CS 516—Software Foundations via Formal Languages—Spring 2022

Problem Set 4

Model Answers

Problem 1

(a) The finite automaton N is

(b) First, we put the expression of N in Forlan's syntax

```
{states} A, B, C {start state} A {accepting states} A, B, C
{transitions}
A, 0 \rightarrow B; A, 1 \rightarrow A;
B, 0 \rightarrow B; B, 1 \rightarrow C;C, 1 \rightarrow A
```
in the file ps4-p1-fa (see the course website), and load this file into Forlan, calling the result fa:

```
- val fa = FA.input "ps4-p1-fa";
val fa = - : fa
```
Next we load the file ps4-p1.sml

```
(* val inX : str -> bool
   tests whether a string over the alphabet \{0, 1\} is in X *)
fun inX x =Set.all
      (fn y \Rightarrow not(String .equal(y, Str.fromString '010"))(StrSet.substrings x);
(* val upto : int -> str set
   if n \geq 0, then upto n returns all strings over alphabet \{0, 1\} of
   length no more than n *)
fun upto 0 : str set = Set.sing nil
```

```
| upto n
      let val xs = upto(n - 1)val ys = Set.filter (fn x = > length x = n - 1) xs
      in StrSet.union
         (xs, StrSet.concat(StrSet.fromString "0, 1", ys))
      end;
(* val partition : int -> str set * str set
   if n \geq 0, then partition n returns (xs, ys) where:
   xs is all elements of upto n that are in X; and
   ys is all elements of upto n that are not in X *)
fun partition n = Set.partition inX (upto n);
(* val test = fn : int \rightarrow dfa \rightarrow str option * str option
   if n \geq 0, then test n returns a function f such that, for all FAs
   fa, f fa returns a pair (xOpt, yOpt) such that:
     If there is an element of \{0, 1\}* of length no more than n that
     is in X but is not accepted by fa, then xOpt = SOME x for some
     such x; otherwise, xOpt = NONE.
     If there is an element of {0, 1}* of length no more than n that
     is not in X but is accepted by fa, then yOpt = SOME y for some
     such y; otherwise, yOpt = NONE. *)
fun test n =
      let val (goods, bads) = partition n
      in fn fa =>
              let val accepted = FA. accepted faval goodNotAccOpt = Set.position (not o accepted) goods
                  val badAccOpt = Set.position accepted bads
              in ((case goodNotAccOpt of
                        NONE => NONE| SOME i => SOME(ListAux.sub(Set.toList goods, i))),
                  (case badAccOpt of
                        NONE => NONE
                      | SOME i => SOME(ListAux.sub(Set.toList bads, i))))
              end
      end;
```
(see the course website) defining the function test into Forlan:

```
- use "ps4-p1.sml";
[opening ps4-p1.sml]
```

```
val inX = fn : str -> bool
val upto = fn : int -> str set
val partition = fn : int -> str set * str set
val test = fn : int -> fa -> str option * str option
val it = () : unit
```
Finally, we apply test to arguments 10 and fa:

```
- test 10 fa;
val it = (NONE,NONE) : str option * str option
```
Problem 2

