
CS 516—Software Foundations via Formal Languages—Spring 2025

Problem Set 4

Model Answers

Problem 1

(a) The finite automaton M is

C

0

111

10101, 00111, 000111

BStart

(b) First, we put the expression of M in Forlan’s syntax

{states} B, C {start state} B {accepting states} B

{transitions}

B, 0 -> C; B, 1 -> B; B, 00111 -> B; B, 000111 -> B;

C, 10 -> C; C, 111 -> B

in the file ps4-p1-fa (see the course website), and load this file into Forlan, calling the result

fa:

- val fa = FA.input "ps4-p1-fa";

val fa = - : fa

Next we load the file ps4-p1.sml

val A = StrSet.fromString "001, 011, 101, 111";

(* val inB : str -> bool

tests whether a string over the alphabet {0, 1} is in B *)

fun inB nil = true

| inB (b :: bs) =

if Sym.equal(b, Sym.fromString "0")

then Set.exists (fn x => Str.prefix(x, bs)) A andalso

inB bs

else inB bs

(* val upto : int -> str set

if n >= 0, then upto n returns all strings over alphabet {0, 1} of

length no more than n *)
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fun upto 0 : str set = Set.sing nil

| upto n =

let val xs = upto(n - 1)

val ys = Set.filter (fn x => length x = n - 1) xs

in StrSet.union

(xs, StrSet.concat(StrSet.fromString "0, 1", ys))

end;

(* val partition : int -> str set * str set

if n >= 0, then partition n returns (xs, ys) where:

xs is all elements of upto n that are in B; and

ys is all elements of upto n that are not in B *)

fun partition n = Set.partition inB (upto n);

(* val test = fn : int -> fa -> str option * str option

if n >= 0, then test n returns a function f such that, for all FAs

fa, f fa returns a pair (xOpt, yOpt) such that:

If there is an element of {0, 1}* of length no more than n that

is in B but is not accepted by fa, then xOpt = SOME x for some

such x; otherwise, xOpt = NONE.

If there is an element of {0, 1}* of length no more than n that

is not in B but is accepted by fa, then yOpt = SOME y for some

such y; otherwise, yOpt = NONE. *)

fun test n =

let val (goods, bads) = partition n

in fn fa =>

let val accepted = FA.accepted fa

val goodNotAccOpt = Set.position (not o accepted) goods

val badAccOpt = Set.position accepted bads

in ((case goodNotAccOpt of

NONE => NONE

| SOME i => SOME(ListAux.sub(Set.toList goods, i))),

(case badAccOpt of

NONE => NONE

| SOME i => SOME(ListAux.sub(Set.toList bads, i))))

end

end;

(see the course website) defining the function test into Forlan:

- use "ps4-p1.sml";
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[opening ps4-p1.sml]

val A = - : str set

val inB = fn : sym list -> bool

val upto = fn : int -> str set

val partition = fn : int -> sym list set * sym list set

val test = fn : int -> fa -> sym list option * sym list option

val it = () : unit

Finally, we apply test to arguments 20 and fa:

- test 20 fa;

val it = (NONE,NONE) : sym list option * sym list option

Problem 2

(a) Let C = {w ∈ {0, 1}∗ | 0 is a suffix of w and, for all x, y ∈ {0, 1}∗, if w = x0y, then

y ∈ {%, 10} or there is a z ∈ A such that z is a prefix of y }. For example, 0 and 010 are both

elements of C, even though they are not elements of B.

Lemma PS4.2.1

If w ∈ B, then either

• w = %; or

• w = x1, for some x ∈ B; or

• w = x00111, for some x ∈ B; or

• w = x000111, for some x ∈ B; or

• w = x111, for some x ∈ C.

Proof. Suppose w ∈ B. If w = %, then we are done, so suppose w 6= %. Since w ∈ B, w cannot

end in 0, so w = t1 for some t ∈ {0, 1}∗. If t ∈ B, then we are done, so suppose t 6∈ B. Thus t = y0z

for some y, z ∈ {0, 1}∗ such that there is no u ∈ A such that u is a prefix of z. Thus w = t1 = y0z1.

