CS 516—Software Foundations via Formal Languages—Spring 2022

Problem Set 1

Model Answers

Problem 1

(a) To show that $\emptyset \to X = {\emptyset}$, we show that each side is a subset of the other.

Suppose $f \in \emptyset \to X$, so that f is a function, **domain** $f = \emptyset$ and **range** $f \subseteq X$. Because **domain** $f = \emptyset$, we have that $f = \emptyset$. Thus $f \in {\emptyset}$.

Suppose $f \in {\emptyset}$, so that $f = \emptyset$. Then f is a function, **domain** $f = \emptyset$ and **range** $f =$ $\emptyset \subseteq X$. Thus $f \in \emptyset \to X$.

(b) To show that $X \to \emptyset = \emptyset$, we show that each side is a subset of the other.

Suppose $f \in X \to \emptyset$, so that f is a function, **domain** $f = X$ and **range** $f \subset \emptyset$. Consequently range $f = \emptyset$. Because $x \in X = \text{domain } f$, there is a y such that $(x, y) \in f$. But then $y \in \textbf{range } f = \emptyset$ —contradiction. Thus we can conclude anything, including that $f \in \emptyset$.

And clearly $\emptyset \subseteq X \to \emptyset$.

(c) To show that $\{x\} \rightarrow X = \{ \{ (x, y) \} \mid y \in X \}$, we show that each side is a subset of the other.

Suppose $f \in \{x\} \to X$. Thus f is a function, **domain** $f = \{x\}$ and **range** $f \subseteq X$. Consequently, f is a relation including a pair of the form (x, y) , for some $y \in X$. Because domain $f = \{x\}$, there are no elements of f whose left sides are not x. And because f is a function, there are no other pairs in f whose left sides are x. Thus $f = \{(x, y)\}\)$, so that $f \in \{ \{ (x, y) \} \mid y \in X \}.$

Suppose $f \in \{ \{ (x, y) \} \mid y \in X \}$. Thus $f = \{ (x, y) \}$, for some $y \in X$. Hence f is a function, **domain** $f = \{x\}$ and **range** $f = \{y\} \subseteq X$. Thus $f \in \{x\} \to X$.

(d) To show that $X \to \{x\} = \{\{(y,x) | y \in X\}\}\,$, we show that each side is a subset of the other.

Suppose $f \in X \to \{x\}$. Thus f is a function, **domain** $f = X$ and **range** $f \subseteq \{x\}$. To show that $f = \{ (y, x) | y \in X \}$, we show that each side is a subset of the other.

- Suppose $p \in f$. From our assumptions, we know that $p = (y, x)$ for some $y \in X$. Thus $p \in \{ (y, x) \mid y \in X \}.$
- Suppose $p \in \{ (y, x) \mid y \in X \}$, so that $p = (y, x)$ for some $y \in X$. Because f is a function and $y \in X = \text{domain } f$, we have that $(y, x') \in f$ for some x'. But range $f \subseteq \{x\}$, and thus $x' = x$. Hence $p = (y, x) = (y, x') \in f$.

Because $f = \{ (y, x) | y \in X \}$, we can conclude that $f \in \{ \{ (y, x) | y \in X \} \}$.

Suppose $f \in \{\{(y,x) \mid y \in X\}\}\,$, so that $f = \{(y,x) \mid y \in X\}\.$ Thus f is a relation, domain $f \subseteq X$ and range $f \subseteq \{x\}$. Furthermore, for all $y \in X$, $(y, x) \in f$, so that $y \in \text{domain } f$. Thus domain $f = X$. Because range $f \subseteq \{x\}$, f must be a function. Summarizing, we have that f is a function, **domain** $f = X$ and **range** $f \subseteq \{x\}$, showing that $f \in X \to \{x\}.$

Problem 2

We proceed by mathematical induction.

(Basis Step) We must show that, if $0 \geq 4$, then $2^0 < 0!$. Suppose $0 \geq 4$. But this is a contradiction, and thus we can conclude that 2^0 < 0!.

(Inductive Step) Suppose $n \in \mathbb{N}$, and assume the inductive hypothesis:

if
$$
n \ge 4
$$
, then $2^n < n!$.

