
CS 516—Software Foundations via Formal Languages—Spring 2022

Problem Set 3

Model Answers

Problem 1

First we define the functions locTr and globTr for carrying out local and global simplification of

a regular expression parsed from an SML string, with tracing turned on, and with no limit on the

number of structural reorganizations considered, in the case of local simplification, and with no limit

on the number of candidates considered, in the case of global simplification:

- fun locTr s =

= Reg.locallySimplifyTrace (NONE, Reg.obviousSubset) (Reg.fromString s);

val locTr = fn : string -> bool * reg

- fun globTr s =

= Reg.globallySimplifyTrace (NONE, Reg.obviousSubset) (Reg.fromString s);

val globTr = fn : string -> bool * reg

Next we define: a function globPr for carrying out the global simplification of a regular expression

in string form, and then printing out the result; a function weakSimpPr for weakly simplifying a

regular expression in string form, and printing out the result; a function cmpCompl for comparing

the complexity of two regular expressions in string form; and a function cmpTot for comparing two

regular expressions in string form in their total ordering:

- fun globPr s =

= Reg.output

= ("",

= #2(Reg.globallySimplify (NONE, Reg.obviousSubset) (Reg.fromString s)));

val globPr = fn : string -> unit

- fun weakSimpPr s =

= Reg.output("", Reg.weaklySimplify(Reg.fromString s));

val weakSimpPr = fn : string -> unit

- fun cmpCompl(s1, s2) =

= Reg.compareComplexity(Reg.fromString s1, Reg.fromString s2);

val cmpCompl = fn : string * string -> order

- fun cmpTot(s1, s2) =

= Reg.compare(Reg.fromString s1, Reg.fromString s2);

val cmpTot = fn : string * string -> order

Next, we apply locTr and globPr to (00∗11∗)∗:

- locTr "(00*11*)*";

considered all 20 structural reorganizations of (00*11*)*

(00*11*)* transformed by structural rule 4 at position [1] to ((00*)11*)*

transformed by structural rule 4 at position [1] to (((00*)1)1*)* transformed by

reduction rule 14 at position [] to % + ((00*)1)((00*)1 + 1)* weakly simplifies

1

to % + 00*1(1 + 00*1)*

considered all 160 structural reorganizations of % + 00*1(1 + 00*1)*

% + 00*1(1 + 00*1)* transformed by structural rule 4 at position

[2, 2, 2, 2, 1, 2] to % + 00*1(1 + (00*)1)* transformed by reduction rule 22 at

position [2, 2, 2, 2, 1] to % + 00*1((% + 00*)1)*

considered all 160 structural reorganizations of % + 00*1((% + 00*)1)*

% + 00*1((% + 00*)1)* transformed by reduction rule 25 at position

[2, 2, 2, 2, 1, 1] to % + 00*1(0*1)*

considered all 50 structural reorganizations of % + 00*1(0*1)*

% + 00*1(0*1)* transformed by reduction rule 15 at position [2, 2, 2, 2] to

% + 00*1(% + (0 + 1)*1)

considered all 80 structural reorganizations of % + 00*1(% + (0 + 1)*1)

% + 00*1(% + (0 + 1)*1) is locally simplified

val it = (true,-) : bool * reg

- globPr "(00*11*)*";

% + 0(0 + 1)*1

val it = () : unit

Thus the result, α, of global simplification is % + 0(0+ 1)∗1, whereas the result of local simplification

is % + 00
∗
1(% + (0 + 1)∗1).

At the end of the first stage of local simplification, we have the intermediate result

% + 00
∗
1(1+ 00

∗
1)∗. And this globally simplifies to α:

- globPr "% + 00*1(1 + 00*1)*";

% + 0(0 + 1)*1

val it = () : unit

At the end of the second stage of local simplification, we have the intermediate result

% + 00
∗
1((% + 00

∗)1)∗. And this globally simplifies to α:

- globPr "% + 00*1((% + 00*)1)*";

% + 0(0 + 1)*1

val it = () : unit

At the end of the third stage of local simplification, we have the intermediate result

% + 00
∗
1(0∗1)∗. And this globally simplifies to α:

- globTr "% + 00*1(0*1)*";

considering candidates with explanations of length 0

simplest result now: % + 00*1(0*1)*

considering candidates with explanations of length 1

simplest result now: % + 00*1(0*1)* transformed by reduction rule 15 at position

[2, 2, 2, 2] to % + 00*1(% + (0 + 1)*1)

considering candidates with explanations of length 2

considering candidates with explanations of length 3

considering candidates with explanations of length 4

considering candidates with explanations of length 5

simplest result now: % + 00*1(0*1)* transformed by structural rule 8 at position

[2, 2, 2] to % + 00*(10*)*1 transformed by structural rule 4 at position [2, 2]

to % + 0(0*(10*)*)1 transformed by reduction rule 14 at position [2, 2, 1, 2] to

2

% + 0(0*(% + 1(1 + 0)*))1 transformed by weak simplification at position

[2, 2, 1] to % + 0(0*(% + 1(0 + 1)*))1 transformed by reduction rule 23 at

position [2, 2, 1] to % + 0(0 + 1)*1

considering candidates with explanations of length 6

considering candidates with explanations of length 7

considering candidates with explanations of length 8

considering candidates with explanations of length 9

search completed after considering 258 candidates with maximum size 17

% + 00*1(0*1)* transformed by structural rule 8 at position [2, 2, 2] to

% + 00*(10*)*1 transformed by structural rule 4 at position [2, 2] to

% + 0(0*(10*)*)1 transformed by reduction rule 14 at position [2, 2, 1, 2] to

% + 0(0*(% + 1(1 + 0)*))1 transformed by weak simplification at position

[2, 2, 1] to % + 0(0*(% + 1(0 + 1)*))1 transformed by reduction rule 23 at

position [2, 2, 1] to % + 0(0 + 1)*1 is globally simplified

val it = (true,-) : bool * reg

From this trace we can see that global simplification initially finds a way of using rule (15), resulting

in % + 00
∗
1(% + (0 + 1)∗1). This is what local simplification does. But then it finds that using

rule (14) (after some structural reorganization) takes us to % + 0(0∗(% + 1(1+ 0)∗))1, which weakly

simplifies at position [2, 2, 1] to % + 0(0∗(% + 1(0+ 1)∗))1. This is a non-optimal local result, as

shown by:

- cmpCompl("% + 0(0*(% + 1(0 + 1)*))1", "% + 00*1(% + (0 + 1)*1)");

val it = GREATER : order

But an application of rule (23) transforms this regular expression to the better final result, α. When

local simplification considered using rule (14), it followed it with weak simplification of the whole

expression:

- weakSimpPr "% + 0(0*(% + 1(1 + 0)*))1";

% + 00*(% + 1(0 + 1)*)1

val it = () : unit

Interestingly, this regular expression has the same complexity as the result of rule (15), but it is

larger in our total ordering on regular expressions:

- cmpCompl("% + 00*(% + 1(0 + 1)*)1", "% + 00*1(% + (0 + 1)*1)");

val it = EQUAL : order

- cmpTot("% + 00*(% + 1(0 + 1)*)1", "% + 00*1(% + (0 + 1)*1)");

val it = GREATER : order

So % + 00
∗(% + 1(0+ 1)∗)1 was rejected as the stage’s result not because it had greater complexity

but because the total ordering on regular expressions was used to break ties when judging local

optimality. We can check that if local simplification had selected %+ 00
∗(% + 1(0+ 1)∗)1 at this

state, it would have terminated with α:

- locTr "% + 00*(% + 1(0 + 1)*)1";

considered all 80 structural reorganizations of % + 00*(% + 1(0 + 1)*)1

% + 00*(% + 1(0 + 1)*)1 transformed by structural rule 4 at position [2, 2] to

% + 0(0*(% + 1(0 + 1)*))1 transformed by reduction rule 23 at position [2, 2, 1]

3

to % + 0(0 + 1)*1

considered all 8 structural reorganizations of % + 0(0 + 1)*1

% + 0(0 + 1)*1 is locally simplified

val it = (true,-) : bool * reg

Finally, note that % + 00
∗
1(% + (0+ 1)∗1) is globally simplified—and so is also locally simpli-

fied:

- globPr "% + 00*1(% + (0 + 1)*1)";

% + 00*1(% + (0 + 1)*1)

val it = () : unit

We can also compare local and global simplification for this problem in another way. Consider the

entire global simplification trace:

- globTr "(00*11*)*";

considering candidates with explanations of length 0

simplest result now: (00*11*)*

considering candidates with explanations of length 1

simplest result now: (00*11*)* transformed by reduction rule 16 at position []

to % + 0(0 + (11*)0)*11*

considering candidates with explanations of length 2

simplest result now: (00*11*)* transformed by reduction rule 16 at position []

to % + 0(0 + (11*)0)*11* weakly simplifies to % + 0(0 + 11*0)*11*

simplest result now: (00*11*)* transformed by reduction rule 16 at position []

to % + 0(0 + (11*)0)*11* transformed by reduction rule 22 at position

[2, 2, 1, 1] to % + 0((% + 11*)0)*11*

considering candidates with explanations of length 3

simplest result now: (00*11*)* transformed by reduction rule 16 at position []

to % + 0(0 + (11*)0)*11* transformed by reduction rule 22 at position

[2, 2, 1, 1] to % + 0((% + 11*)0)*11* transformed by reduction rule 25 at

position [2, 2, 1, 1, 1] to % + 0(1*0)*11*

considering candidates with explanations of length 4

simplest result now: (00*11*)* transformed by reduction rule 16 at position []

to % + 0(0 + (11*)0)*11* transformed by reduction rule 22 at position

[2, 2, 1, 1] to % + 0((% + 11*)0)*11* transformed by reduction rule 25 at

position [2, 2, 1, 1, 1] to % + 0(1*0)*11* transformed by reduction rule 15 at

position [2, 2, 1] to % + 0(% + (1 + 0)*0)11*

considering candidates with explanations of length 5

simplest result now: (00*11*)* transformed by reduction rule 16 at position []

to % + 0(0 + (11*)0)*11* transformed by structural rule 4 at position [2, 2] to

% + 0((0 + (11*)0)*1)1* transformed by reduction rule 22 at position

[2, 2, 1, 1, 1] to % + 0(((% + 11*)0)*1)1* transformed by reduction rule 25 at

position [2, 2, 1, 1, 1, 1] to % + 0((1*0)*1)1* transformed by reduction rule 15

at position [2, 2, 1, 1] to % + 0((% + (1 + 0)*0)1)1*

simplest result now: (00*11*)* transformed by reduction rule 16 at position []

to % + 0(0 + (11*)0)*11* transformed by reduction rule 22 at position

[2, 2, 1, 1] to % + 0((% + 11*)0)*11* transformed by reduction rule 25 at

position [2, 2, 1, 1, 1] to % + 0(1*0)*11* transformed by reduction rule 15 at

4

position [2, 2, 1] to % + 0(% + (1 + 0)*0)11* weakly simplifies to

% + 0(% + (0 + 1)*0)11*

considering candidates with explanations of length 6

considering candidates with explanations of length 7

simplest result now: (00*11*)* transformed by reduction rule 16 at position []

to % + 0(0 + (11*)0)*11* transformed by reduction rule 22 at position

[2, 2, 1, 1] to % + 0((% + 11*)0)*11* transformed by reduction rule 25 at

position [2, 2, 1, 1, 1] to % + 0(1*0)*11* transformed by structural rule 7 at

position [2, 2, 2] to % + 0(1*0)*1*1 transformed by structural rule 4 at

position [2, 2] to % + 0((1*0)*1*)1 weakly simplifies to % + 01*(01*)*1

transformed by reduction rule 14 at position [2, 2, 2, 1] to

% + 01*(% + 0(0 + 1)*)1

simplest result now: (00*11*)* transformed by structural rule 4 at position [1]

to ((00*)11*)* transformed by structural rule 7 at position [1, 2] to

((00*)1*1)* transformed by reduction rule 16 at position [] to

% + (00*)(1 + 100*)*1 transformed by reduction rule 21 at position [2, 2, 1, 1]

