc2 = Reg.cc reg?2;

val cc2 = - : Reg.cc

- Reg.compareCC(ccl, cc2);

val it = EQUAL : order

- Reg.ccTolist ccl;

val it = [1,1] : int list

- val sizel = Reg.size regl;



val sizel = 4 : int

- val size2 = Reg.size reg2;
val size2 = 5 : int

- sizel = size2;

val it = false : bool

Problem 3

First, we define a function locSimpTr for locally simplifying a regular expression, with tracing
turned on, using Reg.obviousSubset as the approximation to subset testing, and considering up to
n structural reorganizations at each recursive call.

- fun locSimpTr n =
= Reg.locallySimplifyTrace(SOME n, Reg.obviousSubset);
val locSimpTr = fn : int -> reg -> bool * reg

Then we use this function to illustrate how reduction rule (20) works:

- locSimpTr 100 (Reg.fromString "(11 + 111 + 11111 + 111111111)%");
exploration of structural reorganizations of (11 + 111 + 11111 + 111111111)%*
curtailed

(11 + 111 + 11111 + 111111111)* transformed by reduction rule 20 at position []
to % + (11)1* weakly simplifies to }, + 111%

considered all 12 structural reorganizations of 7, + 111%

/4 + 111 is locally simplified

val it = (true,-) : bool * reg

- locSimpTr 100

= (Reg.fromString " (111 + 1111 + 11111 + 1111111 + 1111111111)*");

exploration of structural reorganizations of

(111 + 1111 + 11111 + 1111111 + 1111111111)* curtailed

(111 + 1111 + 11111 + 1111111 + 1111111111)* transformed by reduction rule 20 at
position [] to ), + (111)1% weakly simplifies to 7 + 1111%

considered all 40 structural reorganizations of J + 1111%

/4 + 1111% is locally simplified

val it = (true,-) : bool * reg

- locSimpTr 100

= (Reg.fromString

= "(1111 + 11111 + 111411 + 1111141 + 1111111111 + 1111111111311)%");
exploration of structural reorganizations of

(1111 + 11111 + 111111 + 1111111 + 1111111111 + 1111111111111)* curtailed
(1111 + 11111 + 111111 + 1111111 + 1111111111 + 1111111111111)* transformed by
reduction rule 20 at position [] to J, + (1111)1% weakly simplifies to 7 + 11111%
exploration of structural reorganizations of J, + 11111% curtailed

/4 + 11111* may not be locally simplified

val it = (false,-) : bool * reg

- val reg = Reg.input "";

@ ((0+1) (0+1) (0+1) (0+1) + (0+1) (0+1) (0+1) (0+1) (0+1) + (0+1) (0+1) (0+1))*

o .

val reg = - : reg



- locSimpTr 100 reg;

