
CS 516—Software Foundations via Formal Languages—Spring 2025

Problem Set 3

Model Answers

Problem 1

To begin with, we put the following declarations in the file ps3-p1.sml:

val zero = Sym.fromString "0";

val one = Sym.fromString "1";

fun diff (nil : str) = 0

| diff (b :: bs) =

if Sym.equal(b, zero)

then ~1 + diff bs

else 1 + diff bs;

fun equal n =

Set.filter

(fn x => diff x = 0)

(StrSet.power(StrSet.fromString "0, 1", n));

fun upto 0 = equal 0

| upto n = StrSet.union(equal n, upto(n - 1));

fun locSimp n = Reg.locallySimplify(SOME n, Reg.obviousSubset);

fun assess reg =

(Reg.size reg, Reg.numConcats reg,

Reg.numSyms reg, Reg.standardized reg);

We then load this file into Forlan:

- use "ps3-p1.sml";

[opening ps3-p1.sml]

val zero = - : sym

val one = - : sym

val diff = fn : str -> int

val equal = fn : int -> str set

val upto = fn : int -> str set

val locSimp = fn : int -> reg -> bool * reg

val assess = fn : reg -> int * int * int * bool

val it = () : unit

Given a natural number n:

• equal returns {w ∈ {0, 1}∗ | |w| = n and diff w = 0 }; and

1

• upto returns {w ∈ {0, 1}∗ | |w| ≤ n and diff w = 0 }.

The function locSimp locally simplifies a regular expression using Reg.obviousSubset as the ap-

proximation to subset testing, and considering up to n structural reorganizations at each recursive

call. And the function assess assesses the complexity of a regular expression; it doesn’t return its

argument’s closure complexity, because our regular expressions will not involve closures, and so their

closure complexities will just be lists of zeros.

Thus upto 6 returns X , and we bind xs to X :

- val xs = upto 6;

val xs = - : str set

- Set.size xs;

val it = 29 : int

- StrSet.output("", xs);

%, 01, 10, 0011, 0101, 0110, 1001, 1010, 1100, 000111, 001011, 001101, 001110,

010011, 010101, 010110, 011001, 011010, 011100, 100011, 100101, 100110, 101001,

101010, 101100, 110001, 110010, 110100, 111000

val it = () : unit

To begin our first attempt at finding a simple regular expression generating X , we create a

regular expression, reg, consisting of the union of all the elements of X :

- val reg = Reg.fromStrSet xs;

val reg = - : reg

- Reg.output("", reg);

% + 01 + 10 + 0011 + 0101 + 0110 + 1001 + 1010 + 1100 + 000111 + 001011 +

001101 + 001110 + 010011 + 010101 + 010110 + 011001 + 011010 + 011100 + 100011 +

100101 + 100110 + 101001 + 101010 + 101100 + 110001 + 110010 + 110100 + 111000

val it = () : unit

Then, we can try locally simplifying reg with increasing values of n: 10, 1000, 1500:

- val (b, reg10) = locSimp 10 reg;

val b = false : bool

val reg10 = - : reg

- assess reg10;

val it = (193,68,96,true) : int * int * int * bool

- Reg.output("", reg10);

% +

0

(1 + 0(0111 + 1(1 + 011 + 1(01 + 10))) +

1(01 + 0(011 + 1(01 + 10)) + 1(0 + 0(01 + 10) + 100))) +

1

(0 + 001 + 00011 + 00101 + 00110 + 010 + 01001 + 01010 + 01100 +

1(00 + 0001 + 0010 + 0100 + 1000))

val it = () : unit

- val (b, reg1000) = locSimp 1000 reg;

val b = false : bool

val reg1000 = - : reg

- assess reg1000;

2

val it = (153,48,68,true) : int * int * int * bool

- Reg.output("", reg1000);

% +

0

(0(0111 + 1(011 + 1(% + 01 + 10))) +

1(% + 0(011 + 1(% + 01 + 10)) + 1(0(% + 01 + 10) + 100))) +

1

(0(% + 0(1(01 + 10) + (% + 01)1) + 1(0(% + 01 + 10) + 100)) +

1(0(0(% + 01 + 10) + 100) + 1000))

val it = () : unit

- val (b, reg1500) = locSimp 1500 reg;

val b = false : bool

val reg1500 = - : reg

- assess reg1500;

val it = (153,48,68,true) : int * int * int * bool

- Reg.output("", reg1500);

