CS 516—Software Foundations via Formal Languages—Spring 2022

Problem Set 4

Model Answers

Problem 1

(a) The finite automaton N is

(b) First, we put the expression of N in Forlan's syntax

```
{states} A, B, C {start state} A {accepting states} A, B, C {transitions} A, O -> B; A, 1 -> A; B, O -> B; B, 1 -> C; C, 1 -> A
```

in the file ps4-p1-fa (see the course website), and load this file into Forlan, calling the result fa:

```
- val fa = FA.input "ps4-p1-fa";
val fa = - : fa

Next we load the file ps4-p1.sml
    (* val inX : str -> bool
        tests whether a string over the alphabet {0, 1} is in X *)

fun inX x =
        Set.all
        (fn y => not(Str.equal(y, Str.fromString "010")))
        (StrSet.substrings x);

(* val upto : int -> str set

    if n >= 0, then upto n returns all strings over alphabet {0, 1} of length no more than n *)

fun upto 0 : str set = Set.sing nil
```

```
| upto n
           let val xs = upto(n - 1)
               val ys = Set.filter (fn x \Rightarrow length x = n - 1) xs
           in StrSet.union
              (xs, StrSet.concat(StrSet.fromString "0, 1", ys))
           end:
     (* val partition : int -> str set * str set
        if n \ge 0, then partition n returns (xs, ys) where:
        xs is all elements of upto n that are in X; and
        ys is all elements of upto n that are not in X *)
     fun partition n = Set.partition inX (upto n);
     (* val test = fn : int -> dfa -> str option * str option
        if n \ge 0, then test n returns a function f such that, for all FAs
        fa, f fa returns a pair (xOpt, yOpt) such that:
          If there is an element of \{0, 1\}* of length no more than n that
          is in X but is not accepted by fa, then xOpt = SOME x for some
          such x; otherwise, xOpt = NONE.
          If there is an element of \{0, 1\}* of length no more than n that
          is not in X but is accepted by fa, then yOpt = SOME y for some
          such y; otherwise, yOpt = NONE. *)
     fun test n =
           let val (goods, bads) = partition n
           in fn fa =>
                   let val accepted
                                          = FA.accepted fa
                       val goodNotAccOpt = Set.position (not o accepted) goods
                                        = Set.position accepted bads
                       val badAccOpt
                   in ((case goodNotAccOpt of
                             NONE => NONE
                            | SOME i => SOME(ListAux.sub(Set.toList goods, i))),
                        (case badAccOpt of
                             NONE => NONE
                            | SOME i => SOME(ListAux.sub(Set.toList bads, i))))
                   end
           end;
(see the course website) defining the function test into Forlan:
     - use "ps4-p1.sml";
     [opening ps4-p1.sml]
```

```
val inX = fn : str -> bool
val upto = fn : int -> str set
val partition = fn : int -> str set * str set
val test = fn : int -> fa -> str option * str option
val it = () : unit
```

Finally, we apply test to arguments 10 and fa:

```
- test 10 fa;
val it = (NONE, NONE) : str option * str option
```

Problem 2

(a) First, we load the file ps4-p2-fa (see the course website) containing the expression

```
{states} A, B, C, D {start state} A {accepting states} B, C, D {transitions} A, % -> B | C | D; B, 0 -> C; C, 0 -> D; C, 1 -> B; D, 1 -> C
```

of M in Forlan's syntax into Forlan, calling the result fa:

```
- val fa = FA.input "ps4-p2-fa";
val fa = - : fa
```

Next, we define a function accPr that finds and prints a labeled path in fa explaining why a Forlan string expressed as an SML string is accepted:

```
- fun accPr s =
=          LP.output("", FA.findAcceptingLP fa (Str.fromString s));
val accPr = fn : string -> unit
```

