CS 516—Software Foundations via Formal Languages—Spring 2022

Problem Set 2

Model Answers

Problem 1

Part (a)

It will suffice to use induction on X to show that, for all w € X, w € Y. There are five steps to
show.

(1) We must show that % € Y, and this follows since % € {0,1}* and diff % = 0.

(2) Suppose z,y € X, and assume the inductive hypothesis: x,y € Y. We must show that
020yl € Y. Because z,y € Y, it follows that 020yl € {0,1}*. And, since z,y € Y, we have
that diff z = 0 = diff y, so that diff (0z0yl) = diff 0 + diff z + diff 0 + diff y + diff 1 =
1404+1+0+ —2 =0, completing the proof that 020yl € Y.

(3) Suppose z,y € X, and assume the inductive hypothesis: z,y € Y. We must show that
0x1y0 € Y. Because z,y € Y, it follows that 0z1y0 € {0,1}*. And, since z,y € Y, we have
that diff x = 0 = diff y, so that diff (0x1y0) = diff 0 + diff = + diff 1 + diff y + diff 0 =
140+ -2+ 04 1=0, completing the proof that 0z1y0 € Y.

(4) Suppose z,y € X, and assume the inductive hypothesis: x,y € Y. We must show that
120y0 € Y. Because z,y € Y, it follows that 120y0 € {0,1}*. And, since x,y € Y, we have
that diff z = 0 = diff y, so that diff (120y0) = diff 1 + diff z + diff 0 + diff y + diff 0 =
—24+0+1+041=0, completing the proof that 120y0 € Y.

(5) Suppose z,y € X, and assume the inductive hypothesis: z,y € Y. We must show that
xy € Y. Because z,y € Y, it follows that zy € {0,1}*. And, since 2,y € Y, we have that
diff x = 0 = diff y, so that diff (zy) = diff x 4+ diff y = 0 4+ 0 = 0, completing the proof that
ry €Y.

Part (b)
We begin by proving a useful lemma:

Lemma PS2.1.1
For all w € {0,1}*, if diff w > 1, then w = 20y, for some z,y € {0,1}* such that diff z = 0 and
diffy = diff w — 1.

Proof. Suppose w € {0,1}* and diff w > 1. Let u € {0,1}" be the shortest prefix of w such
that diff u > 1, and let y € {0,1}* be such that w = uy. Then u # %, so that u = zb for some
x € {0,1}* and b € {0,1}. Thus w = uy = zby. Since z is a shorter prefix of w than wu, we have
that diff z < 0.



Suppose, toward a contradiction, that b = 1. Then diff z + —2 = diff (z1) = diff (zb) = diff u >
1, so that diff x > 3—contradiction. Thus b = 0.

Summarizing, we have that ©u = b = 20, w = uy = 20y, diff u > 1, diff w > 1 and diff z < 0.
Since diff z+1 = diff (x0) = diff u > 1, we have that diff z > 0. But diff < 0, and thus diff = 0.
Finally, since diff w = diff (z0y) = 0+ 1 + diff y = 1 + diff y, we have that diff y = diff w — 1. O

Now, we use the lemma to prove that Y C X. Since Y C {0, 1}*, it will suffice to show that, for
all w e {0,1}*,
ifweY, thenw € X.

We proceed by strong string induction. Suppose w € {0,1}*, and assume the inductive hypoth-
esis: for all € {0,1}*, if  is a proper substring of w, then

ifzeY, thenx € X.

We must show that
ifweY, thenw € X.

Suppose w € Y. We must show that w € X. There are three cases to consider.
e Suppose w = %. Then w =% € X, by part (1) of the definition of X.

e Suppose w = 0t, for some t € {0,1}". Since 1 + difft = diff(0¢) = diffw = 0, we have
that difft = —1. Let u € {0,1}" be the shortest prefix of ¢ such that diffu < —1, and let
v € {0,1}" be such that ¢ = uv. Then u # %, so that u = xb for some z € {0,1}" and
b € {0,1}. Hence t = uv = zbv. Since z is a shorter prefix of ¢ than u, we have that diff z > 0.
Furthermore, every prefix of  has a non-negative diff.

Suppose, toward a contradiction, that b = 0. Since diff x4+ 1 = diff (z0) = diff (zb) = diff u <
—1, we have that diff z < —2. But diff x > 0—contradiction. Thus b = 1.

