
CS 516—Software Foundations via Formal Languages—Spring 2022

Problem Set 2

Model Answers

Problem 1

Part (a)

It will suffice to use induction on X to show that, for all w ∈ X , w ∈ Y . There are five steps to

show.

(1) We must show that % ∈ Y , and this follows since % ∈ {0, 1}∗ and diff % = 0.

(2) Suppose x, y ∈ X , and assume the inductive hypothesis: x, y ∈ Y . We must show that

0x0y1 ∈ Y . Because x, y ∈ Y , it follows that 0x0y1 ∈ {0, 1}∗. And, since x, y ∈ Y , we have

that diff x = 0 = diff y, so that diff(0x0y1) = diff 0 + diff x + diff 0 + diff y + diff 1 =

1 + 0 + 1 + 0 +−2 = 0, completing the proof that 0x0y1 ∈ Y .

(3) Suppose x, y ∈ X , and assume the inductive hypothesis: x, y ∈ Y . We must show that

0x1y0 ∈ Y . Because x, y ∈ Y , it follows that 0x1y0 ∈ {0, 1}∗. And, since x, y ∈ Y , we have

that diff x = 0 = diff y, so that diff(0x1y0) = diff 0 + diff x + diff 1 + diff y + diff 0 =

1 + 0 +−2 + 0 + 1 = 0, completing the proof that 0x1y0 ∈ Y .

(4) Suppose x, y ∈ X , and assume the inductive hypothesis: x, y ∈ Y . We must show that

1x0y0 ∈ Y . Because x, y ∈ Y , it follows that 1x0y0 ∈ {0, 1}∗. And, since x, y ∈ Y , we have

that diff x = 0 = diff y, so that diff(1x0y0) = diff 1 + diff x + diff 0 + diff y + diff 0 =

−2 + 0 + 1 + 0 + 1 = 0, completing the proof that 1x0y0 ∈ Y .

(5) Suppose x, y ∈ X , and assume the inductive hypothesis: x, y ∈ Y . We must show that

xy ∈ Y . Because x, y ∈ Y , it follows that xy ∈ {0, 1}∗. And, since x, y ∈ Y , we have that

diff x = 0 = diff y, so that diff(xy) = diff x+ diff y = 0 + 0 = 0, completing the proof that

xy ∈ Y .

Part (b)

We begin by proving a useful lemma:

Lemma PS2.1.1

For all w ∈ {0, 1}∗, if diff w ≥ 1, then w = x0y, for some x, y ∈ {0, 1}∗ such that diff x = 0 and

diff y = diff w − 1.

Proof. Suppose w ∈ {0, 1}∗ and diff w ≥ 1. Let u ∈ {0, 1}
∗

be the shortest prefix of w such

that diff u ≥ 1, and let y ∈ {0, 1}∗ be such that w = uy. Then u 6= %, so that u = xb for some

x ∈ {0, 1}∗ and b ∈ {0, 1}. Thus w = uy = xby. Since x is a shorter prefix of w than u, we have

that diff x ≤ 0.

1



Suppose, toward a contradiction, that b = 1. Then diff x+−2 = diff(x1) = diff(xb) = diff u ≥

1, so that diff x ≥ 3—contradiction. Thus b = 0.

Summarizing, we have that u = xb = x0, w = uy = x0y, diff u ≥ 1, diff w ≥ 1 and diff x ≤ 0.

Since diff x+1 = diff(x0) = diff u ≥ 1, we have that diff x ≥ 0. But diff x ≤ 0, and thus diff x = 0.

Finally, since diff w = diff(x0y) = 0 + 1 + diff y = 1+ diff y, we have that diff y = diff w − 1. ✷

Now, we use the lemma to prove that Y ⊆ X . Since Y ⊆ {0, 1}∗, it will suffice to show that, for

all w ∈ {0, 1}∗,

if w ∈ Y, then w ∈ X.

We proceed by strong string induction. Suppose w ∈ {0, 1}∗, and assume the inductive hypoth-

esis: for all x ∈ {0, 1}∗, if x is a proper substring of w, then

if x ∈ Y, then x ∈ X.

We must show that

if w ∈ Y, then w ∈ X.

Suppose w ∈ Y . We must show that w ∈ X . There are three cases to consider.

• Suppose w = %. Then w = % ∈ X , by part (1) of the definition of X .