((0+ 1) +1)(0 +1)(0+ 1)+ (0+ 1)+ 1)+ 1)(0 + 1) + 1) +
0+ 1) + 1)(0 + 1))+

weakly simplifies to

((0+ 1) +1)(0 + 1)(0 + 1) + 1) + (0+ 1) + 1)(0+ 1)(0 + 1) +
0+ 1) + 1)(0 + 1))*

exploration of structural reorganizations of

(0 + 1) +1)(0 +1)(0+ 1) + 1) + (0+ 1)+ 1)(0 + 1)(0 + 1) +
0+ 1) + 1)(0 + 1))+

curtailed

(0 + 1) +1)(0+ 1)(0 + 1) + 1) + (0+ 1)+ 1)(0+ 1)(0 + 1) +

(0 + 1)(0 + 1)(0 + 1))*
transformed by structural rule 2 at position [1] to
(C0 + 1)(0 + 1)(0 + 1)(0 +1)(0 + 1)+ (0+ 1)+ 1)+ 1)(0+1)) +
(0 + 1) + 1)(0 + 1))*
transformed by structural rule 5 at position [1, 1] to
(0 +1)(0 +1)(0 + 1) + 1) + (0+ 1)+ 1)+ 1)0 + 1)(0 + 1)) +
(0 + 1) + 1)(0 + 1))*
transformed by reduction rule 22 at position [1, 1] to
(G+0+ 100+ 1)0+ 1D+ 1)0+ 1)+ (0+1)(0+ 10+ 1))*
exploration of structural reorganizations of
((3+0+ 1)+ 1)+ 1) +1)(0+ 1)+ (0+1)(0+ 1)(0 + 1))* curtailed
((Z+0+ 1) + 1)+ 1) +1)(0+ 1)+ (0+ 1)(0 + 1)(0 + 1))* transformed
by structural rule 5 at position [1] to
((0+ 1O+ 1O+ 1)+ (+0+1)0+1)(0+1)(0 + 1)(0 + 1))* transformed
by structural rule 4 at position [1, 2] to
((0+ DO+ DO+ 1)+ ((5+0+1)0+ 1))+ 1) + 1)(0 + 1))* transformed
by reduction rule 22 at position [1] to
(GF+ (A +0+1)(0+1))(0 +1)(0 + 1)(0 + 1))*
exploration of structural reorganizations of
((Fh+ (h+0+ 1)+ 1)) + 1)(0 + 1)(0 + 1))* curtailed
(G + (G +0+ 1)+ 1)) + 1)(0 + 1)(0 + 1))* may not be locally simplified
val it = (false,-) : bool * reg
- locSimpTr 1000 reg;

((0+ 1) + 1)+ 1)+ 1)+ (0+ 1) +1)(0+ 1)+ 1)+ 1)+
0+ 1) + 1)(0 + 1))*

weakly simplifies to

(0 + 1) +1)(0 +1)(0+ 1) + 1) + (0+ 1)+ 1)(0 + 1)(0 + 1) +
0+ 1) + 1)(0 + 1))+

exploration of structural reorganizations of

((0+ 1) +1)(0+ 1)+ 1) + 1)+ (0+ 1)+ 1)(0+ 1)(0 + 1) +
0+ 1) + 1)(0 + 1))*

curtailed

(0 + 1) +1)(0 +1)(0+ 1) + 1) + (0+ 1)+ 1)(0 + 1)(0 + 1) +

(0 + 1)(0 + 1)(0 + 1))*

transformed by structural rule 2 at position [1] to

(CC0+ 1)+ 1)+ 1) +1)(0+1)+ (0+1)0+ 1)+ 1)+ 1)) +
(0 + 1)(0 + 1)(0 + 1))*



transformed by structural rule 5 at position [1] to
((0+1)(0+1)(0 + 1)+ (0+1)(0+1)(0+1)(0 +1)(0 +1) +
0+ 1)(0 + 1)(0 + 1)(0 + 1))*

transformed by structural rule 5 at position [1, 2] to
((0+1)(0 +1)(0+ 1)+ (0+1)0+ 1)+ 1)+ 1)+
(0 +1)(0 + 1) + 1) + 1) + 1))*

transformed by reduction rule 20 at position [] to

%+ ((0+1)(0 + 1)(0 + 1))(0 + 1)* weakly simplifies to

%+ (0+ 1)+ 1)+ 10+ 1)*

considered all 640 structural reorganizations of

A+ (0+ 10+ 1)+ 1)+ 1)*

%+ (0+ 1) + 1)(0 + 1)(0 + 1)* is locally simplified

val it = (true,-) : bool * reg

The last two examples show how a large number of structural reorganizations must sometimes be
considered before one to which rule (20) applies is found.

Problem 4

(a)
Our « is

(0(01)*1 + 1(10)*0)* (% + 0(01)*(% + 0) + 1(10)*(% + 1)).

(b)
Let

Ao = {0}{01}%,
A; = {1}{10}", and
B = (Ao{1} U A1{0})" ({%} U Ao{%, 0} U A1{%, 1}).

Then L(a) = B, so it will suffice to show B =Y. We show that BCY C B.
For I,m,n € Z such that [ <0, m > 0 and | <n < m, define:

ybm = fa € {0,1}* | for all prefixes v of w, | < diffv < m }, and
Yim = {we {0,1}" |w € V"™ and diff w = n }

Thus:
e for all [;m,n € Z such that I <0, m >0and | <n <m, Yl Cybm;
o forall I,I/,m,m' € Z,if I’ <1<0and 0<m<m/, then Y™ C YV, and
o forall [,I!,m,m',n€Z, ifl'!<1<0,0<m<m’and [ <n <m, then Y\ C Y,f,"m,.