(a) First, we load the file ps4-p2-fa (see the course website) containing the expression

```
{states} A, B, C, D {start state} A {accepting states} B, C, D
{transitions}
A, % -> B | C | D;
B, 0 \rightarrow C;C, 0 \rightarrow D; C, 1 \rightarrow B;D, 1 \rightarrow C
```
of M in Forlan's syntax into Forlan, calling the result fa :

```
- val fa = FA.input "ps4-p2-fa";
val fa = - : fa
```
Next, we define a function $accPr$ that finds and prints a labeled path in fa explaining why a Forlan string expressed as an SML string is accepted:

```
- fun accPr s =
= LP.output("", FA.findAcceptingLP fa (Str.fromString s));
val accPr = fn : string -> unit
```
Finally, we use this function to find and display the required labeled paths:

```
- accPr "0010110";
A, % => B, 0 => C, 0 => D, 1 => C, 0 => D, 1 => C, 1 => B, 0 => C
val it = () : unit
- accPr "1001101";
A, % => C, 1 => B, 0 => C, 0 => D, 1 => C, 1 => B, 0 => C, 1 => B
val it = () : unit
- accPr "1011001";
A, % => D, 1 => C, 0 => D, 1 => C, 1 => B, 0 => C, 0 => D, 1 => C
val it = () : unit
```
(b) Continuing our Forlan session, we first load the file ps4-p2.sml

```
fun accLen n =Set.filter
      (FA.accepted fa)
      (StrSet.power(StrSet.fromString "0,1", n));
```
(see the course website) defining the function accLen into Forlan:

```
- use "ps4-p2.sml";
[opening ps4-p2.sml]
val accLen = fn : int -> str set
val it = () : unit
```
Then we apply it to 10, calling the resulting set of labeled paths lps, compute the size of lps, and display its elements:

```
- val lps = accLen 10;
val lps = - : str set
- Set.size lps;
val it = 94 : int
- StrSet.output("", lps);
0010101010, 0010101011, 0010101100, 0010101101, 0010110010, 0010110011,
0010110100, 0010110101, 0011001010, 0011001011, 0011001100, 0011001101,
0011010010, 0011010011, 0011010100, 0011010101, 0100101010, 0100101011,
0100101100, 0100101101, 0100110010, 0100110011, 0100110100, 0100110101,
0101001010, 0101001011, 0101001100, 0101001101, 0101010010, 0101010011,
0101010100, 0101010101, 0101010110, 0101011001, 0101011010, 0101100101,
0101100110, 0101101001, 0101101010, 0110010101, 0110010110, 0110011001,
0110011010, 0110100101, 0110100110, 0110101001, 0110101010, 1001010101,
1001010110, 1001011001, 1001011010, 1001100101, 1001100110, 1001101001,
1001101010, 1010010101, 1010010110, 1010011001, 1010011010, 1010100101,
1010100110, 1010101001, 1010101010, 1010101011, 1010101100, 1010101101,
1010110010, 1010110011, 1010110100, 1010110101, 1011001010, 1011001011,
1011001100, 1011001101, 1011010010, 1011010011, 1011010100, 1011010101,
1100101010, 1100101011, 1100101100, 1100101101, 1100110010, 1100110011,
1100110100, 1100110101, 1101001010, 1101001011, 1101001100, 1101001101,
1101010010, 1101010011, 1101010100, 1101010101
val it = () : unit
```
Problem 3

Define a function dsfxs (for "diffs of suffixes") from $\{0,1\}^*$ to $\mathcal{P}\mathbb{Z}$ by: for all $w \in \{0,1\}^*$,

dsfxs $w = \{ \text{diff } v \mid v \text{ is a suffix of } w \}.$

From the definitions of X and dsfxs and the fact that suffixes are substrings, we have that, if $w \in X$, then dsfxs $w \subseteq \{-2, -1, 0, 1, 2\}$. It turns out, though, that we can characterize membership in X using dsfxs.

Lemma PS4.3.1

For all $w \in X$ *and* $n, m \in \text{dsfxs } w, -2 \leq m - n \leq 2$ *.*

Proof. Suppose $w \in X$ and $n, m \in \text{dsfxs } w$, so that there are suffixes u and v of w such that $n = \text{diff } u$ and $m = \text{diff } v$. Because u and v are suffixes of w, one must be a suffix of the other, and so there are two cases to consider.

- Suppose u is a suffix of v. Thus $v = zu$ for some $z \in \{0,1\}^*$, and thus z is a substring of w. Hence $m = \text{diff } v = \text{diff } z + \text{diff } u = \text{diff } z + n$, so that $m - n = \text{diff } z$. Because z is a substring of $w \in X$, we have that $-2 \le \text{diff } z \le 2$, and thus $-2 \le m - n \le 2$.
- Suppose v is a suffix of u. Thus $u = zv$ for some $z \in \{0,1\}^*$, and thus z is a substring of w. Hence $n = \text{diff } u = \text{diff } z + \text{diff } v = \text{diff } z + m$, so that $n - m = \text{diff } z$. Because z is a substring of $w \in X$, we have that $-2 \le \text{diff } z \le 2$, and thus $-2 \le n-m \le 2$. Since $-2 \leq n-m$, we have that $m-n = -(n-m) \leq -(-2) = 2$. And since $n-m \leq 2$, we have that $-2 \leq -(n-m) = m - n$. Thus $-2 \leq m - n \leq 2$.