Finally, we use this function to find and display the required labeled paths:

```
- accPr "0010110";
A, % => B, 0 => C, 0 => D, 1 => C, 0 => D, 1 => C, 1 => B, 0 => C
val it = () : unit
- accPr "1001101";
A, % => C, 1 => B, 0 => C, 0 => D, 1 => C, 1 => B, 0 => C, 1 => B
val it = () : unit
- accPr "1011001";
A, % => D, 1 => C, 0 => D, 1 => C, 1 => B, 0 => C, 0 => D, 1 => C
val it = () : unit
```

(b) Continuing our Forlan session, we first load the file ps4-p2.sml

```
fun accLen n =
    Set.filter
    (FA.accepted fa)
    (StrSet.power(StrSet.fromString "0,1", n));
```

(see the course website) defining the function accLen into Forlan:

```
- use "ps4-p2.sml";
[opening ps4-p2.sml]
val accLen = fn : int -> str set
val it = () : unit
```

Then we apply it to 10, calling the resulting set of labeled paths lps, compute the size of lps, and display its elements:

```
- val lps = accLen 10;
val lps = - : str set
- Set.size lps;
val it = 94 : int
- StrSet.output("", lps);
0010101010, 0010101011, 0010101100, 0010101101, 0010110010, 0010110011,
0011010010, 0011010011, 0011010100, 0011010101, 0100101010, 0100101011,
0101001010, 0101001011, 0101001100, 0101001101, 0101010010, 0101010011,
0101010100, 0101010101, 0101010110, 0101011001, 0101011010, 0101100101,
1010110010, 1010110011, 1010110100, 1010110101, 1011001010, 1011001011,
1011001100, 1011001101, 1011010010, 1011010011, 1011010100, 1011010101,
1100110100, 1100110101, 1101001010, 1101001011, 1101001100, 1101001101,
val it = () : unit
```

Problem 3

Define a function **dsfxs** (for "diffs of suffixes") from $\{0,1\}^*$ to $\mathcal{P}\mathbb{Z}$ by: for all $w \in \{0,1\}^*$,

```
\operatorname{dsfxs} w = \{ \operatorname{diff} v \mid v \text{ is a suffix of } w \}.
```

From the definitions of X and **dsfxs** and the fact that suffixes are substrings, we have that, if $w \in X$, then **dsfxs** $w \subseteq \{-2, -1, 0, 1, 2\}$. It turns out, though, that we can characterize membership in X using **dsfxs**.

Lemma PS4.3.1

For all $w \in X$ and $n, m \in \operatorname{dsfxs} w, -2 \le m - n \le 2$.

Proof. Suppose $w \in X$ and $n, m \in \operatorname{dsfxs} w$, so that there are suffixes u and v of w such that $n = \operatorname{diff} u$ and $m = \operatorname{diff} v$. Because u and v are suffixes of w, one must be a suffix of the other, and so there are two cases to consider.

- Suppose u is a suffix of v. Thus v = zu for some $z \in \{0,1\}^*$, and thus z is a substring of w. Hence $m = \operatorname{diff} v = \operatorname{diff} z + \operatorname{diff} u = \operatorname{diff} z + n$, so that $m n = \operatorname{diff} z$. Because z is a substring of $w \in X$, we have that $-2 \le \operatorname{diff} z \le 2$, and thus $-2 \le m n \le 2$.
- Suppose v is a suffix of u. Thus u=zv for some $z\in\{0,1\}^*$, and thus z is a substring of w. Hence $n=\operatorname{diff} u=\operatorname{diff} z+\operatorname{diff} v=\operatorname{diff} z+m$, so that $n-m=\operatorname{diff} z$. Because z is a substring of $w\in X$, we have that $-2\leq\operatorname{diff} z\leq 2$, and thus $-2\leq n-m\leq 2$. Since $-2\leq n-m$, we have that $m-n=-(n-m)\leq -(-2)=2$. And since $n-m\leq 2$, we have that $-2\leq -(n-m)=m-n$. Thus $-2\leq m-n\leq 2$.