Because w ∈ B, there is an element of A that is a prefix of z1. Since the elements of A all have

length 3, it follows that |z| ≥ 2. If |z| ≥ 3, then the fact that an element of A is a prefix of z1 would

imply that it is also a prefix of z—contradiction. Thus |z| = 2. Because w = y0z1 and w ∈ B,

z cannot be 00, 01 or 10, as then w would have a 0 not followed by at least three symbols. Thus

z = 11, so that w = y0z1 = y0111. y cannot end with more than two occurrences of 0, as a string

having 0000 as a substring cannot be in B. Thus we have the following three cases to consider.

• Suppose y = s00, for some s ∈ {0, 1}∗ that does not end with a 0. Thus w = y0111 = s000111,

and it will suffice to show that s ∈ B. Suppose u, v ∈ {0, 1}∗ and s = u0v. We must show

that there is an element of A that is a prefix of v. We have that w = u0v000111.

Suppose, toward a contradiction, that |v| ≤ 2. If v = % or v ends in a 0, then 0000 is a substring

of w—contradiction. Otherwise, v ∈ {1, 01, 11}. If v = 1, then w = u0(1000111), but no

element of A is a prefix of 1000111—contradiction. If v = 01, then w = u0(01000111), but no

element of A is a prefix of 01000111—contradiction. Finally, if v = 11, then w = u0(11000111),
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but no element of A is a prefix of 11000111—contradiction. Since we obtained a contradiction

in all cases, we have an overall contradiction. Thus |v| ≥ 3.

Since w = u0(v000111) and w ∈ B, it follows that there is an r ∈ A such that r is a prefix of

v000111. But |v| ≥ 3, and thus r is also a prefix of v.

• Suppose y = s0, for some s ∈ {0, 1}∗ that does not end with a 0. Thus w = y0111 = s00111,

so it will suffice to show that s ∈ B. Suppose u, v ∈ {0, 1}∗ and s = u0v. We must show that

there is an element of A that is a prefix of v. We have that w = u0(v00111).

Suppose, toward a contradiction, that |v| ≤ 2. If v = % or v ends in a 0, then s = u0v ends in

a 0—contradiction. Otherwise, v ∈ {1, 01, 11}. If v = 1, then w = u0(100111), but there is no

element of A that is a prefix of 100111—contradiction. If v = 01, then w = u0(0100111), but

there is no element of A that is a prefix of 0100111. And if v = 11, then w = u0(1100111),

but there is no element of A that is a prefix of 1100111. Since we obtained a contradiction in

each case, we have an overall contradiction. Thus |v| ≥ 3.

Since w = u0(v00111) and w ∈ B, it follows that there is an r ∈ A such that r is a prefix of

v00111. But |v| ≥ 3, and thus r is also a prefix of v.

• Suppose y does not end with a 0. Since w = y0111 = (y0)(111), it will suffice to show that

y0 ∈ C. Clearly y0 ends in a 0. So suppose u, v ∈ {0, 1}∗ and y0 = u0v. We must show

that v ∈ {%, 10} or there is an element of A that is a prefix of v. If v = %, then we are

done. So suppose v 6= %. Since y0 = u0v, it follows that v = v′0 for some v′ ∈ {0, 1}∗.

Because y0 = u0v = u0v′0, it follows that y = u0v′ and w = u0v′0111. We must show that

v′0 ∈ {%, 10} or there is an element of A that is a prefix of v′0. Suppose |v′| ≥ 2. Since

w = u0(v′0111) and w ∈ B, we have that there is an element of A that is a prefix of v′0111.

But |v′0| ≥ 3, and thus this prefix is also a prefix of v′0. Otherwise, we have |v′| ≤ 1. We

cannot have v′ = % or v′ = 0, because then y = u0v′ ends in 0—contradiction. So v′ = 1. But

then v′0 = 10 ∈ {%, 10}, and we are done.

