
CS 516—Software Foundations via Formal Languages—Spring 2022

Problem Set 1

Model Answers

Problem 1

(a) To show that ∅ →X = {∅}, we show that each side is a subset of the other.

Suppose f ∈ ∅→X, so that f is a function, domain f = ∅ and range f ⊆ X. Because

domain f = ∅, we have that f = ∅. Thus f ∈ {∅}.

Suppose f ∈ {∅}, so that f = ∅. Then f is a function, domain f = ∅ and range f =

∅ ⊆ X. Thus f ∈ ∅→X.

(b) To show that X →∅ = ∅, we show that each side is a subset of the other.

Suppose f ∈ X → ∅, so that f is a function, domain f = X and range f ⊆ ∅. Con-

sequently range f = ∅. Because x ∈ X = domain f , there is a y such that (x, y) ∈ f .

But then y ∈ range f = ∅—contradiction. Thus we can conclude anything, including that

f ∈ ∅.

And clearly ∅ ⊆ X →∅.

(c) To show that {x} →X = { {(x, y)} | y ∈ X }, we show that each side is a subset of the

other.

Suppose f ∈ {x} → X. Thus f is a function, domain f = {x} and range f ⊆ X.

Consequently, f is a relation including a pair of the form (x, y), for some y ∈ X. Because

domain f = {x}, there are no elements of f whose left sides are not x. And because f is

a function, there are no other pairs in f whose left sides are x. Thus f = {(x, y)}, so that

f ∈ {{(x, y)} | y ∈ X }.

Suppose f ∈ {{(x, y)} | y ∈ X }. Thus f = {(x, y)}, for some y ∈ X. Hence f is a

function, domain f = {x} and range f = {y} ⊆ X. Thus f ∈ {x} →X.

(d) To show that X →{x} = {{ (y, x) | y ∈ X }}, we show that each side is a subset of the

other.

Suppose f ∈ X → {x}. Thus f is a function, domain f = X and range f ⊆ {x}. To

show that f = { (y, x) | y ∈ X }, we show that each side is a subset of the other.

• Suppose p ∈ f . From our assumptions, we know that p = (y, x) for some y ∈ X. Thus

p ∈ { (y, x) | y ∈ X }.

• Suppose p ∈ { (y, x) | y ∈ X }, so that p = (y, x) for some y ∈ X. Because f

is a function and y ∈ X = domain f , we have that (y, x′) ∈ f for some x′. But

range f ⊆ {x}, and thus x′ = x. Hence p = (y, x) = (y, x′) ∈ f .
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Because f = { (y, x) | y ∈ X }, we can conclude that f ∈ {{ (y, x) | y ∈ X }}.

Suppose f ∈ {{ (y, x) | y ∈ X }}, so that f = { (y, x) | y ∈ X }. Thus f is a relation,

domain f ⊆ X and range f ⊆ {x}. Furthermore, for all y ∈ X, (y, x) ∈ f , so that

y ∈ domain f . Thus domain f = X. Because range f ⊆ {x}, f must be a function.

Summarizing, we have that f is a function, domain f = X and range f ⊆ {x}, showing

that f ∈ X →{x}.

Problem 2

We proceed by mathematical induction.

(Basis Step) We must show that, if 0 ≥ 4, then 20 < 0!. Suppose 0 ≥ 4. But this is a

contradiction, and thus we can conclude that 20 < 0!.

(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis:

if n ≥ 4, then 2n < n!.

We must show that,

if n+ 1 ≥ 4, then 2n+1 < (n+ 1)!.

Suppose n + 1 ≥ 4. We must show that 2n+1 < (n + 1)!. Since n + 1 ≥ 4, we have that

n ≥ 3. There are two cases to consider.

• Suppose n = 3. Then

2n+1 = 23+1 = 24 = 16 < 24 = 4! = (3 + 1)! = (n+ 1)!.

• Suppose n ≥ 4. By the inductive hypothesis, we have that 2n < n!. Furthermore,

2 < n+ 1, so that

2n+1 = 2 ∗ 2n < 2 ∗ n! < (n+ 1) ∗ n! = (n+ 1)!.

Problem 3

We proceed by strong induction. Suppose n ∈ N, and assume the inductive hypothesis: for

all m ∈ N, if m < n, then

if m ≥ 1, then there are i, j ∈ N such that m = 2i(2j + 1).

We must show that

if n ≥ 1, then there are i, j ∈ N such that n = 2i(2j + 1).

Suppose n ≥ 1. We must show that there are i, j ∈ N such that n = 2i(2j + 1). There are

two cases to consider.
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• Suppose n is odd. Then n = 2j +1 for some j ∈ N. Hence n = 1(2j +1) = 20(2j +1)

and 0, j ∈ N.

• Suppose n is even. Then n ≥ 2, so there is anm ∈ N such that n = 2m and 1 ≤ m < n.

Because m ∈ N and m < n, the inductive hypothesis tells us that

if m ≥ 1, then there are i, j ∈ N such that m = 2i(2j + 1).

But m ≥ 1, and thus there are i, j ∈ N such that m = 2i(2j + 1). Hence n = 2m =

2(2i(2j + 1)) = 2i+1(2j + 1) and i+ 1, j ∈ N.

Problem 4

We proceed by well-founded induction on R. Suppose n ∈ Z, and assume the inductive

hypothesis: for all m ∈ Z, if m R n, then

there is an l ∈ N such that f l(m) = 0.

We must show that

there is an l ∈ N such that f l(n) = 0.

There are three cases to consider.

• Suppose n = 0. Then f0(n) = n = 0 and 0 ∈ N.

• Suppose n ≥ 1. Because 1 ≤ n, we have that |1 − n| = n− 1. Since n ≥ 0, it follows

that |1−n| = n− 1 < n = |n|, and thus 1−n R n. Because 1−n ∈ Z and 1−n R n,

the inductive hypothesis tells us that there is an l ∈ N such that f l(1− n) = 0. Thus

f1+l(n) = f l(f1(n)) = f l(f n) = f l(1− n) = 0 and 1 + l ∈ N.

• Suppose n ≤ −1. Thus 1 ≤ −n, so that |−n− 1| = −n− 1. Since n ≤ −1, it follows

that |−n − 1| = −n − 1 < −n = |n|, and thus −n − 1 R n. Because −n − 1 ∈ Z

and −n − 1 R n, the inductive hypothesis tells us that there is an l ∈ N such that

f l(−n− 1) = 0. Thus f1+l(n) = f l(f1(n)) = f l(f n) = f l(−n− 1) = 0 and 1+ l ∈ N.
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