Lemma PS4.3.2

For all $w \in X$ *, either* dsfxs $w \subseteq \{-2, -1, 0\}$ *or* dsfxs $w \subseteq \{-1, 0, 1\}$ *or* dsfxs $w \subseteq \{0, 1, 2\}$ *.*

Proof. Suppose $w \in X$. Thus dsfxs $w \subseteq \{-2, -1, 0, 1, 2\}$. Because % is a suffix of w, we have that $0 = \text{diff } \% \in \text{dsfxs } w$. There are two cases to consider.

- Suppose $-2 \in \text{dsfxs } w$. Lemma PS4.3.1 tells us that neither 1 nor 2 are elements of dsfxs w, since $-2 - 1 = -3$ and $-2 - 2 = -4$ are both <-2 . Thus **dsfxs** $w \subseteq \{-2, -1, 0\}$, so that either dsfxs $w \subseteq \{-2, -1, 0\}$ or dsfxs $w \subseteq \{-1, 0, 1\}$ or dsfxs $w \subseteq \{0, 1, 2\}$.
- Suppose $-2 \notin \text{dsfxs } w$. Then $\text{dsfxs } w \subseteq \{-1, 0, 1, 2\}$. There are two subcases to consider.
	- Suppose 2 ∈ dsfxs w. Then Lemma PS4.3.1 tells us that -1 is not an element of dsfxs w, since $2 - (-1) = 3$ is > 2. Thus dsfxs $w \subseteq \{0, 1, 2\}$, so that either dsfxs $w \subseteq \{-2, -1, 0\}$ or **dsfxs** $w \subseteq \{-1, 0, 1\}$ or **dsfxs** $w \subseteq \{0, 1, 2\}.$
	- Suppose 2 ∉ dsfxs w. Then dsfxs $w \subseteq \{-1, 0, -1\}$, so that either dsfxs $w \subseteq \{-2, -1, 0\}$ or **dsfxs** $w \subseteq \{-1, 0, 1\}$ or **dsfxs** $w \subseteq \{0, 1, 2\}.$

 \Box

Lemma PS4.3.3

For all $w \in \{0,1\}^*$ *and* $n \in \{-2,-1,0\}$ *, if* **dsfxs** $w \subseteq \{n, n+1, n+2\}$ *, then* $w \in X$ *.*

Proof. Suppose $w \in \{0,1\}^*, n \in \{-2,-1,0\}$ and **dsfxs** $w \subseteq \{n, n+1, n+2\}$. To show that $w \in X$, suppose v is a substring of w. Thus $w = xv$ for some $x, y \in \{0,1\}^*$. We must show that $-2 \le \text{diff } v \le 2$. Because y is a suffix of w, $\text{diff } y \in \text{dsfxs } w$, and thus $n \le \text{diff } y \le n+2$. Because vy is a suffix of w, $diff(vy) \in ds$ fixs w, and thus $n \le diff(vy) \le n+2$. And since $diff(vy) = diff v + diff y = diff y + diff v$, it follows that $n \le diff y + diff v \le n+2$.

Suppose, toward a contradiction, that $-2 \le \text{diff } v \le 2$ is false. Thus there are two cases to consider.

- Suppose diff $v \le -3$. Because diff $y \le n+2$, it follows that $n \le \text{diff } y + \text{diff } v \le (n+2)+3 =$ $n-1$, so that $n \leq n-1$ —contradiction.
- Suppose $3 \leq \text{diff } v$. Because $n \leq \text{diff } y$, it follows that $n + 3 \leq \text{diff } y + \text{diff } v \leq n + 2$, so that $3 \leq 2$ —contradiction.

Because we obtained a contradiction in both cases, we have an overall contradiction. Thus $-2 \leq$ diff $v \leq 2$, completing the proof that $w \in X$. \Box

Lemma PS4.3.4

For all $w \in \{0, 1\}^*$, *if either* dsfxs $w \subseteq \{-2, -1, 0\}$ *or* dsfxs $w \subseteq \{-1, 0, 1\}$ *or* dsfxs $w \subseteq \{0, 1, 2\}$ *, then* $w \in X$ *.*

Proof. Suppose $w \in \{0, 1\}^*$ and assume that either $\textbf{dsfxs } w \subseteq \{-2, -1, 0\}$ or $\textbf{dsfxs } w \subseteq \{-1, 0, 1\}$ or dsfxs $w \subseteq \{0, 1, 2\}$. There are three case to consider.