✷

Lemma PS4.2.2

If w ∈ C, then either

• w = x0, for some x ∈ B; or

• w = x10, for some x ∈ C.

Proof. Suppose w ∈ C. Thus w = x0 for some x ∈ {0, 1}∗. If x ∈ B, then we are done, so suppose

x 6∈ B. Thus x = u0v for some u, v ∈ {0, 1}∗ such that there is no z ∈ A such that z is a prefix of

v. Thus w = u0v0.

Suppose, toward a contradiction, that v = % or 0 is a suffix of v. Then 00 is a suffix of w ∈ C,

so that 0 ∈ {%, 10} or there is a z ∈ A such that z is a prefix of 0—contradiction. Thus |v| ≥ 1 and

0 is not a suffix of v.

Suppose, toward a contradiction, that |v| ≥ 2. Then |v0| ≥ 3. Since u0(v0) = w ∈ C, either

v0 ∈ {%, 10} or there is a z ∈ A such that z is a prefix of v0. The first case is impossible because
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|v0| ≥ 3. So we have that z is a prefix of v0, for some z ∈ A. If |v0| = 3, we have our contradiction,

since all elements of A end in 1. And if |v0| > 3, then z is a prefix of v—contradiction. Thus |v| ≤ 1.

Summarizing, we know that |v| = 1 and v does not end in 0. Hence v = 1, and w = u0v0 =

(u0)10. It will suffice show that that u0 ∈ C. Clearly u0 ends in 0. Suppose r, s ∈ {0, 1}∗ and

u0 = r0s. We must show that s ∈ {%, 10} or there is a z ∈ A such that z is a prefix of s. If s = %,

then we are done. So suppose s 6= %. Since u0 = r0s, it follows that s = s′0 for some s′ ∈ {0, 1}∗.

Thus w = u010 = r0s10 = r0s′010, and we must show that s′0 ∈ {%, 10} or there is a z ∈ A such

that z is a prefix of s′0. s′ 6= %, as otherwise we would have r0(010) = r0s′010 = w ∈ C, which is

impossible. s′ 6= 0, as otherwise we would have (r0)0(010) = r0s′010 = w ∈ C, which is impossible.

Thus either s′ = 1 or |s′| ≥ 2, so there are two cases to consider.

• Suppose s′ = 1. Then s′0 = 10 ∈ {%, 10}.

• Suppose |s′| ≥ 2. Then |s′0| ≥ 3. Since (r)0(s′010) = w ∈ C, it follows that there is a z ∈ A

such that z is a prefix of s′010. But |s′0| ≥ 3, and thus z is a prefix of s′0.

✷

Lemma PS4.2.3

For all w ∈ {0, 1}∗:

(B) if w ∈ B, then w ∈ ΛB;

(C) if w ∈ C, then w ∈ ΛC.

Proof. We proceed by strong string induction. Suppose w ∈ {0, 1}∗, and assume the inductive

hypothesis: for all x ∈ {0, 1}∗, if x is a proper substring of w, then

(B) if x ∈ B, then x ∈ ΛB;

(C) if x ∈ C, then x ∈ ΛC.

We must show that

(B) if w ∈ B, then w ∈ ΛB;

(C) if w ∈ C, then w ∈ ΛC.

There are two parts to consider.

(B) Suppose w ∈ B. We must show that w ∈ ΛB. By Lemma PS4.2.1, there are five cases to

consider.

• Suppose w = %. Then w = % ∈ ΛB, since B is M ’s start state.

• Suppose w = x1, for some x ∈ B. By the inductive hypothesis, we have that x ∈ ΛB.

And B, 1→ B ∈ TM , so that w = x1 ∈ ΛB.

• Suppose w = x00111, for some x ∈ B. By the inductive hypothesis, we have that

x ∈ ΛB. And B, 00111→ B ∈ TM , so that w = x00111 ∈ ΛB.