Lemma PS4.3.2

For all $w \in X$, either $\operatorname{dsfxs} w \subseteq \{-2, -1, 0\}$ or $\operatorname{dsfxs} w \subseteq \{-1, 0, 1\}$ or $\operatorname{dsfxs} w \subseteq \{0, 1, 2\}$.

Proof. Suppose $w \in X$. Thus $\operatorname{dsfxs} w \subseteq \{-2, -1, 0, 1, 2\}$. Because % is a suffix of w, we have that $0 = \operatorname{diff} \% \in \operatorname{dsfxs} w$. There are two cases to consider.

- Suppose $-2 \in \operatorname{dsfxs} w$. Lemma PS4.3.1 tells us that neither 1 nor 2 are elements of $\operatorname{dsfxs} w$, since -2 1 = -3 and -2 2 = -4 are both < -2. Thus $\operatorname{dsfxs} w \subseteq \{-2, -1, 0\}$, so that either $\operatorname{dsfxs} w \subseteq \{-2, -1, 0\}$ or $\operatorname{dsfxs} w \subseteq \{0, 1, 2\}$.
- Suppose $-2 \notin \operatorname{dsfxs} w$. Then $\operatorname{dsfxs} w \subseteq \{-1,0,1,2\}$. There are two subcases to consider.
 - Suppose $2 \in \operatorname{dsfxs} w$. Then Lemma PS4.3.1 tells us that -1 is not an element of $\operatorname{dsfxs} w$, since 2 (-1) = 3 is > 2. Thus $\operatorname{dsfxs} w \subseteq \{0, 1, 2\}$, so that either $\operatorname{dsfxs} w \subseteq \{-2, -1, 0\}$ or $\operatorname{dsfxs} w \subseteq \{-1, 0, 1\}$ or $\operatorname{dsfxs} w \subseteq \{0, 1, 2\}$.
 - Suppose $2 \notin \mathbf{dsfxs} \, w$. Then $\mathbf{dsfxs} \, w \subseteq \{-1, 0, -1\}$, so that either $\mathbf{dsfxs} \, w \subseteq \{-2, -1, 0\}$ or $\mathbf{dsfxs} \, w \subseteq \{-1, 0, 1\}$ or $\mathbf{dsfxs} \, w \subseteq \{0, 1, 2\}$.

Lemma PS4.3.3

For all $w \in \{0,1\}^*$ and $n \in \{-2,-1,0\}$, if $\mathbf{dsfxs} w \subseteq \{n,n+1,n+2\}$, then $w \in X$.

Proof. Suppose $w \in \{0,1\}^*$, $n \in \{-2,-1,0\}$ and $\operatorname{dsfxs} w \subseteq \{n,n+1,n+2\}$. To show that $w \in X$, suppose v is a substring of w. Thus w = xvy for some $x,y \in \{0,1\}^*$. We must show that $-2 \le \operatorname{diff} v \le 2$. Because y is a suffix of w, $\operatorname{diff} y \in \operatorname{dsfxs} w$, and thus $n \le \operatorname{diff} y \le n+2$. Because vy is a suffix of w, $\operatorname{diff}(vy) \in \operatorname{dsfxs} w$, and thus $n \le \operatorname{diff}(vy) \le n+2$. And since $\operatorname{diff}(vy) = \operatorname{diff} v + \operatorname{diff} y = \operatorname{diff} y + \operatorname{diff} v$, it follows that $n \le \operatorname{diff} y + \operatorname{diff} v \le n+2$.

Suppose, toward a contradiction, that $-2 \le \operatorname{diff} v \le 2$ is false. Thus there are two cases to consider.

- Suppose diff $v \le -3$. Because diff $y \le n+2$, it follows that $n \le \text{diff } y + \text{diff } v \le (n+2) + -3 = n-1$, so that $n \le n-1$ —contradiction.
- Suppose $3 \le \text{diff } v$. Because $n \le \text{diff } y$, it follows that $n+3 \le \text{diff } y + \text{diff } v \le n+2$, so that $3 \le 2$ —contradiction.