We must show that,

if
$$
n + 1 \ge 4
$$
, then $2^{n+1} < (n+1)!$.

Suppose $n + 1 \geq 4$. We must show that $2^{n+1} < (n+1)!$. Since $n + 1 \geq 4$, we have that $n \geq 3$. There are two cases to consider.

• Suppose $n = 3$. Then

$$
2^{n+1} = 2^{3+1} = 2^4 = 16 < 24 = 4! = (3+1)! = (n+1)!.
$$

• Suppose $n \geq 4$. By the inductive hypothesis, we have that $2^n \leq n!$. Furthermore, $2 < n + 1$, so that

$$
2^{n+1} = 2 \cdot 2^n < 2 \cdot n! < (n+1) \cdot n! = (n+1)!.
$$

Problem 3

We proceed by strong induction. Suppose $n \in \mathbb{N}$, and assume the inductive hypothesis: for all $m \in \mathbb{N}$, if $m < n$, then

if $m \geq 1$, then there are $i, j \in \mathbb{N}$ such that $m = 2^{i}(2j + 1)$.

We must show that

if $n \geq 1$, then there are $i, j \in \mathbb{N}$ such that $n = 2^{i}(2j + 1)$.

Suppose $n \geq 1$. We must show that there are $i, j \in \mathbb{N}$ such that $n = 2^{i}(2j + 1)$. There are two cases to consider.

- Suppose *n* is odd. Then $n = 2j + 1$ for some $j \in \mathbb{N}$. Hence $n = 1(2j + 1) = 2^0(2j + 1)$ and $0, j \in \mathbb{N}$.
- Suppose *n* is even. Then $n \geq 2$, so there is an $m \in \mathbb{N}$ such that $n = 2m$ and $1 \leq m < n$. Because $m \in \mathbb{N}$ and $m < n$, the inductive hypothesis tells us that

if $m \geq 1$, then there are $i, j \in \mathbb{N}$ such that $m = 2^{i}(2j + 1)$.

But $m \geq 1$, and thus there are $i, j \in \mathbb{N}$ such that $m = 2^i(2j + 1)$. Hence $n = 2m =$ $2(2^i(2j+1)) = 2^{i+1}(2j+1)$ and $i+1, j \in \mathbb{N}$.

Problem 4

We proceed by well-founded induction on R. Suppose $n \in \mathbb{Z}$, and assume the inductive hypothesis: for all $m \in \mathbb{Z}$, if $m R n$, then

there is an
$$
l \in \mathbb{N}
$$
 such that $f^{l}(m) = 0$.

We must show that

there is an $l \in \mathbb{N}$ such that $f^{l}(n) = 0$.

There are three cases to consider.

- Suppose $n = 0$. Then $f^{0}(n) = n = 0$ and $0 \in \mathbb{N}$.
- Suppose $n \geq 1$. Because $1 \leq n$, we have that $|1 n| = n 1$. Since $n \geq 0$, it follows that $|1 - n| = n - 1 < n = |n|$, and thus $1 - n R n$. Because $1 - n \in \mathbb{Z}$ and $1 - n R n$, the inductive hypothesis tells us that there is an $l \in \mathbb{N}$ such that $f^{l}(1 - n) = 0$. Thus $f^{1+l}(n) = f^{l}(f^{1}(n)) = f^{l}(f n) = f^{l}(1 - n) = 0$ and $1 + l \in \mathbb{N}$.
- Suppose $n \leq -1$. Thus $1 \leq -n$, so that $|-n-1| = -n-1$. Since $n \leq -1$, it follows that $|-n-1| = -n-1 < -n = |n|$, and thus $-n-1$ R n. Because $-n-1 \in \mathbb{Z}$ and $-n-1$ R n, the inductive hypothesis tells us that there is an $l \in \mathbb{N}$ such that $f^{l}(-n-1) = 0$. Thus $f^{1+l}(n) = f^{l}(f^{1}(n)) = f^{l}(fn) = f^{l}(-n-1) = 0$ and $1 + l \in \mathbb{N}$.