to % + (00*)(1(% + 00*))*1 weakly simplifies to % + 00*1((% + 00*)1)*

transformed by reduction rule 25 at position [2, 2, 2, 2, 1, 1] to

% + 00*1(0*1)* transformed by reduction rule 15 at position [2, 2, 2, 2] to

% + 00*1(% + (0 + 1)*1)

considering candidates with explanations of length 8

simplest result now: (00*11*)* transformed by reduction rule 16 at position []

to % + 0(0 + (11*)0)*11* transformed by reduction rule 22 at position

[2, 2, 1, 1] to % + 0((% + 11*)0)*11* transformed by reduction rule 25 at

position [2, 2, 1, 1, 1] to % + 0(1*0)*11* transformed by reduction rule 15 at

position [2, 2, 1] to % + 0(% + (1 + 0)*0)11* weakly simplifies to

% + 0(% + (0 + 1)*0)11* transformed by structural rule 7 at position [2, 2, 2]

to % + 0(% + (0 + 1)*0)1*1 transformed by structural rule 4 at position [2, 2]

to % + 0((% + (0 + 1)*0)1*)1 transformed by reduction rule 24 at position

[2, 2, 1] to % + 0(0 + 1)*1

considering candidates with explanations of length 9

considering candidates with explanations of length 10

considering candidates with explanations of length 11

considering candidates with explanations of length 12

considering candidates with explanations of length 13

considering candidates with explanations of length 14

considering candidates with explanations of length 15

considering candidates with explanations of length 16

considering candidates with explanations of length 17

considering candidates with explanations of length 18

considering candidates with explanations of length 19

considering candidates with explanations of length 20

search completed after considering 3796 candidates with maximum size 21

(00*11*)* transformed by reduction rule 16 at position [] to

% + 0(0 + (11*)0)*11* transformed by reduction rule 22 at position [2, 2, 1, 1]

to % + 0((% + 11*)0)*11* transformed by reduction rule 25 at position

[2, 2, 1, 1, 1] to % + 0(1*0)*11* transformed by reduction rule 15 at position

[2, 2, 1] to % + 0(% + (1 + 0)*0)11* weakly simplifies to

5

% + 0(% + (0 + 1)*0)11* transformed by structural rule 7 at position [2, 2, 2]

to % + 0(% + (0 + 1)*0)1*1 transformed by structural rule 4 at position [2, 2]

to % + 0((% + (0 + 1)*0)1*)1 transformed by reduction rule 24 at position

[2, 2, 1] to % + 0(0 + 1)*1 is globally simplified

val it = (true,-) : bool * reg

So the first step of global simplification uses reduction rule (16) to produce % + 0(0+ (11∗)0)∗11∗.

When local simplification considers this rule at stage 1, it first weakly simplifies it, obtaining

- weakSimpPr "% + 0(0 + (11*)0)*11*";

% + 0(0 + 11*0)*11*

val it = () : unit

This has the same complexity but is greater in the total ordering of regular expressions (used to

break ties) as % + 00
∗
1(1+ 00

∗
1)∗, which is what local simplification finds to be the locally optimal

result:

- cmpCompl("% + 0(0 + 11*0)*11*", "% + 00*1(1 + 00*1)*");

val it = EQUAL : order

- cmpTot("% + 0(0 + 11*0)*11*", "% + 00*1(1 + 00*1)*");

val it = GREATER : order

But if local simplification had selected % + 0(0+ 11
∗
0)∗11∗, the rest of the local simplification

process would have produced the optimal result, α (note that the trace uses somewhat different

steps than global simplification!):

- locTr "% + 0(0 + 11*0)*11*";

considered all 160 structural reorganizations of % + 0(0 + 11*0)*11*

% + 0(0 + 11*0)*11* transformed by structural rule 4 at position [2, 2, 1, 1, 2]