- Suppose dsfxs $w \subseteq \{-2, -1, 0\}$. Because $-2 \in \{-2, -1, 0\}$ and dsfxs $w \subseteq \{-2, -1, 0\}$ $\{-2, (-2) + 1, (-2) + 2\}$, Lemma PS4.3.3 tells us that $w \in X$.
- Suppose dsfxs $w \subseteq \{-1, 0, 1\}$. Because $-1 \in \{-2, -1, 0\}$ and dsfxs $w \subseteq \{-1, 0, 1\}$ $\{-1, (-1) + 1, (-1) + 2\}$, Lemma PS4.3.3 tells us that $w \in X$.
- Suppose dsfxs $w \subseteq \{0, 1, 2\}$. Because $0 \in \{-2, -1, 0\}$ and dsfxs $w \subseteq \{0, 1, 2\} = \{0, 0+1, 0+2\}$, Lemma PS4.3.3 tells us that $w \in X$.

 \Box

For $-2 \leq n \leq 0 \leq m \leq 2$, define

$$
Y^{n,m} = \{ w \in \{0,1\}^* \mid \mathbf{dsfxs}\, w \subseteq \{n,\ldots,m\} \}.
$$

Thus it is easy to show that:

- if v is a suffix of $w \in Y^{n,m}$, then $n \leq \text{diff } v \leq m$;
- if $w \in \{0,1\}^*$ and, for all suffixes v of w, $n \leq \text{diff } v \leq m$, then $w \in Y^{n,m}$;
- $\% \in Y^{n,m}.$

The basis of the proof that $L(M) = X$ is the following lemma:

Lemma PS4.3.5

- *(1)* $X = Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0}$ *.*
- (2) $Y^{0,2} = \{\% \} \cup Y^{-1,1}\{1\}.$
- (3) $Y^{-1,1} = \{ \% \} \cup Y^{0,2} \{ 0 \} \cup Y^{-2,0} \{ 1 \}.$
- (4) $Y^{-2,0} = \{\% \} \cup Y^{-1,1}\{0\}.$

Proof.