Because we obtained a contradiction in both cases, we have an overall contradiction. Thus $-2 \le \text{diff } v \le 2$, completing the proof that $w \in X$. \square

Lemma PS4.3.4

For all $w \in \{0,1\}^*$, if either $\operatorname{dsfxs} w \subseteq \{-2,-1,0\}$ or $\operatorname{dsfxs} w \subseteq \{-1,0,1\}$ or $\operatorname{dsfxs} w \subseteq \{0,1,2\}$, then $w \in X$.

Proof. Suppose $w \in \{0,1\}^*$ and assume that either $\operatorname{dsfxs} w \subseteq \{-2,-1,0\}$ or $\operatorname{dsfxs} w \subseteq \{-1,0,1\}$ or $\operatorname{dsfxs} w \subseteq \{0,1,2\}$. There are three case to consider.

- Suppose $\operatorname{dsfxs} w \subseteq \{-2, -1, 0\}$. Because $-2 \in \{-2, -1, 0\}$ and $\operatorname{dsfxs} w \subseteq \{-2, -1, 0\} = \{-2, (-2) + 1, (-2) + 2\}$, Lemma PS4.3.3 tells us that $w \in X$.
- Suppose $\operatorname{dsfxs} w \subseteq \{-1,0,1\}$. Because $-1 \in \{-2,-1,0\}$ and $\operatorname{dsfxs} w \subseteq \{-1,0,1\} = \{-1,(-1)+1,(-1)+2\}$, Lemma PS4.3.3 tells us that $w \in X$.
- Suppose $\operatorname{dsfxs} w \subseteq \{0, 1, 2\}$. Because $0 \in \{-2, -1, 0\}$ and $\operatorname{dsfxs} w \subseteq \{0, 1, 2\} = \{0, 0+1, 0+2\}$, Lemma PS4.3.3 tells us that $w \in X$.

For
$$-2 \le n \le 0 \le m \le 2$$
, define

$$Y^{n,m} = \{ w \in \{0,1\}^* \mid \mathbf{dsfxs} \, w \subseteq \{n,\dots,m\} \}.$$

Thus it is easy to show that:

- if v is a suffix of $w \in Y^{n,m}$, then $n \leq \operatorname{diff} v \leq m$;
- if $w \in \{0,1\}^*$ and, for all suffixes v of w, $n \leq \text{diff } v \leq m$, then $w \in Y^{n,m}$;
- $\% \in Y^{n,m}$.

The basis of the proof that L(M) = X is the following lemma:

Lemma PS4.3.5

- (1) $X = Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0}$.
- (2) $Y^{0,2} = \{\%\} \cup Y^{-1,1}\{1\}.$
- (3) $Y^{-1,1} = \{\%\} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\}.$
- (4) $Y^{-2,0} = \{\%\} \cup Y^{-1,1}\{0\}.$

Proof.

- (1) We show that $X \subseteq Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0} \subseteq X$.
 - To show $X \subseteq Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0}$, suppose $w \in X$. By Lemma PS4.3.2, we have that either $\operatorname{\mathbf{dsfxs}} w \subseteq \{-2, -1, 0\}$ or $\operatorname{\mathbf{dsfxs}} w \subseteq \{0, 1, 2\}$. Thus there are three cases to consider.