% +

0

(0(0111 + 1(011 + 1(% + 01 + 10))) +

1(% + 0(011 + 1(% + 01 + 10)) + 1(0(% + 01 + 10) + 100))) +

1

(0(% + 0(011 + 1(% + 01 + 10)) + 1(0(% + 01 + 10) + 100)) +

1(0(0(% + 01 + 10) + 100) + 1000))

val it = () : unit

(It took about 22 minutes to carry out these simplifications on my Apple M1 MacBook Pro with

16GB memory.) Note that reg1000 and reg1500 have the same complexity:

- Reg.compareComplexity(reg1000, reg1500);

val it = EQUAL : order

But reg1500 is more symmetric than 1000, as can be seen by manually reordering its unions:

% +

0

(0(1(1(% + 01 + 10) + 011) + 0111) +

1(% + 0(1(% + 01 + 10) + 011) + 1(0(% + 01 + 10) + 100))) +

1

(1(0(0(% + 10 + 01) + 100) + 1000) +

0(% + 1(0(% + 10 + 01) + 100) + 0(1(% + 10 + 01) + 011)))

Although reg1500 is nicely symmetric, it seemed unlikely to be optimally simple, so I tried

several approaches to guiding Forlan to a better result. The approach that worked best is detailed

below.

First, we bind fours to the result of evaluating equal 4, i.e., to {w ∈ {0, 1}∗ | |w| = 4 and

diff w = 0 }:

- val fours = equal 4;

val fours = - : str set

- StrSet.output("", fours);

3

0011, 0101, 0110, 1001, 1010, 1100

val it = () : unit

Recall the elements of X :

- StrSet.output("", xs);

%, 01, 10, 0011, 0101, 0110, 1001, 1010, 1100, 000111, 001011, 001101, 001110,

010011, 010101, 010110, 011001, 011010, 011100, 100011, 100101, 100110, 101001,

101010, 101100, 110001, 110010, 110100, 111000

val it = () : unit

Because a majority of the elements of X end with one of the elements of fours, we will partition

X into 8 sets: the elements of X ending in each of the 6 elements of fours, the elements of X

with length no more than 2, and the length 6 elements of X that don’t end with an element of

fours:

- fun ends(x, ys) = Set.filter (fn y => Str.suffix(x, y)) ys

= val parts =

= let val ps = Set.mapToList (fn y => ends(y, xs)) fours

= val ws = StrSet.minus(xs, StrSet.genUnion ps)

= val us = Set.filter (fn w => length w <= 2) ws

= val vs = StrSet.minus(ws, us)

= in vs :: us :: ps end;

val ends = fn : str * str set -> str set

val parts = [-,-,-,-,-,-,-,-] : str set list

- app (fn part => StrSet.output("", part)) parts;

000111, 001011, 001101, 001110, 110001, 110010, 110100, 111000

%, 01, 10

0011, 010011, 100011

0101, 010101, 100101

0110, 010110, 100110

1001, 011001, 101001

1010, 011010, 101010

1100, 011100, 101100

val it = () : unit

- StrSet.equal(StrSet.genUnion parts, xs);

val it = true : bool

So, the first element of parts consists of the length 6 elements of X that don’t end with an element

of fours, the next element is the elements of X with length no more than 2, and the remaining six

elements are the elements of X ending in 0011, 0101, 0110, 1001, 1010 and 1100, respectively.

