CS 516—Software Foundations via Formal Languages—Spring 2022

Problem Set 4

Model Answers

Problem 1

(a) The finite automaton N is

(b) First, we put the expression of N in Forlan’s syntax

{states} A, B, C {start state} A {accepting states} A, B, C
{transitions}

A, 0O -> B; A, 1 > A;

B, 0 ->B; B, 1 -> C;

C, 1 ->A

in the file ps4-pl-fa (see the course website), and load this file into Forlan, calling the result
fa:

- val fa = FA.input "ps4-pl-fa";
val fa = - : fa

Next we load the file ps4-pl.sml

(* val inX : str -> bool
tests whether a string over the alphabet {0, 1} is in X *)
fun inX x =
Set.all
(fn y => not(Str.equal(y, Str.fromString "010")))
(StrSet.substrings x);

(* val upto : int -> str set

if n >= 0, then upto n returns all strings over alphabet {0, 1} of
length no more than n *)

fun upto 0 : str set = Set.sing nil



| upto n =

let val xs = upto(n - 1)

val ys = Set.filter (fn x => length x = n - 1) xs
in StrSet.union

(xs, StrSet.concat(StrSet.fromString "0, 1", ys))
end;

(* val partition : int -> str set * str set
if n >= 0, then partition n returns (xs, ys) where:
xs is all elements of upto n that are in X; and
ys is all elements of upto n that are not in X *)

fun partition n = Set.partition inX (upto n);

(* val test = fn : int -> dfa -> str option * str option

if n >= 0, then test n returns a function f such that, for all FAs
fa, f fa returns a pair (xOpt, yOpt) such that:

If there is an element of {0, 1}* of length no more than n that
is in X but is not accepted by fa, then xOpt = SOME x for some
such x; otherwise, xOpt = NONE.

If there is an element of {0, 1}* of length no more than n that
is not in X but is accepted by fa, then yOpt = SOME y for some
such y; otherwise, yOpt = NONE. *)

fun test n =
let val (goods, bads) = partition n
in fn fa =>
let val accepted = FA.accepted fa
val goodNotAccOpt = Set.position (not o accepted) goods
val badAccOpt = Set.position accepted bads
in ((case goodNotAccOpt of
NONE => NONE
| SOME i => SOME(ListAux.sub(Set.tolList goods, i))),
(case badAccOpt of
NONE => NONE
| SOME i => SOME(ListAux.sub(Set.toList bads, i))))
end

end;
(see the course website) defining the function test into Forlan:

- use "ps4-pl.sml";
[opening ps4-pl.sml]



val inX = fn : str -> bool

val upto = fn : int -> str set

val partition = fn : int -> str set * str set

val test = fn : int -> fa -> str option * str option
val it = () : unit

Finally, we apply test to arguments 10 and fa:
- test 10 fa;

val it = (NONE,NONE) : str option * str option

Problem 2

(a) First, we load the file ps4-p2-fa (see the course website) containing the expression

{states} A, B, C, D {start state} A {accepting states} B, C, D

{transitions}

A, %->B | C | D;

B, 0 -> C;

C, 0O ->D; C, 1 > B;
D, 1 ->C

of M in Forlan’s syntax into Forlan, calling the result fa:

- val fa = FA.input "psé4-p2-fa";
val fa = - : fa

Next, we define a function accPr that finds and prints a labeled path in fa explaining why a Forlan
string expressed as an SML string is accepted:

- fun accPr s =
= LP.output("", FA.findAcceptinglP fa (Str.fromString s));
val accPr = fn : string -> unit

Finally, we use this function to find and display the required labeled paths:

- accPr "0010110";
A, J=>B, 0=>C, 0=>D,1=>C, 0=>D,1=>C, 1=>B, 0=>C
val it = () : unit
- accPr "1001101";
A, 7 =>C,1=>B,0=>C, 0=>D,1=>C, 1=>B, 0=>C, 1=>B
val it = () : unit
- accPr "1011001";
A, J=>D,1=>C, 0=>D,1=>C,1=>B,0=>C, 0=>D, 1=>C¢C
val it = () : unit

(b) Continuing our Forlan session, we first load the file ps4-p2.sml

fun acclen n =
Set.filter
(FA.accepted fa)
(StrSet.power (StrSet.fromString "0,1", n));



(see the course website) defining the function accLen into Forlan:

- use "ps4-p2.sml";

[opening ps4-p2.sml]

val accLen = fn : int -> str set
val it = () : unit

Then we apply it to 10, calling the resulting set of labeled paths 1ps, compute the size of 1ps, and
display its elements:

- val 1lps = acclLen 10;

val lps = - : str set

- Set.size lps;

val it = 94 : int

- StrSet.output("", 1lps);

0010101010, 0010101011, 0010101100, 0010101101, 0010110010, 0010110011,
0010110100, 0010110101, 0011001010, 0011001011, 0011001100, 0011001101,
0011010010, 0011010011, 0011010100, 0011010101, 0100101010, 0100101011,
0100101100, 0100101101, 0100110010, 0100110011, 0100110100, 0100110101,
0101001010, 0101001011, 0101001100, 0101001101, 0101010010, 0101010011,
0101010100, 0101010101, 0101010110, 0101011001, 0101011010, 0101100101,
0101100110, 0101101001, 0101101010, 0110010101, 0110010110, 0110011001,
0110011010, 0110100101, 0110100110, 0110101001, 0110101010, 1001010101,
1001010110, 1001011001, 1001011010, 1001100101, 1001100110, 1001101001,
1001101010, 1010010101, 1010010110, 1010011001, 1010011010, 1010100101,
1010100110, 1010101001, 1010101010, 1010101011, 1010101100, 1010101101,
1010110010, 1010110011, 1010110100, 1010110101, 1011001010, 1011001011,
1011001100, 1011001101, 1011010010, 1011010011, 1011010100, 1011010101,
1100101010, 1100101011, 1100101100, 1100101101, 1100110010, 1100110011,
1100110100, 1100110101, 1101001010, 1101001011, 1101001100, 1101001101,
1101010010, 1101010011, 1101010100, 1101010101

val it = () : unit

Problem 3
Define a function dsfxs (for “diffs of suffixes”) from {0,1}* to PZ by: for all w € {0,1}*,
dsfxsw = {diff v | v is a suffix of w }.

From the definitions of X and dsfxs and the fact that suffixes are substrings, we have that, if w € X,
then dsfxsw C {—2,—1,0,1,2}. It turns out, though, that we can characterize membership in X
using dsfxs.

Lemma PS4.3.1
For allw € X and n,m € dsfxsw, -2 <m —n < 2.

Proof. Suppose w € X and n,m € dsfxsw, so that there are suffixes u and v of w such that
n = diff u and m = diff v. Because u and v are suffixes of w, one must be a suffix of the other, and
so there are two cases to consider.



e Suppose u is a suffix of v. Thus v = zu for some z € {0,1}*, and thus z is a substring of
w. Hence m = diff v = diff z + diff u = diff z + n, so that m —n = diff z. Because z is a
substring of w € X, we have that —2 < diff 2 < 2, and thus -2 <m —n < 2.

e Suppose v is a suffix of u. Thus u = zv for some z € {0,1}*, and thus z is a substring of
w. Hence n = diff u = diff z + diff v = diff z + m, so that n — m = diff z. Because z is
a substring of w € X, we have that —2 < diff z < 2, and thus —2 < n —m < 2. Since
—2 < n —m, we have that m —n = —(n —m) < —(—2) = 2. And since n —m < 2, we have
that —2 < —(n—m)=m —n. Thus -2 <m —n < 2.

O

Lemma PS4.3.2
For all w € X, either dsfxsw C {—2,—1,0} or dsfxsw C {-1,0,1} or dsfxsw C {0, 1, 2}.

Proof. Suppose w € X. Thus dsfxsw C {-2,—1,0,1,2}. Because % is a suffix of w, we have
that 0 = diff % € dsfxsw. There are two cases to consider.

e Suppose —2 € dsfxsw. Lemma PS4.3.1 tells us that neither 1 nor 2 are elements of dsfxs w,
since —2 — 1 = -3 and —2 — 2 = —4 are both < — 2. Thus dsfxsw C {—2,—1,0}, so that
either dsfxsw C {—2,—1,0} or dsfxsw C {—1,0,1} or dsfxsw C {0, 1, 2}.

e Suppose —2 ¢ dsfxsw. Then dsfxsw C {—1,0,1,2}. There are two subcases to consider.

— Suppose 2 € dsfxsw. Then Lemma PS4.3.1 tells us that —1 is not an element of dsfxs w,
since 2 — (—1) = 3 is > 2. Thus dsfxsw C {0, 1,2}, so that either dsfxsw C {-2,—1,0}
or dsfxsw C {—1,0,1} or dsfxsw C {0, 1, 2}.

— Suppose 2 ¢ dsfxsw. Then dsfxsw C {—1,0,—1}, so that either dsfxsw C {-2,—1,0}
or dsfxsw C {—1,0,1} or dsfxsw C {0, 1, 2}.

a

Lemma PS4.3.3
For all w € {0,1}* and n € {—2,—1,0}, if dsfxsw C {n,n+ 1,n + 2}, then w € X.