Lemma PS3.4.1
(1) % e Y.



(2) 0eY M.
(3) 1e Y
(4) For alll,l’,m,m' € Z, if |,I’ <0 and m,m’ > 0 then

Yl,m U Yl/,m/ C Ymin(l,l/),max(m,m')

(5) For all l,I',m,m',n € Z, if ;I <0, m,m >0,l <n<mandl' <n<m/, then

Yé,m U Yé’,m’ C Y;ﬂin(l,l’),max(m,m’)'

(6) For alll,l’,m,m',ne€Z, ifl,I'’ <0, m,m’ >0 andl <n <m, then

Yl,myl/,m' C Ymin(l,n—i—l/),max(m,n-i-m')
n —_ .

(7) For alll,l’,m,m/,n,n' € Z, if ,I'! <0, m,m’ >0,l <n<mandl' <n' <m/, then

I,my U m' min(l,n+1"),max(m,n+m’)
Yn Yn’ g Yn+n/ .

(8) For alll,m € Z, if | <0 and m > 0, then (Y;"™)* C Y™,
Proof.

(1) Follows since diff % = 0, and % is the only prefix of itself.
(2) Follows since diff % = 0, diff 0 = —1 and the only prefixes of 0 are % and 0.
(3) Follows since diff % = 0, diff 1 = 1 and the only prefixes of 1 are % and 1.
(4)

4) Suppose w € Y™ U y.m" There are two cases to consider.

e Suppose w € Y5™, To see that w € Ymin(l’l/)’max(m’m/), suppose v is a prefix of w. Then
min(l,!") <1 <diff v <m < max(m,m’).

e Suppose w € y¥m' The proof is similar to the other case.
(5) Follows immediately from part (4).

(6) Suppose w € Y,f’mYl,"m,, so that w = zy for some z € Y,\™ and y € y¥ ™' To see that
w E Ymin(l’"*‘l/)’max(m’""’m/), suppose v is a prefix of w. There are two cases to consider.
e Suppose v is a prefix of x. Then min(l,n +1') < < diff v < m < max(m,n +m’).

e Suppose v = zu for a prefix u of y. Hence I’ < diff u < m/, so that min(l, n+1") < n+l’ <
n+diff u < n+m’ < max(m,n+m’). But diff v = diff (zu) = diff z+diff u = n+diff v,
so that min(l,n + 1) < diff v < max(m,n + m/).

(7) Suppose w € Yé’ini’m/, so that w = xy for some # € Y,\™ and y € Yéi’m/. Thus diff w =
diff (zy) = diff  + diff y = n + n’. And the rest follows by part (6).

(8) We use mathematical induction to show that, for all n € N, (Y"™)* C Yg'™.



(Basis Step) We have that (Y{™)0 = {%} C Y° C Y™, by part (1).

(Inductive Step) Suppose n € N, and assume the inductive hypothesis: (Yol’m)" - Yol’m.
Then (Yy™)™+ = Yo" (Vg™ )" C Yo "Yy ™ C Yo Ot 0mextnotm — yibm hy the
inductive hypothesis and part (7).

Now, suppose w € (Y¢"™)*. Then w € (Y¢"™)", for some n € N. Hence w € (Y™)" C Y™,
O

Lemma PS3.4.2
(1) {01} € ¥5 0.

(2) {10} C Y.
(3) Ag C Y20,
(4) Ay C Y2
(5) Ao{1} C Yy *°.
(6) A1{0} C Y%
(7) Ao{1} U A1 {0} C Yy >
(8) (Ao{1}U A {0})* C Y, >2.
(9) {%,0} C Y10,
(10) {%,1} C YL
(11) A{%,0} C Y20,
(12) A1{%,1} C V%2,
(13) {%} U Ag{%,0} U A {%, 1} C Y22
(14) B CY~%2
We use Lemma PS3.4.1 repeatedly, without reference, in the following proof.
Proof.