- Suppose $\operatorname{dsfxs} w \subseteq \{-2, -1, 0\}$. Thus $w \in Y^{-2, 0} \subseteq Y^{0, 2} \cup Y^{-1, 1} \cup Y^{-2, 0}$.
- Suppose $\operatorname{dsfxs} w \subset \{-1, 0, 1\}$. Thus $w \in Y^{-1, 1} \subset Y^{0, 2} \cup Y^{-1, 1} \cup Y^{-2, 0}$.
- Suppose **dsfxs** $w \subseteq \{0, 1, 2\}$. Thus $w \in Y^{0,2} \subseteq Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0}$.
- To show $Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0} \subseteq X$, suppose $w \in Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0}$. There are three cases to consider.
 - Suppose $w \in Y^{0,2}$, so that $\operatorname{dsfxs} w \subseteq \{0,1,2\}$. Thus $w \in X$, by Lemma PS4.3.4.
 - Suppose $w \in Y^{-1,1}$, so that $\operatorname{dsfxs} w \subseteq \{-1,0,1\}$. Thus $w \in X$, by Lemma PS4.3.4.
 - Suppose $w \in Y^{-2,0}$, so that $\operatorname{dsfxs} w \subseteq \{-2, -1, 0\}$. Thus $w \in X$, by Lemma PS4.3.4.
- (2) We show that $Y^{0,2} \subseteq \{\%\} \cup Y^{-1,1}\{1\} \subseteq Y^{0,2}$.
 - To show that $Y^{0,2} \subseteq \{\%\} \cup Y^{-1,1}\{1\}$, suppose $w \in Y^{0,2}$. If w = %, then $w \in \{\%\} \cup Y^{-1,1}\{1\}$. So, suppose $w \neq \%$. Then w = xa for some $x \in \{0,1\}^*$ and $a \in \{0,1\}$. We cannot have a = 0, as then $-1 \in \operatorname{dsfxs} w$ (contradicting $w \in Y^{0,2}$). Thus a = 1, so that w = x1. To see that $x \in Y^{-1,1}$, suppose v is a suffix of x. Because v1 is a suffix of $w \in Y^{0,2}$, we have that $0 \leq \operatorname{diff}(v1) \leq 2$. But $\operatorname{diff}(v1) = \operatorname{diff} v + 1$, and thus $-1 \leq \operatorname{diff} v \leq 1$. Thus $w = x1 \in Y^{-1,1}\{1\} \subseteq \{\%\} \cup Y^{-1,1}\{1\}$.
 - To show that $\{\%\} \cup Y^{-1,1}\{1\} \subseteq Y^{0,2}$, suppose $w \in \{\%\} \cup Y^{-1,1}\{1\}$. If $w \in \{\%\}$, then $w \in Y^{0,2}$. Otherwise, we have that $w \in Y^{-1,1}\{1\}$, so that w = x1, for some $x \in Y^{-1,1}$. To see that $w \in Y^{0,2}$, suppose v is a suffix of w = x1. We must show that $0 \le \mathbf{diff} \ v \le 2$. If v = %, then this is true. Otherwise v = u1 for some suffix u of x. Because $x \in Y^{-1,1}$, we have that $-1 \le \mathbf{diff} \ u \le 1$. Thus $0 \le \mathbf{diff} \ v \le 2$.
- (3) We show that $Y^{-1,1} \subseteq \{\%\} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\} \subseteq Y^{-1,1}$.
 - To show that $Y^{-1,1} \subseteq \{\%\} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\}$, suppose $w \in Y^{-1,1}$. If w = %, then $w \in \{\%\} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\}$. So, suppose $w \neq \%$. Then w = xa for some $x \in \{0,1\}^*$ and $a \in \{0,1\}$. There are two cases to consider.
 - Suppose a=0, so that w=x0. To see that $x\in Y^{0,2}$, suppose v is a suffix of x. Because v0 is a suffix of $w\in Y^{-1,1}$, we have that $-1\leq \operatorname{diff}(v0)\leq 1$. But $\operatorname{diff}(v0)=\operatorname{diff}v+-1$, and thus $0\leq \operatorname{diff}v\leq 2$. Thus $w=x0\in Y^{0,2}\{0\}\subseteq \{\%\}\cup Y^{0,2}\{0\}\cup Y^{-2,0}\{1\}$.
 - Suppose a = 1, so that w = x1. To see that $x \in Y^{-2,0}$, suppose v is a suffix of x. Because v1 is a suffix of $w \in Y^{-1,1}$, we have that $-1 \le \mathbf{diff}(v1) \le 1$. But $\mathbf{diff}(v1) = \mathbf{diff}(v+1)$, and thus $-2 \le \mathbf{diff}(v) \le 0$. Thus $w = x1 \in Y^{-2,0}\{1\} \subseteq \{\%\} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\}$.
 - To show that $\{\%\} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\} \subseteq Y^{-1,1}$, suppose $w \in \{\%\} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\}$. If $w \in \{\%\}$, then $w \in Y^{-1,1}$. Otherwise, there are two cases to consider.
 - Suppose $w \in Y^{0,2}\{0\}$, so that w = x0, for some $x \in Y^{0,2}$. To see that that $w \in Y^{-1,1}$, suppose v is a suffix of w = x0. We must show that $-1 \le \text{diff } v \le 1$. If v = %, then this is true. Otherwise v = u0 for some suffix u of x. Because $x \in Y^{0,2}$, we have that $0 \le \text{diff } u \le 2$. Thus $-1 \le \text{diff } v \le 1$.