Proof. Suppose w € {0,1}*, n € {—2,—1,0} and dsfxsw C {n,n + 1,n + 2}. To show that
w € X, suppose v is a substring of w. Thus w = zvy for some z,y € {0,1}*. We must show
that —2 < diff v < 2. Because y is a suffix of w, diff y € dsfxsw, and thus n < diff y < n + 2.
Because vy is a suffix of w, diff(vy) € dsfxsw, and thus n < diff(vy) < n + 2. And since
diff (vy) = diff v + diff y = diff y + diff v, it follows that n < diff y + diff v < n + 2.

Suppose, toward a contradiction, that —2 < diff v < 2 is false. Thus there are two cases to
consider.

e Suppose diff v < —3. Because diff y < n+2, it follows that n < diff y+diff v < (n+2)+-3 =
n — 1, so that n < n — 1—contradiction.

e Suppose 3 < diff v. Because n < diff y, it follows that n + 3 < diff y + diff v < n + 2, so that
3 < 2——contradiction.



Because we obtained a contradiction in both cases, we have an overall contradiction. Thus —2 <
diff v < 2, completing the proof that w € X. O

Lemma PS4.3.4
For all w € {0,1}*, if either dsfxsw C {—2,—1,0} or dsfxsw C {—1,0,1} or dsfxsw C {0, 1,2},
then w € X.

Proof. Suppose w € {0,1}* and assume that either dsfxsw C {—2,—1,0} or dsfxsw C {-1,0, 1}
or dsfxsw C {0,1,2}. There are three case to consider.

e Suppose dsfxsw C {—2,-1,0}. Because —2 € {—2,—1,0} and dsfxsw C {-2,-1,0} =
{-2,(-2)+1,(—2) + 2}, Lemma PS4.3.3 tells us that w € X.

e Suppose dsfxsw C {-1,0,1}. Because —1 € {-2,—1,0} and dsfxsw C {-1,0,1} =
{-1,(-1)+1,(-1) + 2}, Lemma PS4.3.3 tells us that w € X.

e Suppose dsfxsw C {0,1,2}. Because 0 € {—2,—1,0} and dsfxsw C {0, 1,2} = {0,0+1, 0+2},
Lemma PS4.3.3 tells us that w € X.

For —2 <n <0< m <2, define
Y™™ ={we{0,1}" |dsfxsw C {n,...,m} }.
Thus it is easy to show that:
e if v is a suffix of w € Y™™, then n < diff v < m;
e if w € {0,1}* and, for all suffixes v of w, n < diff v < m, then w € Y™™
e oeyYmm.
The basis of the proof that L(M) = X is the following lemma:

Lemma PS4.3.5
(1) X = yozyy-Lliygy-20,

(2) YO2 = {%}uy b1}
(3) Y=L ={%}uYy®2{o}uy—2°{1}.
(4) Y720 ={%}uy-11{o0}.
Proof.
(1) We show that X C Y%2uy-bluy-20C X.

e To show X C Y92U Y11 UY =20 suppose w € X. By Lemma PS4.3.2, we have that
either dsfxsw C {—2,—1,0} or dsfxsw C {—1,0,1} or dsfxsw C {0,1,2}. Thus there
are three cases to consider.



— Suppose dsfxsw C {—2,—1,0}. Thusw € Y20 Cy?2yy-Llyy-20.
— Suppose dsfxsw C {—1,0,1}. Thusw € Y- L1 CY02yuy-tlyy-29
— Suppose dsfxsw C {0,1,2}. Thus w € Y2 CY%2yy-btuyuy—20,
e To show Y2 U Y -1t yUy =20 C X, suppose w € Y2 U Y51 UY~20, There are three
cases to consider.
— Suppose w € Y2 so that dsfxsw C {0,1,2}. Thus w € X, by Lemma PS4.3.4.
— Suppose w € Y11 so that dsfxsw C {—1,0,1}. Thus w € X, by Lemma PS4.3.4.
— Suppose w € Y =29 so that dsfxsw C {—2,—1,0}. Thusw € X, by Lemma PS4.3.4.