Summarizing, we have that u = zb = z1, t = wv = zlv, w = 0t = Ozlv, difft = —1,
diff u < —1, diff x > 0 and every prefix of x has a non-negative diff. Since diff z + —2 =
diff (21) = diff u < —1, we have that diff z < 1. But diff z > 0, and thus we have that
diff x € {0,1}. Hence there are two sub-cases to consider.

— Suppose diff x = 0. Because —2 + diff v = 0 + —2 + diff v = diff (z1v) = diff t = —1,
we have that diff v = 1. Since diff v > 1, Lemma PS2.1.1 tells us that v = y0z, for some
y,z € {0,1}" such that diff y = 0 and diff z = diffv — 1. Hence w = 0zlv = 0z1y0z
and diff z = 0. Since diff x = diff y = diff z = 0, we have that z,y,z € Y. Because
x, y and z are proper substrings of w, the inductive hypothesis tells us that z,y,z € X.
By part (3) of the definition of X, we have that 0x1y0 € X. Thus, by part (5) of the
definition of X, we can conclude that w = 0z1y0z = (021y0)z € X.

— Suppose diff x = 1. Because —1 + diff v = 1 + -2 + diff v = diff (z1v) = diff t = —1,
we have that diff v = 0. Since diff z = 1, we have that  # %, so that x = cy for
some ¢ € {0,1} and y € {0,1}*. Because c is a prefix of x, we have that diff ¢ > 0, and
thus that ¢ = 0. Because 1+ diff y = diff (0y) = diff x = 1, we have that diff y = 0.
Hence w = 0zlv = 00ylv = (0%0yl)v. Since diff y = 0 and diff v = 0, we have that



y,v € Y. Because y and v are proper substrings of w, the inductive hypothesis tells us
that y,v € X. Since % € X (by part (1) of the definition of X) and y € X, part (2) of
the definition of X tells us that 0%0yl € X. Thus, by part (5) of the definition of X, we
can conclude that w = (0%0yl)v € X.

e Suppose w = 1t, for some t € {0,1}". Since —2 + diff t = diff (1¢) = diff w = 0, we have that
diff t = 2. Because diff t > 1, Lemma PS2.1.1 tells us that t = 20u, for some x,u € {0,1}" such
that diff z = 0 and diff u = diff ¢ — 1. Hence diff u = 1. Because diff u > 1, Lemma PS2.1.1
tells us that u = y0z, for some g,z € {0,1}" such that diffy = 0 and diff z = diffu — 1.
Hence diff z = 0.

Summarizing, we have that w = 1t = 120u = 120y0z and z,y,z € Y. Since z, y and z are
proper substrings of w, the inductive hypothesis tells us that x,y,z € X. By part (4) of the
definition of X, we have that 1z0y0 € X. Thus, by part (5) of the definition of X, we can
conclude that w = 120y0z = (120y0)z € X.

Note that, in the preceding proof, we only use part (2) of X’s definition in the case when x = %.

Problem 2

See the course website for the file ps2-explain.sml. Here is how explain was tested:

- use "ps2-framework.sml";
[opening ps2-framework.sml]
exception Error
val zero = - : sym
val one = - : sym
val isZero = fn : sym -> bool
val isOne = fn : sym -> bool
val diffSym = fn : sym -> int
val diff = fn : str -> int
val validStr = fn : str -> bool
datatype expl

= Rulel

| Rule2 of expl * expl
| Rule3 of expl * expl
| Rule4 of expl * expl
| Rule5 of expl * expl

val strExplained = fn : expl —-> str

val printExplanation = fn : expl -> unit

val test = fn : (str -> expl) -> str -> unit

val it = () : unit

- use "ps2-explain.sml";

[opening ps2-explain.sml]

val shortest = fn : (int -> bool) -> str -> str * str
val shortestPositive = fn : str -> str * str