to % + 0(0 + (11*)0)*11* transformed by reduction rule 22 at position

[2, 2, 1, 1] to % + 0((% + 11*)0)*11*

considered all 160 structural reorganizations of % + 0((% + 11*)0)*11*

% + 0((% + 11*)0)*11* transformed by structural rule 7 at position [2, 2, 2] to

% + 0((% + 11*)0)*1*1 transformed by structural rule 4 at position [2, 2] to

% + 0(((% + 11*)0)*1*)1 transformed by reduction rule 25 at position

[2, 2, 1, 1, 1, 1] to % + 0((1*0)*1*)1 weakly simplifies to % + 01*(01*)*1

considered all 50 structural reorganizations of % + 01*(01*)*1

% + 01*(01*)*1 transformed by reduction rule 14 at position [2, 2, 2, 1] to

% + 01*(% + 0(0 + 1)*)1

considered all 40 structural reorganizations of % + 01*(% + 0(0 + 1)*)1

% + 01*(% + 0(0 + 1)*)1 transformed by structural rule 4 at position [2, 2] to

% + 0(1*(% + 0(0 + 1)*))1 transformed by structural rule 5 at position

[2, 2, 1, 2, 2, 2, 1] to % + 0(1*(% + 0(1 + 0)*))1 transformed by reduction rule

23 at position [2, 2, 1] to % + 0(1 + 0)*1 weakly simplifies to % + 0(0 + 1)*1

considered all 8 structural reorganizations of % + 0(0 + 1)*1

% + 0(0 + 1)*1 is locally simplified

val it = (true,-) : bool * reg

In summary, we can say that the non-optimality of local simplification for this problem stems from

either its selection in the first step or the last step (and maybe some of the intermediate steps).

6

Problem 2

(a) If hasEmpα, i.e., % ∈ L(α), then reduction rule (8) would also apply to (αβ∗)∗ (hasEmp(β∗)

holds, because β∗ is a closure), yielding (α+β∗)∗. This can be restructured using structural rule (5)

into (β∗ +α)∗, which can then be turned into (β+α)∗ using reduction rule (7). So the rationale for

restricting reduction rule (14) to only apply when hasEmpα is false, is to prefer the above sequence

of simplifications, over one starting with reduction rule (14).

(If the conservative approximation of sub is powerful enough, then reduction rule (14) can be

followed by reduction rules (1) and (4), resulting in (α + β)∗. But it’s nicer not to have to depend

upon properties of sub, or to incur the cost of running sub.)

(b) First we prove a lemma:

Lemma PS3.2.1

For all ns,ms ∈ CC, if ns <cc ms and |ns | ≥ |ms|, then [0] ∪ ns <cc ms.

Proof. Suppose ns,ms ∈ CC, ns <cc ms and |ns| ≥ |ms |. Because ns <cc ms and ns is at least

as long as ms , there is an i ∈ N− {0} such that

• i ≤ |ns | and i ≤ |ms |,

• for all j ∈ [1 : i− 1], ns j = ms j; and

• ns i < ms i.

Thus it follows that i ∈ N− {0},

• i ≤ |ns | < |ns|+ 1 = |ns @ [0]| and i ≤ |ms |;

• for all j ∈ [1 : i− 1], (ns @ [0]) j = ns j = ms j; and

• (ns @ [0]) i = ns i < ms i.

Because 0 is ≤ every element of ns , we have that [0] ∪ ns = ns @ [0], and so we can conclude from

the above that [0] ∪ ns <cc ms . ✷

Suppose α, β ∈ Reg and ccα ∪ ccβ <cc cc β. By Proposition 3.3.1, we have that

cc(% + α(α + β)∗) = cc% ∪ cc(α(α + β)∗) = [0] ∪ ccα ∪ cc((α+ β)∗)

= [0] ∪ ccα ∪ cc(α+ β) = [0] ∪ ccα ∪ ccα ∪ cc β

= [0] ∪ ccα ∪ ccα ∪ cc β = [0] ∪ ccα ∪ cc β ∪ ccα,

cc((αβ∗)∗) = cc(αβ∗) = ccα ∪ cc(β∗) = ccα ∪ cc β = ccα ∪ cc β = cc β ∪ ccα.

Thus to show cc(% + α(α + β)∗) <cc cc((αβ
∗)∗), it will suffice to show [0] ∪ ccα ∪ cc β ∪ ccα <cc

ccβ∪ccα. By Proposition 3.3.3(2), it will suffice to show [0]∪ccα∪cc β <cc cc β. And this follows

by Lemma PS3.2.1, since ccα ∪ cc β <cc cc β and |ccα ∪ ccβ| ≥ |ccβ| = |cc β|.