- Suppose $w \in Y^{-2,0}\{1\}$, so that w = x1, for some $x \in Y^{-2,0}$. To see that $w \in Y^{-1,1}$, suppose v is a suffix of w = x1. We must show that $-1 \le \text{diff } v \le 1$. If v = %, then this is true. Otherwise v = u1 for some suffix u of x. Because $x \in Y^{-2,0}$, we have that $-2 \le \text{diff } u \le 0$. Thus $-1 \le \text{diff } v \le 1$.
- (4) We show that $Y^{-2,0} \subseteq \{\%\} \cup Y^{-1,1}\{0\} \subseteq Y^{-2,0}$.
 - To show that $Y^{-2,0} \subseteq \{\%\} \cup Y^{-1,1}\{0\}$, suppose $w \in Y^{-2,0}$. If w = %, then $w \in \{\%\} \cup Y^{-1,1}\{0\}$. So, suppose $w \neq \%$. Then w = xa for some $x \in \{0,1\}^*$ and $a \in \{0,1\}$. We cannot have a = 1, as then $1 \in \operatorname{dsfxs} w$ (contradicting $w \in Y^{-2,0}$). Thus a = 0, so that w = x0. To see that that $x \in Y^{-1,1}$, suppose v is a suffix of x. Because v0 is a suffix of $w \in Y^{-2,0}$, we have that $-2 \leq \operatorname{diff}(v0) \leq 0$. But $\operatorname{diff}(v0) = \operatorname{diff} v + -1$, and thus $-1 \leq \operatorname{diff} v \leq 1$. Thus $w = x0 \in Y^{-1,1}\{0\} \subseteq \{\%\} \cup Y^{-1,1}\{0\}$.
 - To show that $\{\%\} \cup Y^{-1,1}\{0\} \subseteq Y^{-2,0}$, suppose $w \in \{\%\} \cup Y^{-1,1}\{0\}$. If $w \in \{\%\}$, then $w \in Y^{-2,0}$. Otherwise, we have that $w \in Y^{-1,1}\{0\}$, so that w = x0, for some $x \in Y^{-1,1}$. To see that $w \in Y^{-2,0}$, suppose v is a suffix of w = x0. We must show that $-2 \le \text{diff } v \le 0$. If v = %, then this is true. Otherwise v = u0 for some suffix u of x. Because $x \in Y^{-1,1}$, we have that $-1 \le \text{diff } u \le 1$. Thus $-2 \le \text{diff } v \le 0$.

In what follows, we will show that $\Lambda_A = \{\%\}$, $\Lambda_B = Y^{0,2}$, $\Lambda_C = Y^{-1,1}$ and $\Lambda_D = Y^{-2,0}$.