• Suppose w = x000111, for some x ∈ B. By the inductive hypothesis, we have that

x ∈ ΛB. And B, 000111→ B ∈ TM , so that w = x000111 ∈ ΛB.
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• Suppose w = x111, for some x ∈ C. By the inductive hypothesis, we have that x ∈ ΛC.

And C, 111→ B ∈ TM , so that w = x111 ∈ ΛB.

(C) Suppose w ∈ C. We must show that w ∈ ΛC. By Lemma PS4.2.2, there are two cases to

consider.

• Suppose w = x0, for some x ∈ B. By the inductive hypothesis, we have that x ∈ ΛB.

And B, 0→ C ∈ TM , so that w = x0 ∈ ΛC.

• Suppose w = x10, for some x ∈ C. By the inductive hypothesis, we have that x ∈ ΛC.

And C, 10→ C ∈ TM , so that w = x10 ∈ ΛC.

✷

Since B is M ’s only accepting state, we have that L(M) = ΛB, so that B ⊆ ΛB = L(M), by

Lemma PS4.2.3(B).

(b) Define C as in part (a).

Lemma PS4.2.4

(1) % ∈ B.

(2) B{1} ⊆ B.

(3) B{00111} ⊆ B.

(4) B{000111} ⊆ B.

(5) B{0} ⊆ C.

(6) C{10} ⊆ C.

(7) C{111} ⊆ B.

Proof. From Section 3.2 of the slides and book, we know that, for all x, y ∈ B, xy ∈ B, and also

that %, 1, 0111, 00111 and 000111 are in B.

(1) (% ∈ B) Clearly, % ∈ B.

(2) (B{1} ⊆ B) Suppose w ∈ B{1}, so that w = x1 for some x ∈ B. Because x ∈ B and 1 ∈ B,

we have w = x1 ∈ B.

(3) (B{00111} ⊆ B) Suppose w ∈ B{00111}, so that w = x(00111) for some x ∈ B. Because

x ∈ B and 00111 ∈ B, we have w = x(00111) ∈ B.

(4) (B{000111} ⊆ B) Suppose w ∈ B{000111}, so that w = x(000111) for some x ∈ B. Because

x ∈ B and 000111 ∈ B, we have w = x(000111) ∈ B.
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(5) (B{0} ⊆ C) Suppose w ∈ B{0}, so that w = x0 for some x ∈ B. We must show that

w = x0 ∈ C. Clearly, 0 is a suffix of x0. To complete the proof that x0 ∈ C, suppose

u, v ∈ {0, 1}∗ and x0 = u0v. We must show that v ∈ {%, 10} or there is a z ∈ A such that

z is a prefix of v. If v = %, then we are done. Otherwise, because x0 = u0v, it follows that

v = v′0 for some v′ ∈ {0, 1}∗. Since x0 = u0v = u0v′0, we have x = u0v′, so that u0v′ ∈ B.

We must show that v′0 ∈ {%, 10} or there is a z ∈ A such that z is a prefix of v′0. Since

u0v′ ∈ B, there is a z ∈ A such that z is a prefix of v′. So z is a prefix of v′0 and z ∈ A.

(6) (C{10} ⊆ C) Suppose w ∈ C{10} so that w = x10 for some x ∈ C. We must show that

w = x10 ∈ C. Clearly 0 is a suffix of x10. Suppose u, v ∈ {0, 1}∗ and x10 = u0v. We must

show that v ∈ {%, 10} or there is a z ∈ A such that z is a prefix of v. If v = % then we

are done. Otherwise, because x10 = u0v, it follows that v = v′0 for some v′ ∈ {0, 1}∗. Since

x10 = u0v = u0v′0, it follows that x1 = u0v′. We must show that v′0 ∈ {%, 10} or there

is a z ∈ A such that z is a prefix of v′0. Since x1 = u0v′, it follows that v′ = v′′1 for some

v′′ ∈ {0, 1}∗. Because x1 = u0v′ = u0v′′1, it follows that u0v′′ = x ∈ C. We must show

that v′′10 ∈ {%, 10} or there is a z ∈ A such that z is a prefix of v′′10. Since u0v′′ ∈ C,

either v′′ ∈ {%, 10} or there is a z ∈ A such that z is a prefix of v′′. There are three cases to

consider.