(2) We show that Y2 C {%}uY-L1{1} CY%2

e To show that Y22 C {%} UY~L1{1}, suppose w € Y%2. If w = %, then w € {%} U
Y~11{1}. So, suppose w # %. Then w = za for some z € {0,1}* and a € {0,1}.
We cannot have a = 0, as then —1 € dsfxsw (contradicting w € Y%?2). Thus a = 1,
so that w = 1. To see that x € Y11, suppose v is a suffix of . Because vl is a
suffix of w € Y2, we have that 0 < diff(vl) < 2. But diff(vl) = diff v + 1, and thus
-1 <diffv <1. Thusw =21 € Y- L1} C{%} Uy —b1{1}.

e To show that {%} UY ~L1{1} C Y2 suppose w € {%} UY L1}, If w € {%]}, then
w € Y22, Otherwise, we have that w € Y ~11{1}, so that w = z1, for some x € Y11,
To see that w € Y2, suppose v is a suffix of w = x1. We must show that 0 < diff v < 2.
If v = %, then this is true. Otherwise v = ul for some suffix u of . Because x € Y11,
we have that —1 < diff u < 1. Thus 0 < diff v < 2.

(3) We show that Y11 C{%}uy®2{o}uy—2%{1} C Y 1L

e To show that Y11 C {%} UY%2{0} UY~2%{1}, suppose w € Y11 If w = %, then
w e {%}uY®2{0} UY~2%{1}. So, suppose w # %. Then w = za for some x € {0,1}*
and a € {0,1}. There are two cases to consider.

— Suppose a = 0, so that w = 0. To see that x € Y2, suppose v is a suffix of
2. Because v0 is a suffix of w € Y11, we have that —1 < diff (v0) < 1. But
diff(v0) = diffv + —1, and thus 0 < diffv < 2. Thus w = 20 € Y%2{0} C
{%}UY%2{0} Uy —29{1}.

— Suppose a = 1, so that w = z1. To see that € Y2, suppose v is a suffix of
x. Because vl is a suffix of w € Y11 we have that —1 < diff(vl) < 1. But
diff(vl) = diffv + 1, and thus —2 < diffv < 0. Thus w = 21 € Y~2°{1} C
{%yuY®2{0} Uy —20{1}.

e To show that {%}UY%2{0}uY ~2%{1} C Y11 suppose w € {%} UY*2{0}UY~2°{1}.
If w € {%}, then w € Y11, Otherwise, there are two cases to consider.

— Suppose w € Y%2{0}, so that w = 20, for some x € Y?2. To see that that w € Y~ 11,

suppose v is a suffix of w = 0. We must show that —1 < diff v < 1. If v = %, then

this is true. Otherwise v = u0 for some suffix u of z. Because z € Y%2, we have
that 0 < diff u < 2. Thus —1 < diff v < 1.



— Suppose w € Y~29{1}, so that w = 1, for some x € Y =20, To see that w € Y 11,
suppose v is a suffix of w = 1. We must show that —1 < diff v < 1. If v = %, then
this is true. Otherwise v = ul for some suffix u of z. Because x € Y2, we have
that —2 < diff u < 0. Thus —1 < diff v < 1.

(4) We show that Y29 C {%} uY~11{0} C Y20,

e To show that Y20 C {%} U Y~11{0}, suppose w € Y20, If w = %, then w €
{%} uY~110}. So, suppose w # %. Then w = xa for some z € {0,1}* and a € {0, 1}.
We cannot have a = 1, as then 1 € dsfxsw (contradicting w € Y ~22). Thus a = 0, so

that w = 20. To see that that € Y 1!, suppose v is a suffix of . Because v0 is a
suffix of w € Y20 we have that —2 < diff (v0) < 0. But diff(v0) = diff v + —1, and
thus —1 < diffv < 1. Thus w = 20 € Y510} C {%}uY—11{0}.

e To show that {%} U Y110} C Y29 suppose w € {%}UY L0}, If w € {%},
then w € Y20 Otherwise, we have that w € Y ~5*{0}, so that w = 20, for some
z €Y bl To see that w € Y29 suppose v is a suffix of w = 20. We must show that
-2 < diff v < 0. If v = %, then this is true. Otherwise v = u0 for some suffix u of z.
Because x € Y11 we have that —1 < diff u < 1. Thus —2 < diffv < 0.

In what follows, we will show that Ap = {%}, Ag = Y%2 Ac =Yl and Ap = Y20,

Lemma PS4.3.6
(A) For all w € Aa, w € {%}.

(B) For all w € Ag, w € Y02,
(C) For allw € Ac, w e Y11,

(D) For allw € Ap, w € Y20,

Proof. We proceed by induction on A. There are 8 (1 plus the number of transitions) parts to
show.

(empty string) Clearly % € {%}, as required.