• Suppose w = 0t, for some t ∈ {0, 1}
∗

. Since 1 + diff t = diff(0t) = diff w = 0, we have

that diff t = −1. Let u ∈ {0, 1}∗ be the shortest prefix of t such that diff u ≤ −1, and let

v ∈ {0, 1}
∗

be such that t = uv. Then u 6= %, so that u = xb for some x ∈ {0, 1}
∗

and

b ∈ {0, 1}. Hence t = uv = xbv. Since x is a shorter prefix of t than u, we have that diff x ≥ 0.

Furthermore, every prefix of x has a non-negative diff.

Suppose, toward a contradiction, that b = 0. Since diff x+1 = diff(x0) = diff(xb) = diff u ≤

−1, we have that diff x ≤ −2. But diff x ≥ 0—contradiction. Thus b = 1.

Summarizing, we have that u = xb = x1, t = uv = x1v, w = 0t = 0x1v, diff t = −1,

diff u ≤ −1, diff x ≥ 0 and every prefix of x has a non-negative diff. Since diff x + −2 =

diff(x1) = diff u ≤ −1, we have that diff x ≤ 1. But diff x ≥ 0, and thus we have that

diff x ∈ {0, 1}. Hence there are two sub-cases to consider.

– Suppose diff x = 0. Because −2 + diff v = 0 + −2 + diff v = diff(x1v) = diff t = −1,

we have that diff v = 1. Since diff v ≥ 1, Lemma PS2.1.1 tells us that v = y0z, for some

y, z ∈ {0, 1}
∗

such that diff y = 0 and diff z = diff v − 1. Hence w = 0x1v = 0x1y0z

and diff z = 0. Since diff x = diff y = diff z = 0, we have that x, y, z ∈ Y . Because

x, y and z are proper substrings of w, the inductive hypothesis tells us that x, y, z ∈ X .

By part (3) of the definition of X , we have that 0x1y0 ∈ X . Thus, by part (5) of the

definition of X , we can conclude that w = 0x1y0z = (0x1y0)z ∈ X .

– Suppose diff x = 1. Because −1 + diff v = 1 + −2 + diff v = diff(x1v) = diff t = −1,

we have that diff v = 0. Since diff x = 1, we have that x 6= %, so that x = cy for

some c ∈ {0, 1} and y ∈ {0, 1}∗. Because c is a prefix of x, we have that diff c ≥ 0, and

thus that c = 0. Because 1 + diff y = diff(0y) = diff x = 1, we have that diff y = 0.

Hence w = 0x1v = 00y1v = (0%0y1)v. Since diff y = 0 and diff v = 0, we have that

2



y, v ∈ Y . Because y and v are proper substrings of w, the inductive hypothesis tells us

that y, v ∈ X . Since % ∈ X (by part (1) of the definition of X) and y ∈ X , part (2) of

the definition of X tells us that 0%0y1 ∈ X . Thus, by part (5) of the definition of X , we

can conclude that w = (0%0y1)v ∈ X .

• Suppose w = 1t, for some t ∈ {0, 1}
∗

. Since −2 + diff t = diff(1t) = diff w = 0, we have that

diff t = 2. Because diff t ≥ 1, Lemma PS2.1.1 tells us that t = x0u, for some x, u ∈ {0, 1}
∗

such

that diff x = 0 and diff u = diff t− 1. Hence diff u = 1. Because diff u ≥ 1, Lemma PS2.1.1

tells us that u = y0z, for some y, z ∈ {0, 1}
∗

such that diff y = 0 and diff z = diff u − 1.

Hence diff z = 0.

Summarizing, we have that w = 1t = 1x0u = 1x0y0z and x, y, z ∈ Y . Since x, y and z are

proper substrings of w, the inductive hypothesis tells us that x, y, z ∈ X . By part (4) of the

definition of X , we have that 1x0y0 ∈ X . Thus, by part (5) of the definition of X , we can

conclude that w = 1x0y0z = (1x0y0)z ∈ X .

Note that, in the preceding proof, we only use part (2) of X ’s definition in the case when x = %.