Next, we convert each element of parts into a regular expression that’s the union of its elements,

and simplify those regular expressions:

- val regs = map (fn ys => #2(locSimp 1000 (Reg.fromStrSet ys))) parts;

val regs = [-,-,-,-,-,-,-,-] : reg list

- app (fn reg => Reg.output("", reg)) regs;

00(11(01 + 10) + (01 + 10)11) + 11(00(01 + 10) + (01 + 10)00)

% + 01 + 10

(% + 01 + 10)0011

4

(% + 01 + 10)0101

(% + 01 + 10)0110

(% + 01 + 10)1001

(% + 01 + 10)1010

(% + 01 + 10)1100

val it = () : unit

Because all but the first of our regular expressions have a common subtree, we simplify the result

of unioning those regular expressions together, resulting in reg’:

- val reg’ = #2(locSimp 1000 (Reg.genUnion(tl regs)));

val reg’ = - : reg

- Reg.output("", reg’);

(% + 01 + 10)(% + 0(011 + 1(01 + 10)) + 1(001 + (01 + 10)0))

val it = () : unit

Finally, we simplify the union the first element of regs and reg’, calling the result reg’’:

- val reg’’ = #2(locSimp 1000 (Reg.union(hd regs, reg’)));

val reg’’ = - : reg

- assess reg’’;

val it = (103,35,50,true) : int * int * int * bool

- Reg.output("", reg’’);

00(11(01 + 10) + (01 + 10)11) + 11(00(01 + 10) + (01 + 10)00) +

(% + 01 + 10)(% + 0(011 + 1(01 + 10)) + 1(001 + (01 + 10)0))

val it = () : unit

We have that reg’’ is correct by construction, but we can also directly verify its correctness:

- StrSet.equal(Reg.toStrSet reg’’, xs);

val it = true : bool

Problem 2

Our regular expressions are (01)∗ and 0
∗
1
∗. We can use Forlan to verify that our solution is correct,

as follows:

- val reg1 = Reg.fromString "(01)*";

val reg1 = - : reg

- val reg2 = Reg.fromString "0*1*";

val reg2 = - : reg

- val cc1 = Reg.cc reg1;

val cc1 = - : Reg.cc

- val cc2 = Reg.cc reg2;

val cc2 = - : Reg.cc

- Reg.compareCC(cc1, cc2);

val it = EQUAL : order

- Reg.ccToList cc1;

val it = [1,1] : int list

- val size1 = Reg.size reg1;

5

val size1 = 4 : int

- val size2 = Reg.size reg2;

val size2 = 5 : int

- size1 = size2;

val it = false : bool

Problem 3

First, we define a function locSimpTr for locally simplifying a regular expression, with tracing

turned on, using Reg.obviousSubset as the approximation to subset testing, and considering up to

n structural reorganizations at each recursive call.

- fun locSimpTr n =

= Reg.locallySimplifyTrace(SOME n, Reg.obviousSubset);

val locSimpTr = fn : int -> reg -> bool * reg

Then we use this function to illustrate how reduction rule (20) works:

- locSimpTr 100 (Reg.fromString "(11 + 111 + 11111 + 111111111)*");

exploration of structural reorganizations of (11 + 111 + 11111 + 111111111)*

curtailed

(11 + 111 + 11111 + 111111111)* transformed by reduction rule 20 at position []

to % + (11)1* weakly simplifies to % + 111*

considered all 12 structural reorganizations of % + 111*

% + 111* is locally simplified

val it = (true,-) : bool * reg

- locSimpTr 100

= (Reg.fromString "(111 + 1111 + 11111 + 1111111 + 1111111111)*");

exploration of structural reorganizations of

(111 + 1111 + 11111 + 1111111 + 1111111111)* curtailed

(111 + 1111 + 11111 + 1111111 + 1111111111)* transformed by reduction rule 20 at

position [] to % + (111)1* weakly simplifies to % + 1111*

considered all 40 structural reorganizations of % + 1111*

% + 1111* is locally simplified

val it = (true,-) : bool * reg

- locSimpTr 100

= (Reg.fromString

= "(1111 + 11111 + 111111 + 1111111 + 1111111111 + 1111111111111)*");

exploration of structural reorganizations of

(1111 + 11111 + 111111 + 1111111 + 1111111111 + 1111111111111)* curtailed

(1111 + 11111 + 111111 + 1111111 + 1111111111 + 1111111111111)* transformed by

reduction rule 20 at position [] to % + (1111)1* weakly simplifies to % + 11111*

exploration of structural reorganizations of % + 11111* curtailed

% + 11111* may not be locally simplified

val it = (false,-) : bool * reg

- val reg = Reg.input "";