1) We have that {01} = {0}{1} C Yy 10y0! ¢ ymin(-L-140)max(0.—141) _ 1,0 = g
( ) 1 1 1+1 0
{01}* C (YO—I,O)* C YO—I,O-

(2) We have that {10} = {1}{0} C Y"'v 10 C ypm(O - Dmax(LIF0) _ y01 -y {10} C
(Y9 c vy

(3) Since {0} C Y, we have that Ag = {0}{01}* C Y10y, 10 €yl =t - 1max(0,=140)
Y 2%, by part (1)

(4) Since {1} C Ylo,l, we have that Al _ {1}{10}* C }/10,1)/00,1 C }/lliion(o,l-i-o)vmax(l,l-‘rl) — }/10,2,
by part (2).

10



(5) Ao{1} C Y 207! C Y_l'r;irl(flflJrO),max(O,flJrl) = Y720, by part (3).
(6) A1{0} C Y22y M0 ¢ YITT£0,1+—1),max(2,1+0) = Y22, by part (4).
7) Ao{1} U A;{0} C Yy 20 uy? C ymin(-20)max(0.2) _ y=2.2 1o harts (5) and (6).

(
(8) Since Ag{1}UA1{0} C Yy *?, by part (7), we have that (4g{1}UA;{0})* C (Yy >?)* C Y, >2
(

10 {%7 1} — {%} U {1} C Y00 ,yo!l C ymin(0,0),max(0,1) _ 0,1
11 AO{%, O} C Y_—12,0y—1,0 C ymin(—2,—1+-1),max(0,-14+0) _ Y_Q’O, by parts (3) and (9)

)
)
)
)
9) {%,0} ={%}u {0} C YOOy 10 C ymin(0-1)max(0.0) — y-10,
)
)
12) A1{%,1} C Y22y 0! C ymin(0,140)max(2,1+1) — y0.2 fy parts (4) and (10).
)

(

(

(

(13 {%}UAO{%, O}UAl{%, 1} C Y00y —20y0:2 C Ymin(o,—2),max(0,0)uy0,2 —Yy~-20y02 C
ymin(=2,0)max(0,2) — y=22 by parts (11) and (12).

(14) B = (Ao{1}UA1{0})*({%}UA0{%, 0}UA{%, 1}) C Y, >?Y 22 C ymin(-2,0+-2),max(2,0+2) —
Y =22, by parts (8) and (13).

By Lemma PS3.4.2(14), we have that B C Y =22 =Y. So, it remains to show that Y C B.

Lemma PS3.4.3
For all z,y € {0,1}*, ifzy € Y and diff =0, then y € Y.

Proof. Suppose z,y € {0,1}*, zy € Y and diff v = 0. To show that y € Y, suppose v is a prefix
of y. Hence zv is a prefix of zy, so that —2 < diff (zv) < 2. But diff (zv) = diff z + diff v =
0 + diff v = diff v, so that —2 < diff v < 2, as required. O

Lemma PS3.4.4
Y C B.

Proof. Since Y C {0,1}*, it will suffice to show that, for all w € {0,1}*,
ifweY, thenw € B.

We proceed by strong string induction. Suppose w € {0,1}*, and assume the inductive hypothesis:
for all x € {0,1}*, if x is a proper substring of w, then,

ifx €Y, thenz € B.

We must show that,
ifweY, thenw € B.

Suppose w € Y. We must show that w € B. There are three cases to consider.

e Suppose w = %. Then

w =% =%% € (Ao{1} U A1 {0))*({%} U Ag{%, 0} U A1 {%, 1}) = B.

11



e Suppose w = Oz, for some z € {0,1}*. Let y be the longest prefix of = that is an element of
{01}* (y is well-defined, because it could be %), and z € {0,1}* be such that = yz. Thus
w = 0z = Oyz and Oy € {0}{01}* = Ay. There are three subcases to consider.

— Suppose z = %. Then

w = 0yz = 0y% = 0y = %(0y)% € (Ao{1} U A1{0})* Ao{%, 0}
C (Ao{1} U A1{0})"({%} U Ao{%, 0} U A1{%,1}) = B.

— Suppose z = Ou, for some u € {0,1}*. Thus x = yz = yOu and w = 0x = 0yOu.
Suppose, toward a contradiction, that u # %. There are two cases to consider.