Problem 2

See the course website for the file ps2-explain.sml. Here is how explain was tested:

- use "ps2-framework.sml";

[opening ps2-framework.sml]

exception Error

val zero = - : sym

val one = - : sym

val isZero = fn : sym -> bool

val isOne = fn : sym -> bool

val diffSym = fn : sym -> int

val diff = fn : str -> int

val validStr = fn : str -> bool

datatype expl

= Rule1

| Rule2 of expl * expl

| Rule3 of expl * expl

| Rule4 of expl * expl

| Rule5 of expl * expl

val strExplained = fn : expl -> str

val printExplanation = fn : expl -> unit

val test = fn : (str -> expl) -> str -> unit

val it = () : unit

- use "ps2-explain.sml";

[opening ps2-explain.sml]

val shortest = fn : (int -> bool) -> str -> str * str

val shortestPositive = fn : str -> str * str

val shortestNegative = fn : str -> str * str

val splitPositive = fn : str -> str * str

3



val explain = fn : str -> expl

val it = () : unit

- val doit = test explain;

val doit = fn : str -> unit

- doit(Str.fromString "%");

% is in X, by rule (1)

val it = () : unit

- doit(Str.fromString "001");

001 = 001 @ % is in X, by rule (5)

001 = 0 @ % @ 0 @ % @ 1 is in X, by rule (2)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

val it = () : unit

- doit(Str.fromString "010");

010 = 010 @ % is in X, by rule (5)

010 = 0 @ % @ 1 @ % @ 0 is in X, by rule (3)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

val it = () : unit

- doit(Str.fromString "100");

100 = 100 @ % is in X, by rule (5)

100 = 1 @ % @ 0 @ % @ 0 is in X, by rule (4)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

val it = () : unit

- doit(Str.fromString "001010");

001010 = 001 @ 010 is in X, by rule (5)

001 = 0 @ % @ 0 @ % @ 1 is in X, by rule (2)

% is in X, by rule (1)

% is in X, by rule (1)

010 = 010 @ % is in X, by rule (5)

010 = 0 @ % @ 1 @ % @ 0 is in X, by rule (3)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

val it = () : unit

- doit(Str.fromString "010100");

010100 = 010 @ 100 is in X, by rule (5)

010 = 0 @ % @ 1 @ % @ 0 is in X, by rule (3)

% is in X, by rule (1)

% is in X, by rule (1)

100 = 100 @ % is in X, by rule (5)

100 = 1 @ % @ 0 @ % @ 0 is in X, by rule (4)

% is in X, by rule (1)

% is in X, by rule (1)

4



% is in X, by rule (1)

val it = () : unit

- doit(Str.fromString "100001");

100001 = 100 @ 001 is in X, by rule (5)

100 = 1 @ % @ 0 @ % @ 0 is in X, by rule (4)

% is in X, by rule (1)

% is in X, by rule (1)

001 = 001 @ % is in X, by rule (5)

001 = 0 @ % @ 0 @ % @ 1 is in X, by rule (2)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

val it = () : unit

- doit(Str.fromString "100000011010");

100000011010 = 100 @ 000011010 is in X, by rule (5)

100 = 1 @ % @ 0 @ % @ 0 is in X, by rule (4)

% is in X, by rule (1)

% is in X, by rule (1)

000011010 = 000011 @ 010 is in X, by rule (5)

000011 = 0 @ % @ 0 @ 001 @ 1 is in X, by rule (2)

% is in X, by rule (1)

001 = 001 @ % is in X, by rule (5)

001 = 0 @ % @ 0 @ % @ 1 is in X, by rule (2)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

010 = 010 @ % is in X, by rule (5)

010 = 0 @ % @ 1 @ % @ 0 is in X, by rule (3)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

val it = () : unit

- doit(Str.fromString "110001000001000111000");

110001000001000111000 = 110001000 @ 001000111000 is in X, by rule (5)

110001000 = 1 @ 100 @ 0 @ 100 @ 0 is in X, by rule (4)

100 = 100 @ % is in X, by rule (5)

100 = 1 @ % @ 0 @ % @ 0 is in X, by rule (4)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

100 = 100 @ % is in X, by rule (5)

100 = 1 @ % @ 0 @ % @ 0 is in X, by rule (4)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

001000111000 = 001 @ 000111000 is in X, by rule (5)

001 = 0 @ % @ 0 @ % @ 1 is in X, by rule (2)

% is in X, by rule (1)

5



% is in X, by rule (1)

000111000 = 000111000 @ % is in X, by rule (5)

000111000 = 0 @ 001 @ 1 @ 100 @ 0 is in X, by rule (3)

001 = 001 @ % is in X, by rule (5)

001 = 0 @ % @ 0 @ % @ 1 is in X, by rule (2)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

100 = 100 @ % is in X, by rule (5)

100 = 1 @ % @ 0 @ % @ 0 is in X, by rule (4)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

% is in X, by rule (1)

val it = () : unit

Note that the last two tests produce explanations using all five rules of X ’s definition.

6