@ ((0+1)(0+1)(0+1)(0+1) + (0+1)(0+1)(0+1)(0+1)(0+1) + (0+1)(0+1)(0+1))*

@ .

val reg = - : reg

6

- locSimpTr 100 reg;

((0 + 1)(0 + 1)(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1) +

(0 + 1)(0 + 1)(0 + 1))*

weakly simplifies to

((0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)(0 + 1) +

(0 + 1)(0 + 1)(0 + 1))*

exploration of structural reorganizations of

((0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)(0 + 1) +

(0 + 1)(0 + 1)(0 + 1))*

curtailed

((0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)(0 + 1) +

(0 + 1)(0 + 1)(0 + 1))*

transformed by structural rule 2 at position [1] to

(((0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)(0 + 1)) +

(0 + 1)(0 + 1)(0 + 1))*

transformed by structural rule 5 at position [1, 1] to

(((0 + 1)(0 + 1)(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1)) +

(0 + 1)(0 + 1)(0 + 1))*

transformed by reduction rule 22 at position [1, 1] to

((% + 0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))*

exploration of structural reorganizations of

((% + 0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))* curtailed

((% + 0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))* transformed

by structural rule 5 at position [1] to

((0 + 1)(0 + 1)(0 + 1) + (% + 0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1))* transformed

by structural rule 4 at position [1, 2] to

((0 + 1)(0 + 1)(0 + 1) + ((% + 0 + 1)(0 + 1))(0 + 1)(0 + 1)(0 + 1))* transformed

by reduction rule 22 at position [1] to

((% + (% + 0 + 1)(0 + 1))(0 + 1)(0 + 1)(0 + 1))*

exploration of structural reorganizations of

((% + (% + 0 + 1)(0 + 1))(0 + 1)(0 + 1)(0 + 1))* curtailed

((% + (% + 0 + 1)(0 + 1))(0 + 1)(0 + 1)(0 + 1))* may not be locally simplified

val it = (false,-) : bool * reg

- locSimpTr 1000 reg;

((0 + 1)(0 + 1)(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1) +

(0 + 1)(0 + 1)(0 + 1))*

weakly simplifies to

((0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)(0 + 1) +

(0 + 1)(0 + 1)(0 + 1))*

exploration of structural reorganizations of

((0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)(0 + 1) +

(0 + 1)(0 + 1)(0 + 1))*

curtailed

((0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)(0 + 1) +

(0 + 1)(0 + 1)(0 + 1))*

transformed by structural rule 2 at position [1] to

(((0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)(0 + 1)) +

(0 + 1)(0 + 1)(0 + 1))*

7

transformed by structural rule 5 at position [1] to

((0 + 1)(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1) +

(0 + 1)(0 + 1)(0 + 1)(0 + 1))*

transformed by structural rule 5 at position [1, 2] to

((0 + 1)(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)(0 + 1) +

(0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1))*

transformed by reduction rule 20 at position [] to

% + ((0 + 1)(0 + 1)(0 + 1))(0 + 1)* weakly simplifies to

% + (0 + 1)(0 + 1)(0 + 1)(0 + 1)*

considered all 640 structural reorganizations of

% + (0 + 1)(0 + 1)(0 + 1)(0 + 1)*

% + (0 + 1)(0 + 1)(0 + 1)(0 + 1)* is locally simplified

val it = (true,-) : bool * reg

The last two examples show how a large number of structural reorganizations must sometimes be

considered before one to which rule (20) applies is found.

Problem 4

(a)

Our α is

(0(01)∗1+ 1(10)∗0)∗ (% + 0(01)∗(% + 0) + 1(10)∗(% + 1)).

(b)

Let

A0 = {0}{01}∗,

A1 = {1}{10}∗, and

B = (A0{1} ∪ A1{0})
∗ ({%} ∪ A0{%, 0} ∪ A1{%, 1}).

Then L(α) = B, so it will suffice to show B = Y . We show that B ⊆ Y ⊆ B.