• Suppose v′′ = %. Then v′′10 = 10 ∈ {%, 10}.

• Suppose v′′ = 10. Then v′′10 = 1010, so that 101 ∈ A and 101 is a prefix of v′′10.

• Suppose there is a z ∈ A such that z is a prefix of v′′. Then z is also a prefix of v′′10.

(7) (C{111} ⊆ B) Suppose w ∈ C{111}, so that w = x111 for some x ∈ C. We must show that

w = x111 ∈ B. Suppose u, v ∈ {0, 1}∗ and x111 = u0v. We must show that there is a z ∈ A

such that z is a prefix of v. Since x111 = u0v, we have that v = v′1 for some v′ ∈ {0, 1}∗. We

must show that there is a z ∈ A such that z is a prefix of v′1. Since x111 = u0v = u0v′1, it

follows that x11 = u0v′. Consequently, v′ = v′′1 for some v′′ ∈ {0, 1}∗. We must show that

there is a z ∈ A such that z is a prefix of v′′11. Since x11 = u0v′ = u0v′′1, we have that

x1 = u0v′′. Thus v′′ = v′′′1 for some v′′′ ∈ {0, 1}∗. We must show that there is a z ∈ A such

that z is a prefix of v′′′111. Since x1 = u0v′′ = u0v′′′1, we have that u0v′′′ = x ∈ C. Since

u0v′′′ ∈ C, either v′′′ ∈ {%, 10} or there is a z ∈ A such that z is a prefix of v′′′. Thus there

are three cases to consider.

• Suppose v′′′ = %. Then 111 is a prefix of 111 = v′′′111 and 111 ∈ A.

• Suppose v′′′ = 10. Then 101 is a prefix of 10111 = v′′′111 and 101 ∈ A.

• Suppose there is a z ∈ A such that z is a prefix of v′′′. Then z is also a prefix of v′′′111.

✷

Lemma PS4.2.5

(B) For all w ∈ ΛB, w ∈ B.

(C) For all w ∈ ΛC, w ∈ C.

Proof. We proceed by induction on Λ. There are 7 (1 plus the number of transitions) parts to

show.
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(empty string) We have that % ∈ B by Lemma PS4.2.4(1), as required.

(B, 0→ C) Suppose w ∈ ΛB, and assume the inductive hypothesis: w ∈ B. Then w0 ∈ B{0} ⊆ C,

by Lemma PS4.2.4(5), as required.

(B, 1→ B) Suppose w ∈ ΛB, and assume the inductive hypothesis: w ∈ B. Then w1 ∈ B{1} ⊆ B,

by Lemma PS4.2.4(2), as required.

(B, 00111→ B) Suppose w ∈ ΛB, and assume the inductive hypothesis: w ∈ B. Then w(00111) ∈

B{00111} ⊆ B, by Lemma PS4.2.4(3), as required.

(B, 000111→ B) Suppose w ∈ ΛB, and assume the inductive hypothesis: w ∈ B. Then

w(000111) ∈ B{000111} ⊆ B, by Lemma PS4.2.4(4), as required.

(C, 10→ C) Suppose w ∈ ΛC, and assume the inductive hypothesis: w ∈ C. Then w(10) ∈

C{10} ⊆ C, by Lemma PS4.2.4(6), as required.

(C, 111→ B) Suppose w ∈ ΛC, and assume the inductive hypothesis: w ∈ C. Then w(111) ∈

C{111} ⊆ B, by Lemma PS4.2.4(7), as required.

✷

Since B is M ’s only accepting state, we have that L(M) = ΛB, so that L(M) = ΛB ⊆ B, by

Lemma PS4.2.5(B).

8