7

Problem 3

(a)

(% + 1)(0+ 11(% + 1))∗(% + 1)

(b) Let

U = {%, 1} and V = {0, 11, 111}.

Since L(α) = UV ∗U , it will suffice to show that UV ∗U = X .

Every substring of an element of X is itself an element of X , because if the substring had an

occurrence of 010, then so would the whole string.

Lemma PS3.3.1

(1) UX ⊆ X .

(2) XU ⊆ X .

Proof.

(1) Suppose w ∈ UX , so that w = ux for some u ∈ U and x ∈ X . We must show that w ∈ X .

Clearly w ∈ {0, 1}∗. Suppose, toward a contradiction, that 010 is a substring of w. Because

u ∈ U and w = ux, this means that w = x or w = 1x, and thus that 010 is a substring of x. But

this contradicts the fact that x ∈ X . Thus 010 is not a substring of w, completing the proof

that w ∈ X .

(2) Suppose w ∈ XU , so that w = xu for some x ∈ X and u ∈ U . We must show that w ∈ X .

Clearly w ∈ {0, 1}∗. Suppose, toward a contradiction, that 010 is a substring of w. Because

u ∈ U and w = xu, this means that w = x or w = x1, and thus that 010 is a substring of x. But

this contradicts the fact that x ∈ X . Thus 010 is not a substring of w, completing the proof

that w ∈ X .

✷

Let

Y = {w ∈ X | w 6= 1 and 10 is not a prefix of w and 01 is not a suffix of w }.

It is easy to see that % ∈ Y and V ⊆ Y .

Lemma PS3.3.2

Y Y ⊆ Y .

Proof. Suppose w ∈ Y Y , so that w = uv for some u, v ∈ Y . We must show that w ∈ Y .

Clearly w ∈ {0, 1}∗. To finish the proof that w ∈ X , suppose, toward a contradiction, that 010

is a substring of w. Because w = uv and u, v ∈ X , there are two cases to consider.

• Suppose 01 is a suffix of u and 0 is a prefix of v. But u ∈ Y , and so 01 is not a suffix of

u—contradiction.

8

• Suppose 0 is a suffix of u and 10 is a prefix of v. But v ∈ Y , and so 10 is not a prefix of

v—contradiction.

Because we obtained a contradiction in both cases, we have an overall contradiction. Thus w ∈ X .

Because u, v ∈ Y , neither u nor v is 1, and thus w = uv 6= 1.

Suppose, toward a contradiction, that 10 is a prefix of w. Because w = uv, there are three cases

to consider.

• Suppose u = % and 10 is a prefix of v. But v ∈ Y , and thus 10 is not a prefix of v—

contradiction.

• Suppose u = 1 and 0 is a prefix of v. But u ∈ Y , and thus u 6= 1—contradiction.

• Suppose 10 is a prefix of u. But u ∈ Y , and thus 10 is not a prefix of u—contradiction.

Because we obtained an overall contradiction, it follows that 10 is not a prefix of w.

Suppose, toward a contradiction, that 01 is a suffix of w. Because w = uv, there are three cases

to consider.

• Suppose v = % and 01 is a suffix of u. But u ∈ Y , and thus 01 is not a suffix of u—contradiction.

• Suppose v = 1 and 0 is a suffix of u. But v ∈ Y , and thus v 6= 1—contradiction.

• Suppose 01 is a suffix of v. But v ∈ Y , and thus 01 is not a suffix of v—contradiction.

Because we obtained an overall contradiction, it follows that 01 is not a suffix of w.

Because w ∈ X , w 6= 1, 10 is not a prefix of w, and 01 is not a suffix of w, it follows that w ∈ Y ,

as required. ✷

Lemma PS3.3.3

Y ∗ ⊆ Y .

Proof. It will suffice to show that, for all n ∈ N, Y n ⊆ Y . We proceed by mathematical induction.

(Basis) Since % ∈ Y , we have that Y 0 = {%} ⊆ Y .