For l,m, n ∈ Z such that l ≤ 0, m ≥ 0 and l ≤ n ≤ m, define:

Y l,m = {w ∈ {0, 1}∗ | for all prefixes v of w, l ≤ diff v ≤ m }, and

Y l,m
n = {w ∈ {0, 1}∗ | w ∈ Y l,m and diff w = n }

Thus:

• for all l,m, n ∈ Z such that l ≤ 0, m ≥ 0 and l ≤ n ≤ m, Y l,m
n ⊆ Y l,m;

• for all l, l′,m,m′ ∈ Z, if l′ ≤ l ≤ 0 and 0 ≤ m ≤ m′, then Y l,m ⊆ Y l′,m′

; and

• for all l, l′,m,m′, n ∈ Z, if l′ ≤ l ≤ 0, 0 ≤ m ≤ m′ and l ≤ n ≤ m, then Y l,m
n ⊆ Y l′,m′

n .

Lemma PS3.4.1

(1) % ∈ Y
0,0
0 .

8

(2) 0 ∈ Y
−1,0
−1 .

(3) 1 ∈ Y
0,1
1 .

(4) For all l, l′,m,m′ ∈ Z, if l, l′ ≤ 0 and m,m′ ≥ 0 then

Y l,m ∪ Y l′,m′

⊆ Y min(l,l′),max(m,m′).

(5) For all l, l′,m,m′, n ∈ Z, if l, l′ ≤ 0, m,m′ ≥ 0, l ≤ n ≤ m and l′ ≤ n ≤ m′, then

Y l,m
n ∪ Y l′,m′

n ⊆ Y min(l,l′),max(m,m′)
n .

(6) For all l, l′,m,m′, n ∈ Z, if l, l′ ≤ 0, m,m′ ≥ 0 and l ≤ n ≤ m, then

Y l,m
n Y l′,m′

⊆ Y min(l,n+l′),max(m,n+m′).

(7) For all l, l′,m,m′, n, n′ ∈ Z, if l, l′ ≤ 0, m,m′ ≥ 0, l ≤ n ≤ m and l′ ≤ n′ ≤ m′, then

Y l,m
n Y

l′,m′

n′ ⊆ Y
min(l,n+l′),max(m,n+m′)
n+n′ .

(8) For all l,m ∈ Z, if l ≤ 0 and m ≥ 0, then (Y l,m
0)∗ ⊆ Y

l,m
0 .

Proof.

(1) Follows since diff % = 0, and % is the only prefix of itself.

(2) Follows since diff % = 0, diff 0 = −1 and the only prefixes of 0 are % and 0.

(3) Follows since diff % = 0, diff 1 = 1 and the only prefixes of 1 are % and 1.

(4) Suppose w ∈ Y l,m ∪ Y l′,m′

. There are two cases to consider.

• Suppose w ∈ Y l,m. To see that w ∈ Y min(l,l′),max(m,m′), suppose v is a prefix of w. Then

min(l, l′) ≤ l ≤ diff v ≤ m ≤ max(m,m′).

• Suppose w ∈ Y l′,m′

. The proof is similar to the other case.

(5) Follows immediately from part (4).

(6) Suppose w ∈ Y l,m
n Y l′,m′

, so that w = xy for some x ∈ Y l,m
n and y ∈ Y l′,m′

. To see that

w ∈ Y min(l,n+l′),max(m,n+m′), suppose v is a prefix of w. There are two cases to consider.

• Suppose v is a prefix of x. Then min(l, n+ l′) ≤ l ≤ diff v ≤ m ≤ max(m,n+m′).

• Suppose v = xu for a prefix u of y. Hence l′ ≤ diff u ≤ m′, so thatmin(l, n+l′) ≤ n+l′ ≤

n+diff u ≤ n+m′ ≤ max(m,n+m′). But diff v = diff(xu) = diff x+diff u = n+diff u,

so that min(l, n+ l′) ≤ diff v ≤ max(m,n+m′).

(7) Suppose w ∈ Y l,m
n Y

l′,m′

n′ , so that w = xy for some x ∈ Y l,m
n and y ∈ Y

l′,m′

n′ . Thus diff w =

diff(xy) = diff x+ diff y = n+ n′. And the rest follows by part (6).

(8) We use mathematical induction to show that, for all n ∈ N, (Y l,m
0)n ⊆ Y

l,m
0 .