* Suppose v = Qv, for some v € {0,1}*. Then w = 0yOu = O0y00v. By
Lemma PS3.4.2(1), we have that y € {01}* C Yy ", so that diffy = 0. Hence
diff (0y00) = diff 0 + diff y + diff 0+ diff 0 = -1+ 0+ —1 4+ —1 = —3. But 0400 is
a prefix of w € Y—contradiction.

* Suppose v = lv, for some v € {0,1}*. Then z = yOu = y0lv. Since y € {01}*,
it follows that y01 € {01}*{01} C {01}*. But y01 is a longer prefix of = than y,
contradicting the definition of y.

Since we obtained a contradiction in both cases, we have an overall contradiction. Thus
u=%.

Since u = %, we have that

w = 0yOu = 0y0% = 0y0 = %(0y)0 € (Ap{1} U A;1{0})* Ao{%, 0}
C (Ap{1} U A1 {01 *({%} U Ap{%,0} U A1 {%,1}) = B.

— Suppose z = lu, for some u € {0,1}*. Thus w = Oyz = Oylu. By Lemma PS3.4.2(5),
Oyl € Ap{1} C Yy >, so that diff(0y1) = 0. Thus, since Oylu = w € Y, Lemma PS3.4.3
tells us that w € Y. Since u is a proper substring of w, the inductive hypothesis tells us
that w € B. Hence

w = 0ylu € Ag{1}B C (Ao{1} U A1 {0})B C (Ap{1} U A;{0})"B
= (Ao{1} U A1{0})" (Ao {1} U A1{0})"({%} U Ao{%, 0} U A1{%, 1})
= (Ap{1} U A1 {0})*"({%} U Ap{%,0} U A1 {%,1}) = B.
e Suppose w = lz, for some = € {0,1}*. Let y be the longest prefix of = that is an element of

{10}* (y is well-defined, because it could be %), and z € {0,1}* be such that = yz. Thus
w =1z = lyz and ly € {1}{10}* = A;. There are three subcases to consider.

— Suppose z = %. Then

w=1lyz = 1y% = 1y = %(1y)% € (Ao{1} U A1{0})* A:1{%, 1}
C (Ao{1} U A1{0})"({%} U Ao{%, 0} U A1{%,1}) = B.

— Suppose z = 1u, for some u € {0,1}*. Thus z = yz = ylu and w = 1z = lylu.

Suppose, toward a contradiction, that u # %. There are two cases to consider.

12



* Suppose v = lv, for some v € {0,1}*. Then w = lylu = 1yllv. By
Lemma PS3.4.2(2), we have that y € {10}* C Yy"', so that diffy = 0. Hence
diff (1y11) = dif 1 + diff y + diff 1 + diff 1 =1+ 0+ 1+ 1 = 3. But 1yll is a prefix
of w € Y—contradiction.

* Suppose v = Ov, for some v € {0,1}*. Then z = ylu = y1l0v. Since y € {10}*,
it follows that y10 € {10}*{10} C {10}*. But y10 is a longer prefix of x than y,
contradicting the definition of y.

Since we obtained a contradiction in both cases, we have an overall contradiction. Thus
u=%.

Since u = %, we have that

w = lylu = 1y1% = 1yl = %(1y)1 € (Ao{1} U A1{0})"A:1{%, 1}
C (Aof1} U A1 {0})"({%} U Ao{%, 0} U A1 {%, 1}) = B.

— Suppose z = Qu, for some u € {0,1}*. Thus w = lyz = 1yOu. By Lemma PS3.4.2(6),
150 € A;1{0} C Y3"*, so that diff(1y0) = 0. Thus, since 1y0u = w € Y, Lemma PS3.4.3
tells us that v € Y. Since u is a proper substring of w, the inductive hypothesis tells us
that w € B. Hence

w = 1y0u € A1 {0} B C (Ao{1} U A, {0})B C (Ao{1} U A;{0})*B
= (Ao{1} U A1{0})"(Ao{1} U A1 {0})"({%} U Ao{%, 0} U A1{%, 1})
= (Ao{1} U A {0})"({%} U Ao{%,0} U A1{%, 1}) = B.

13