(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis: Y n ⊆ Y . We must prove

that Y n+1 ⊆ Y . We have that

Y n+1 = Y Y n

⊆ Y Y (inductive hypothesis)

⊆ Y (Lemma PS3.3.2).

✷

Lemma PS3.3.4

UV ∗U ⊆ X .

Proof. Because V ⊆ Y , we have that V ∗ ⊆ Y ∗ ⊆ Y ⊆ X , by Lemma PS3.3.3. Thus UV ∗ ⊆

UX ⊆ X , by Lemma PS3.3.1(1). Finally, UV ∗U = (UV ∗)U ⊆ XU ⊆ X , by Lemma PS3.3.1(2). ✷

9

Lemma PS3.3.5

X ⊆ UV ∗U .

Proof. Since X ⊆ {0, 1}∗, it will suffice to show that, for all w ∈ {0, 1}∗,

if w ∈ X, then w ∈ UV ∗U.

We prove this using strong string induction. Suppose w ∈ {0, 1}∗, and assume the inductive hy-

pothesis: for all x ∈ {0, 1}∗, if x is a proper substring of w, then

if x ∈ X, then x ∈ UV ∗U.

We must show that

if w ∈ X, then w ∈ UV ∗U.

Suppose w ∈ X . We must show that w ∈ UV ∗U . Since w ∈ {0, 1}∗, there are three cases to

consider.

• Suppose w = %. Then w = % = %%% ∈ UV ∗U .

• Suppose w = 1t, for some t ∈ {0, 1}∗. Because t is a substring of w, we have that t ∈ X .

Furthermore, since t is a proper substring of w, the inductive hypothesis tells us that t ∈ UV ∗U ,

so that t = xyz for some x ∈ U , y ∈ V ∗ and z ∈ U . Thus w = 1t = 1xyz. Because x ∈ U ,

there are two sub-cases to consider.

– Suppose x = %. Thus w = 1xyz = 1%yz = 1yz ∈ UV ∗U .

– Suppose x = 1. Thus w = 1xyz = 11yz = %((11)y)z ∈ U(V V ∗)U ⊆ UV ∗U .

• Suppose w = 0t, for some t ∈ {0, 1}∗. There are three sub-cases to consider.

– Suppose t = %. Thus w = 0t = 0% = 0 = %0% ∈ UV U ⊆ UV ∗U .

– Suppose t = 0s, for some s ∈ {0, 1}∗. Because t is a substring of w, we have that t ∈ X .

Furthermore, since t is a proper substring of w, the inductive hypothesis tells us that

t ∈ UV ∗U , so that t = xyz for some x ∈ U , y ∈ V ∗ and z ∈ U . Because 0s = t = xyz,

x cannot be 1. But x ∈ U , and thus x = %. Thus w = 0t = 0xyz = 0%yz = 0yz =

%(0y)z ∈ U(V V ∗)U ⊆ UV ∗U .

– Suppose t = 1s, for some s ∈ {0, 1}∗. Thus w = 0t = 01s. Because w ∈ X , s cannot

begin with 0. Thus there are two sub-sub-cases to consider.

∗ Suppose s = %. Thus w = 01s = 01% = 01 = %01 ∈ UV U ⊆ UV ∗U .

∗ Suppose s = 1r, for some r ∈ {0, 1}∗. Thus w = 01s = 011r. Because r is a substring

of w, we have that r ∈ X . Furthermore, since r is a proper substring of w, the

inductive hypothesis tells us that r ∈ UV ∗U , so that r = xyz for some x ∈ U , y ∈ V ∗

and z ∈ U . Thus w = 011r = 011xyz. Since x ∈ U , there are two sub-sub-sub-cases

to consider.

· Suppose x = %. Thus w = 011xyz = 011%yz = 011yz = %(0(11)y)z ∈

U(V V V ∗)U ⊆ UV ∗U .

10

· Suppose x = 1. Thus w = 011xyz = 0111yz = %(0(111)y)z ∈ U(V V V ∗)U ⊆

UV ∗U .

✷

By Lemmas PS3.3.4 and PS3.3.5, we have that UV ∗U ⊆ X ⊆ UV ∗U , i.e., UV ∗U = X .

11