9

(Basis Step) We have that (Y l,m
0)0 = {%} ⊆ Y

0,0
0 ⊆ Y

l,m
0 , by part (1).

(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis: (Y l,m
0)n ⊆ Y

l,m
0 .

Then (Y l,m
0)n+1 = Y

l,m
0 (Y l,m

0)n ⊆ Y
l,m
0 Y

l,m
0 ⊆ Y

min(l,0+l),max(m,0+m)
0+0 = Y

l,m
0 , by the

inductive hypothesis and part (7).

Now, suppose w ∈ (Y l,m
0)∗. Then w ∈ (Y l,m

0)n, for some n ∈ N. Hence w ∈ (Y l,m
0)n ⊆ Y

l,m
0 .

✷

Lemma PS3.4.2

(1) {01}∗ ⊆ Y
−1,0
0 .

(2) {10}∗ ⊆ Y
0,1
0 .

(3) A0 ⊆ Y
−2,0
−1 .

(4) A1 ⊆ Y
0,2
1 .

(5) A0{1} ⊆ Y
−2,0
0 .

(6) A1{0} ⊆ Y
0,2
0 .

(7) A0{1} ∪ A1{0} ⊆ Y
−2,2
0 .

(8) (A0{1} ∪ A1{0})
∗ ⊆ Y

−2,2
0 .

(9) {%, 0} ⊆ Y −1,0.

(10) {%, 1} ⊆ Y 0,1.

(11) A0{%, 0} ⊆ Y −2,0.

(12) A1{%, 1} ⊆ Y 0,2.

(13) {%} ∪ A0{%, 0} ∪ A1{%, 1} ⊆ Y −2,2.

(14) B ⊆ Y −2,2.

We use Lemma PS3.4.1 repeatedly, without reference, in the following proof.

Proof.

(1) We have that {01} = {0}{1} ⊆ Y
−1,0
−1 Y

0,1
1 ⊆ Y

min(−1,−1+0),max(0,−1+1)
−1+1 = Y

−1,0
0 . Thus

{01}∗ ⊆ (Y −1,0
0)∗ ⊆ Y

−1,0
0 .

(2) We have that {10} = {1}{0} ⊆ Y
0,1
1 Y

−1,0
−1 ⊆ Y

min(0,1+−1),max(1,1+0)
1+−1 = Y

0,1
0 . Thus {10}∗ ⊆

(Y 0,1
0)∗ ⊆ Y

0,1
0 .

(3) Since {0} ⊆ Y
−1,0
−1 , we have that A0 = {0}{01}∗ ⊆ Y

−1,0
−1 Y

−1,0
0 ⊆ Y

min(−1,−1+−1),max(0,−1+0)
−1+0 =

Y
−2,0
−1 , by part (1)

(4) Since {1} ⊆ Y
0,1
1 , we have that A1 = {1}{10}∗ ⊆ Y

0,1
1 Y

0,1
0 ⊆ Y

min(0,1+0),max(1,1+1)
1+0 = Y

0,2
1 ,

by part (2).

10

(5) A0{1} ⊆ Y
−2,0
−1 Y

0,1
1 ⊆ Y

min(−2,−1+0),max(0,−1+1)
−1+1 = Y

−2,0
0 , by part (3).

(6) A1{0} ⊆ Y
0,2
1 Y

−1,0
−1 ⊆ Y

min(0,1+−1),max(2,1+0)
1+−1 = Y

0,2
0 , by part (4).

(7) A0{1} ∪ A1{0} ⊆ Y
−2,0
0 ∪ Y

0,2
0 ⊆ Y

min(−2,0),max(0,2)
0 = Y

−2,2
0 , by parts (5) and (6).

(8) Since A0{1}∪A1{0} ⊆ Y
−2,2
0 , by part (7), we have that (A0{1}∪A1{0})

∗ ⊆ (Y −2,2
0)∗ ⊆ Y

−2,2
0 .

(9) {%, 0} = {%} ∪ {0} ⊆ Y 0,0 ∪ Y −1,0 ⊆ Y min(0,−1),max(0,0) = Y −1,0.