val shortestNegative = fn : str -> str * str

val splitPositive = fn : str -> str * str



val explain = fn : str -> expl
val it = () : unit
- val doit = test explain;
val doit = fn : str -> unit
- doit(Str.fromString "%");
% is in X, by rule (1)
val it = () : unit
- doit(Str.fromString "001");
001 = 001 @ 7 is in X, by rule (5)
001 =0@7% @0@7 @1 is in X, by rule (2)
% is in X, by rule (1)
% is in X, by rule (1)
% is in X, by rule (1)
val it = () : unit
- doit(Str.fromString "010");
010 = 010 @ 7 is in X, by rule (5)
010 =0@7% @1@7% @O0 is in X, by rule (3)
% is in X, by rule (1)
% is in X, by rule (1)
% is in X, by rule (1)
val it = () : unit
- doit(Str.fromString "100");
100 = 100 @ 7% is in X, by rule (5)
100 =10@7% @00 % @O0 is in X, by rule (4)
% is in X, by rule (1)
% is in X, by rule (1)
% is in X, by rule (1)
val it = () : unit
- doit(Str.fromString "001010");
001010 = 001 @ 010 is in X, by rule (5)
001 =0@7% @0@Y%e@1is in X, by rule (2)
% is in X, by rule (1)
% is in X, by rule (1)
010 = 010 @ 7 is in X, by rule (5)
010 =0@7% @1@7% @O0 is in X, by rule (3)
% is in X, by rule (1)
% is in X, by rule (1)
% is in X, by rule (1)
val it = () : unit
- doit(Str.fromString "010100");
010100 = 010 @ 100 is in X, by rule (5)
010 =0@7% @1 @7 @0 is in X, by rule (3)
% is in X, by rule (1)
% is in X, by rule (1)
100 = 100 @ % is in X, by rule (5)
100 =1@7% @0 @Y% @0 is in X, by rule (4)
% is in X, by rule (1)
% is in X, by rule (1)



% is in X, by rule (1)
val it = () : unit
- doit(Str.fromString "100001");
100001 = 100 @ 001 is in X, by rule (5)
100 =1@ @0 @) @O0 is in X, by rule (4)
% is in X, by rule (1)
% is in X, by rule (1)
001 = 001 @ 7 is in X, by rule (5)
001 =0@7% @0@Y% @1 is in X, by rule (2)
% is in X, by rule (1)
% is in X, by rule (1)
% is in X, by rule (1)
val it = () : unit
- doit(Str.fromString "100000011010");
100000011010 = 100 @ 000011010 is in X, by rule (5)
100 =1@ % @0 @ % @O0 is in X, by rule (4)
% is in X, by rule (1)
% is in X, by rule (1)
000011010 = 000011 @ 010 is in X, by rule (5)
000011 =0 @ 7 @ 0 @ 001 @ 1 is in X, by rule (2)
% is in X, by rule (1)
001 = 001 @ % is in X, by rule (5)
001 =0@7% @0@Y% @1 is in X, by rule (2)
/4 is in X, by rule (1)
% is in X, by rule (1)
% is in X, by rule (1)
010 = 010 @ 7 is in X, by rule (5)
010 =0@ 7% @1 @7 @0 is in X, by rule (3)
% is in X, by rule (1)
% is in X, by rule (1)
% is in X, by rule (1)
val it = () : unit
- doit(Str.fromString "110001000001000111000") ;
110001000001000111000 = 110001000 @ 001000111000 is in X, by rule (5)
110001000 = 1 @ 100 @ 0 @ 100 @ 0 is in X, by rule (4)
100 = 100 @ 7 is in X, by rule (5)
100 =1@7% @0 @Y% @O0 is in X, by rule (4)
% is in X, by rule (1)
% is in X, by rule (1)
% is in X, by rule (1)
100 = 100 @ 7 is in X, by rule (5)
100 =1@7% @0 @Y% @O0 is in X, by rule (4)
% is in X, by rule (1)
% is in X, by rule (1)
% is in X, by rule (1)
001000111000 = 001 @ 000111000 is in X, by rule (5)
001 =0@7% @0 @Y% @1 is in X, by rule (2)
% is in X, by rule (1)



% is in X, by rule (1)
000111000 = 000111000 @ 7 is in X, by rule (5)
000111000 = 0 @ 001 @ 1 @ 100 @ 0 is in X, by rule (3)
001 = 001 @ 7 is in X, by rule (5)
001 =0@7% @0@Y% @1 is in X, by rule (2)
% is in X, by rule (1)
% is in X, by rule (1)
% is in X, by rule (1)
100 = 100 @ % is in X, by rule (5)
100 =10@7% @0 @ % @O0 is in X, by rule (4)
% is in X, by rule (1)
% is in X, by rule (1)
% is in X, by rule (1)
% is in X, by rule (1)
val it = () : unit

Note that the last two tests produce explanations using all five rules of X’s definition.