Lemma PS4.3.6

- (A) For all $w \in \Lambda_A$, $w \in \{\%\}$.
- (B) For all $w \in \Lambda_B$, $w \in Y^{0,2}$.
- (C) For all $w \in \Lambda_C$, $w \in Y^{-1,1}$.
- (D) For all $w \in \Lambda_D$, $w \in Y^{-2,0}$.

Proof. We proceed by induction on Λ . There are 8 (1 plus the number of transitions) parts to show.

(empty string) Clearly $\% \in \{\%\}$, as required.

- $(A, \% \to B)$ Suppose $w \in \Lambda_A$, and assume the inductive hypothesis: $w \in \{\%\}$. We must show that $w\% \in Y^{0,2}$. And $w\% = \%\% = \% \in Y^{0,2}$.
- $(A, \% \to C)$ Suppose $w \in \Lambda_A$, and assume the inductive hypothesis: $w \in \{\%\}$. We must show that $w\% \in Y^{-1,1}$. And $w\% = \%\% = \% \in Y^{-1,1}$.
- $(A, \% \to D)$ Suppose $w \in \Lambda_A$, and assume the inductive hypothesis: $w \in \{\%\}$. We must show that $w\% \in Y^{-2,0}$. And $w\% = \%\% = \% \in Y^{-2,0}$.
- (B, 0 \rightarrow C) Suppose $w \in \Lambda_B$, and assume the inductive hypothesis: $w \in Y^{0,2}$. We must show that $w0 \in Y^{-1,1}$. And $w0 \in Y^{0,2}\{0\} \subseteq Y^{-1,1}$, by Lemma PS4.3.5(3).

- $(C, 0 \to D)$ Suppose $w \in \Lambda_C$, and assume the inductive hypothesis: $w \in Y^{-1,1}$. We must show that $w0 \in Y^{-2,0}$. And $w0 \in Y^{-1,1}\{0\} \subseteq Y^{-2,0}$, by Lemma PS4.3.5(4).
- (C, 1 \rightarrow B) Suppose $w \in \Lambda_{\mathsf{C}}$, and assume the inductive hypothesis: $w \in Y^{-1,1}$. We must show that $w1 \in Y^{0,2}$. And $w1 \in Y^{-1,1}\{1\} \subseteq Y^{0,2}$, by Lemma PS4.3.5(2).
- (D,1 \rightarrow C) Suppose $w \in \Lambda_D$, and assume the inductive hypothesis: $w \in Y^{-2,0}$. We must show that $w1 \in Y^{-1,1}$. And $w1 \in Y^{-2,0}\{1\} \subseteq Y^{-1,1}$, by Lemma PS4.3.5(3).

Lemma PS4.3.7

For all $w \in \{0,1\}^*$:

- (A) if $w \in \{\%\}$, then $w \in \Lambda_A$;
- (B) if $w \in Y^{0,2}$, then $w \in \Lambda_B$;
- (C) if $w \in Y^{-1,1}$, then $w \in \Lambda_{\mathsf{C}}$;
- (D) if $w \in Y^{-2,0}$, then $w \in \Lambda_D$.

Proof. We proceed by strong string induction. Suppose $w \in \{0,1\}^*$, and assume the inductive hypothesis: for all $x \in \{0,1\}^*$, if x is a proper substring of w, then

- (A) if $x \in \{\%\}$, then $x \in \Lambda_A$;
- (B) if $x \in Y^{0,2}$, then $x \in \Lambda_B$;
- (C) if $x \in Y^{-1,1}$, then $x \in \Lambda_{\mathsf{C}}$;
- (D) if $x \in Y^{-2,0}$, then $x \in \Lambda_D$.

We must show that

- (A) if $w \in \{\%\}$, then $w \in \Lambda_A$;
- (B) if $w \in Y^{0,2}$, then $w \in \Lambda_B$;
- (C) if $w \in Y^{-1,1}$, then $w \in \Lambda_C$;
- (D) if $w \in Y^{-2,0}$, then $w \in \Lambda_D$.