(10) {%, 1} = {%} ∪ {1} ⊆ Y 0,0 ∪ Y 0,1 ⊆ Y min(0,0),max(0,1) = Y 0,1.

(11) A0{%, 0} ⊆ Y
−2,0
−1 Y −1,0 ⊆ Y min(−2,−1+−1),max(0,−1+0) = Y −2,0, by parts (3) and (9).

(12) A1{%, 1} ⊆ Y
0,2
1 Y 0,1 ⊆ Y min(0,1+0),max(2,1+1) = Y 0,2, by parts (4) and (10).

(13) {%}∪A0{%, 0}∪A1{%, 1} ⊆ Y 0,0∪Y −2,0∪Y 0,2 ⊆ Y min(0,−2),max(0,0)∪Y 0,2 = Y −2,0∪Y 0,2 ⊆

Y min(−2,0),max(0,2) = Y −2,2, by parts (11) and (12).

(14) B = (A0{1}∪A1{0})
∗({%}∪A0{%, 0}∪A1{%, 1}) ⊆ Y

−2,2
0 Y −2,2 ⊆ Y min(−2,0+−2),max(2,0+2) =

Y −2,2, by parts (8) and (13).

✷

By Lemma PS3.4.2(14), we have that B ⊆ Y −2,2 = Y . So, it remains to show that Y ⊆ B.

Lemma PS3.4.3

For all x, y ∈ {0, 1}∗, if xy ∈ Y and diff x = 0, then y ∈ Y .

Proof. Suppose x, y ∈ {0, 1}∗, xy ∈ Y and diff x = 0. To show that y ∈ Y , suppose v is a prefix

of y. Hence xv is a prefix of xy, so that −2 ≤ diff(xv) ≤ 2. But diff(xv) = diff x + diff v =

0 + diff v = diff v, so that −2 ≤ diff v ≤ 2, as required. ✷

Lemma PS3.4.4

Y ⊆ B.

Proof. Since Y ⊆ {0, 1}∗, it will suffice to show that, for all w ∈ {0, 1}∗,

if w ∈ Y, then w ∈ B.

We proceed by strong string induction. Suppose w ∈ {0, 1}∗, and assume the inductive hypothesis:

for all x ∈ {0, 1}∗, if x is a proper substring of w, then,

if x ∈ Y, then x ∈ B.

We must show that,

if w ∈ Y, then w ∈ B.

Suppose w ∈ Y . We must show that w ∈ B. There are three cases to consider.

• Suppose w = %. Then

w = % = %% ∈ (A0{1} ∪A1{0})
∗({%} ∪A0{%, 0} ∪ A1{%, 1}) = B.

11

• Suppose w = 0x, for some x ∈ {0, 1}∗. Let y be the longest prefix of x that is an element of

{01}∗ (y is well-defined, because it could be %), and z ∈ {0, 1}∗ be such that x = yz. Thus

w = 0x = 0yz and 0y ∈ {0}{01}∗ = A0. There are three subcases to consider.

– Suppose z = %. Then

w = 0yz = 0y% = 0y = %(0y)% ∈ (A0{1} ∪ A1{0})
∗A0{%, 0}

⊆ (A0{1} ∪ A1{0})
∗({%} ∪ A0{%, 0} ∪ A1{%, 1}) = B.

– Suppose z = 0u, for some u ∈ {0, 1}∗. Thus x = yz = y0u and w = 0x = 0y0u.

Suppose, toward a contradiction, that u 6= %. There are two cases to consider.

∗ Suppose u = 0v, for some v ∈ {0, 1}∗. Then w = 0y0u = 0y00v. By

Lemma PS3.4.2(1), we have that y ∈ {01}∗ ⊆ Y
−1,0
0 , so that diff y = 0. Hence

diff(0y00) = diff 0+ diff y + diff 0+ diff 0 = −1 + 0 +−1 +−1 = −3. But 0y00 is

a prefix of w ∈ Y—contradiction.

∗ Suppose u = 1v, for some v ∈ {0, 1}∗. Then x = y0u = y01v. Since y ∈ {01}∗,

it follows that y01 ∈ {01}∗{01} ⊆ {01}∗. But y01 is a longer prefix of x than y,

contradicting the definition of y.