(A, % — B) Suppose w € A, and assume the inductive hypothesis: w € {%}. We must show
that w% € Y%2. And w% = %% = % € Y2,

(A, % — C) Suppose w € Aa, and assume the inductive hypothesis: w € {%}. We must show
that w% € Y51 And w% = %% = % € Y~ L1

(A,% — D) Suppose w € Aa, and assume the inductive hypothesis: w € {%}. We must show
that w% € Y29 And w% = %% = % € Y ~2°.

(B,0 — C) Suppose w € Ag, and assume the inductive hypothesis: w € Y2, We must show that
w0 € Y51 And w0 € Y*2{0} C Y11, by Lemma PS4.3.5(3).



(C,0— D) Suppose w € Ac, and assume the inductive hypothesis: w € Y11, We must show
that w0 € Y =29 And w0 € Y~11{0} C Y20 by Lemma PS4.3.5(4).

(C,1— B) Suppose w € Ac, and assume the inductive hypothesis: w € Y~ We must show
that wl € Y22, And wl € Y~11{1} C V%2 by Lemma PS4.3.5(2).

(D,1— C) Suppose w € Ap, and assume the inductive hypothesis: w € Y =22, We must show
that wl € Y11 And wl € Y=2%{1} C Y11 by Lemma PS4.3.5(3).

O

Lemma PS4.3.7
For all w € {0,1}*:

(A) ifw e {%}, then w € An;
(B) if w € Y%2, then w € Ag;
(C) ifwe Y1 then w € Ac;
(D) ifw €Y ~20 then w € Ap.

Proof. We proceed by strong string induction. Suppose w € {0,1}*, and assume the inductive
hypothesis: for all z € {0,1}*, if x is a proper substring of w, then

(A) if x € {%}, then x € An;
(B) if x € Y92, then x € Ag;
(C) if z € Y51, then z € Ac;
(D) if x € Y=20, then z € Ap.
We must show that
(A) if w e {%}, then w € Ag;
(B) if w € Y%2, then w € Ag;
(C) if w e Y51 then w € Ac;
(D) if w € Y29 then w € Ap.
There are four cases to consider.
(A) Suppose w € {%}. We must show that w € Aa. Because A is M’s start state, w = % € Aa.

(B) Suppose w € Y%2. We must show that w € Ag. By Lemma PS4.3.5(2), we have that
w € {%}UY L1}, Thus there are two subcases to consider.

e Suppose w € {%}. Because A is M’s start state, we have % € Aa. And since (A, %, B) €
T, it follows that w = % = %% € Ag.



e Suppose w € Y~ 1L1{1}, so that w = z1, for some z € Y11, Because z is a proper
substring of w, part (C) of the inductive hypothesis tells us that x € Ac. Thus w =
x1 € Ag, because of the transition (C,1,B).

(C) Suppose w € Y11 We must show that w € Ac. By Lemma PS4.3.5(3), we have that
w € {%UY%2{0} UY~29{1}. Thus there are three subcases to consider.

e Suppose w € {%}. Because A is M’s start state, we have % € Aa. And since (A, %, C) €
T, it follows that w = % = %% € Ac.

e Suppose w € Y%2{0}, so that w = 20, for some x € Y2, Because z is a proper substring
of w, part (B) of the inductive hypothesis tells us that x € Ag. Thus w = 20 € Ac,
because of the transition (B, 0, C).

20, Because x is a proper

e Suppose w € Y291}, so that w = z1, for some x € Y~
substring of w, part (D) of the inductive hypothesis tells us that € Ap. Thus w =

z1 € Ac, because of the transition (D, 1, C).

(D) Suppose w € Y~2% We must show that w € Ap. By Lemma PS4.3.5(4), we have that
w € {%} UY~L1{0}. Thus there are two subcases to consider.

e Suppose w € {%}. Because A is M’s start state, we have % € Aa. And since (A, %,D) €
T, it follows that w = % = %% € Ap.

e Suppose w € Y~11{0}, so that w = 20, for some z € Y11, Because z is a proper
substring of w, part (C) of the inductive hypothesis tells us that € Ac. Thus w =
20 € Ap, because of the transition (C,0,D).

a

Lemma PS4.3.8

(A) An = {%}.
(B) Ag = Y2

(C) Ac =YL,
(D) Ap = Y20,

Proof. Follows by Lemmas PS4.3.6 and PS4.3.7. O

Lemma PS4.3.9
L(M)=X.

Proof. Because M’s set of accepting states is {B, C, D}, it follows that L(M) = AgUAcUAp. And
by Lemma PS4.3.8 and Lemma PS4.3.5(1), we have that Ag UAc UAp = YO2UuY Hluy—20 = X.
Thus L(M)=X. O

10