There are four cases to consider.

- (A) Suppose $w \in \{\%\}$. We must show that $w \in \Lambda_A$. Because A is M's start state, $w = \% \in \Lambda_A$.
- (B) Suppose $w \in Y^{0,2}$. We must show that $w \in \Lambda_B$. By Lemma PS4.3.5(2), we have that $w \in \{\%\} \cup Y^{-1,1}\{1\}$. Thus there are two subcases to consider.
 - Suppose $w \in \{\%\}$. Because A is M's start state, we have $\% \in \Lambda_A$. And since $(A, \%, B) \in T_M$, it follows that $w = \% = \%\% \in \Lambda_B$.

- Suppose $w \in Y^{-1,1}\{1\}$, so that w = x1, for some $x \in Y^{-1,1}$. Because x is a proper substring of w, part (C) of the inductive hypothesis tells us that $x \in \Lambda_{\mathsf{C}}$. Thus $w = x1 \in \Lambda_{\mathsf{B}}$, because of the transition $(\mathsf{C}, 1, \mathsf{B})$.
- (C) Suppose $w \in Y^{-1,1}$. We must show that $w \in \Lambda_{\mathsf{C}}$. By Lemma PS4.3.5(3), we have that $w \in \{\%\} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\}$. Thus there are three subcases to consider.
 - Suppose $w \in \{\%\}$. Because A is M's start state, we have $\% \in \Lambda_A$. And since $(A, \%, C) \in T_M$, it follows that $w = \% = \%\% \in \Lambda_C$.
 - Suppose $w \in Y^{0,2}\{0\}$, so that w = x0, for some $x \in Y^{0,2}$. Because x is a proper substring of w, part (B) of the inductive hypothesis tells us that $x \in \Lambda_B$. Thus $w = x0 \in \Lambda_C$, because of the transition (B, 0, C).
 - Suppose $w \in Y^{-2,0}\{1\}$, so that w = x1, for some $x \in Y^{-2,0}$. Because x is a proper substring of w, part (D) of the inductive hypothesis tells us that $x \in \Lambda_D$. Thus $w = x1 \in \Lambda_C$, because of the transition (D, 1, C).
- (D) Suppose $w \in Y^{-2,0}$. We must show that $w \in \Lambda_D$. By Lemma PS4.3.5(4), we have that $w \in \{\%\} \cup Y^{-1,1}\{0\}$. Thus there are two subcases to consider.
 - Suppose $w \in \{\%\}$. Because A is M's start state, we have $\% \in \Lambda_A$. And since $(A, \%, D) \in T_M$, it follows that $w = \% = \%\% \in \Lambda_D$.
 - Suppose $w \in Y^{-1,1}\{0\}$, so that w = x0, for some $x \in Y^{-1,1}$. Because x is a proper substring of w, part (C) of the inductive hypothesis tells us that $x \in \Lambda_{\mathsf{C}}$. Thus $w = x0 \in \Lambda_{\mathsf{D}}$, because of the transition $(\mathsf{C}, 0, \mathsf{D})$.

Lemma PS4.3.8

- (A) $\Lambda_{A} = \{\%\}.$
- (B) $\Lambda_{B} = Y^{0,2}$.
- (C) $\Lambda_{C} = Y^{-1,1}$.
- (D) $\Lambda_D = Y^{-2,0}$.

Proof. Follows by Lemmas PS4.3.6 and PS4.3.7. \square

Lemma PS4.3.9

L(M) = X.

Proof. Because M's set of accepting states is $\{B,C,D\}$, it follows that $L(M) = \Lambda_B \cup \Lambda_C \cup \Lambda_D$. And by Lemma PS4.3.8 and Lemma PS4.3.5(1), we have that $\Lambda_B \cup \Lambda_C \cup \Lambda_D = Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0} = X$. Thus L(M) = X. \square