Since we obtained a contradiction in both cases, we have an overall contradiction. Thus

u = %.

Since u = %, we have that

w = 0y0u = 0y0% = 0y0 = %(0y)0 ∈ (A0{1} ∪A1{0})
∗A0{%, 0}

⊆ (A0{1} ∪A1{0})
∗({%} ∪ A0{%, 0} ∪ A1{%, 1}) = B.

– Suppose z = 1u, for some u ∈ {0, 1}∗. Thus w = 0yz = 0y1u. By Lemma PS3.4.2(5),

0y1 ∈ A0{1} ⊆ Y
−2,0
0 , so that diff(0y1) = 0. Thus, since 0y1u = w ∈ Y , Lemma PS3.4.3

tells us that u ∈ Y . Since u is a proper substring of w, the inductive hypothesis tells us

that u ∈ B. Hence

w = 0y1u ∈ A0{1}B ⊆ (A0{1} ∪A1{0})B ⊆ (A0{1} ∪ A1{0})
∗B

= (A0{1} ∪ A1{0})
∗(A0{1} ∪ A1{0})

∗({%} ∪ A0{%, 0} ∪ A1{%, 1})

= (A0{1} ∪ A1{0})
∗({%} ∪ A0{%, 0} ∪ A1{%, 1}) = B.

• Suppose w = 1x, for some x ∈ {0, 1}∗. Let y be the longest prefix of x that is an element of

{10}∗ (y is well-defined, because it could be %), and z ∈ {0, 1}∗ be such that x = yz. Thus

w = 1x = 1yz and 1y ∈ {1}{10}∗ = A1. There are three subcases to consider.

– Suppose z = %. Then

w = 1yz = 1y% = 1y = %(1y)% ∈ (A0{1} ∪ A1{0})
∗A1{%, 1}

⊆ (A0{1} ∪ A1{0})
∗({%} ∪ A0{%, 0} ∪ A1{%, 1}) = B.

– Suppose z = 1u, for some u ∈ {0, 1}∗. Thus x = yz = y1u and w = 1x = 1y1u.

Suppose, toward a contradiction, that u 6= %. There are two cases to consider.

12

∗ Suppose u = 1v, for some v ∈ {0, 1}∗. Then w = 1y1u = 1y11v. By

Lemma PS3.4.2(2), we have that y ∈ {10}∗ ⊆ Y
0,1
0 , so that diff y = 0. Hence

diff(1y11) = diff 1+diff y+diff 1+diff 1 = 1+0+ 1+ 1 = 3. But 1y11 is a prefix

of w ∈ Y—contradiction.

∗ Suppose u = 0v, for some v ∈ {0, 1}∗. Then x = y1u = y10v. Since y ∈ {10}∗,

it follows that y10 ∈ {10}∗{10} ⊆ {10}∗. But y10 is a longer prefix of x than y,

contradicting the definition of y.

Since we obtained a contradiction in both cases, we have an overall contradiction. Thus

u = %.

Since u = %, we have that

w = 1y1u = 1y1% = 1y1 = %(1y)1 ∈ (A0{1} ∪A1{0})
∗A1{%, 1}

⊆ (A0{1} ∪A1{0})
∗({%} ∪ A0{%, 0} ∪ A1{%, 1}) = B.

– Suppose z = 0u, for some u ∈ {0, 1}∗. Thus w = 1yz = 1y0u. By Lemma PS3.4.2(6),

1y0 ∈ A1{0} ⊆ Y
0,2
0 , so that diff(1y0) = 0. Thus, since 1y0u = w ∈ Y , Lemma PS3.4.3

tells us that u ∈ Y . Since u is a proper substring of w, the inductive hypothesis tells us

that u ∈ B. Hence

w = 1y0u ∈ A1{0}B ⊆ (A0{1} ∪A1{0})B ⊆ (A0{1} ∪ A1{0})
∗B

= (A0{1} ∪ A1{0})
∗(A0{1} ∪ A1{0})

∗({%} ∪ A0{%, 0} ∪ A1{%, 1})

= (A0{1} ∪ A1{0})
∗({%} ∪ A0{%, 0} ∪ A1{%, 1}) = B.

✷

13