- (1) We show that $X \subseteq Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0} \subseteq X$.
	- To show $X \subseteq Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0}$, suppose $w \in X$. By Lemma PS4.3.2, we have that either dsfxs $w \subseteq \{-2, -1, 0\}$ or dsfxs $w \subseteq \{-1, 0, 1\}$ or dsfxs $w \subseteq \{0, 1, 2\}$. Thus there are three cases to consider.
- − Suppose dsfxs $w \subseteq \{-2, -1, 0\}$. Thus $w \in Y^{-2,0} \subseteq Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0}$.
- − Suppose **dsfxs** $w \subseteq \{-1, 0, 1\}$. Thus $w \in Y^{-1,1} \subseteq Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0}$.
- − Suppose **dsfxs** $w \subseteq \{0, 1, 2\}$. Thus $w \in Y^{0,2} \subseteq Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0}$.
- To show $Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0} \subseteq X$, suppose $w \in Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0}$. There are three cases to consider.
	- Suppose $w \in Y^{0,2}$, so that **dsfxs** $w \subseteq \{0,1,2\}$. Thus $w \in X$, by Lemma PS4.3.4.
	- − Suppose $w \in Y^{-1,1}$, so that **dsfxs** $w \subseteq \{-1,0,1\}$. Thus $w \in X$, by Lemma PS4.3.4.
	- − Suppose $w \in Y^{-2,0}$, so that **dsfxs** $w \subseteq \{-2,-1,0\}$. Thus $w \in X$, by Lemma PS4.3.4.
- (2) We show that $Y^{0,2} \subseteq \{ \% \} \cup Y^{-1,1}\{1\} \subseteq Y^{0,2}$.
	- To show that $Y^{0,2} \subseteq \{ \% \} \cup Y^{-1,1}\{1\}$, suppose $w \in Y^{0,2}$. If $w = \%$, then $w \in \{ \% \}$ $Y^{-1,1}{1}.$ So, suppose $w \neq \%$. Then $w = xa$ for some $x \in \{0,1\}^*$ and $a \in \{0,1\}.$ We cannot have $a = 0$, as then $-1 \in \text{dsfxs } w$ (contradicting $w \in Y^{0,2}$). Thus $a = 1$, so that $w = x1$. To see that $x \in Y^{-1,1}$, suppose v is a suffix of x. Because v1 is a suffix of $w \in Y^{0,2}$, we have that $0 \le \text{diff}(v1) \le 2$. But $\text{diff}(v1) = \text{diff } v + 1$, and thus $-1 \le \text{diff } v \le 1$. Thus $w = x1 \in Y^{-1,1}\{1\} \subseteq {\%} \cup Y^{-1,1}\{1\}$.
	- To show that $\{\% \} \cup Y^{-1,1}\{1\} \subseteq Y^{0,2}$, suppose $w \in \{\% \} \cup Y^{-1,1}\{1\}$. If $w \in \{\% \}$, then $w \in Y^{0,2}$. Otherwise, we have that $w \in Y^{-1,1}{1}$, so that $w = x1$, for some $x \in Y^{-1,1}$. To see that $w \in Y^{0,2}$, suppose v is a suffix of $w = x1$. We must show that $0 \le \text{diff } v \le 2$. If $v = \%$, then this is true. Otherwise $v = u_1$ for some suffix u of x. Because $x \in Y^{-1,1}$, we have that $-1 \le \text{diff } u \le 1$. Thus $0 \le \text{diff } v \le 2$.
- (3) We show that $Y^{-1,1} \subseteq \{ \% \} \cup Y^{0,2} \{ 0 \} \cup Y^{-2,0} \{ 1 \} \subseteq Y^{-1,1}$.
	- To show that $Y^{-1,1} \subseteq \{ \% \} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\}$, suppose $w \in Y^{-1,1}$. If $w = \%$, then $w \in \{% \} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\}$. So, suppose $w \neq \%$. Then $w = xa$ for some $x \in \{0,1\}^*$ and $a \in \{0, 1\}$. There are two cases to consider.
		- Suppose $a = 0$, so that $w = x0$. To see that $x \in Y^{0,2}$, suppose v is a suffix of x. Because v0 is a suffix of $w \in Y^{-1,1}$, we have that $-1 \le \text{diff}(v0) \le 1$. But $\text{diff}(v0) = \text{diff } v + -1$, and thus $0 \leq \text{diff } v \leq 2$. Thus $w = x0 \in Y^{0,2}\{0\} \subseteq$ $\{\% \}\cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\}.$
		- Suppose $a = 1$, so that $w = x1$. To see that $x \in Y^{-2,0}$, suppose v is a suffix of x. Because v1 is a suffix of $w \in Y^{-1,1}$, we have that $-1 \le \text{diff}(v1) \le 1$. But $diff(v1) = diff v + 1$, and thus $-2 \le diff v \le 0$. Thus $w = x1 \in Y^{-2,0}{1} \subseteq$ $\{\% \} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\}.$
	- To show that $\{\% \} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\} \subseteq Y^{-1,1}$, suppose $w \in \{\% \} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\}$. If $w \in \{ \% \}$, then $w \in Y^{-1,1}$. Otherwise, there are two cases to consider.
		- − Suppose $w \in Y^{0,2}\{0\}$, so that $w = x0$, for some $x \in Y^{0,2}$. To see that that $w \in Y^{-1,1}$, suppose v is a suffix of $w = x0$. We must show that $-1 \le \text{diff } v \le 1$. If $v = \%$, then this is true. Otherwise $v = u_0$ for some suffix u of x. Because $x \in Y^{0,2}$, we have that $0 \le \text{diff } u \le 2$. Thus $-1 \le \text{diff } v \le 1$.
- − Suppose $w \in Y^{-2,0}{1}$, so that $w = x1$, for some $x \in Y^{-2,0}$. To see that $w \in Y^{-1,1}$, suppose v is a suffix of $w = x1$. We must show that $-1 \le \text{diff } v \le 1$. If $v = \%$, then this is true. Otherwise $v = u_1$ for some suffix u of x. Because $x \in Y^{-2,0}$, we have that $-2 \le \text{diff } u \le 0$. Thus $-1 \le \text{diff } v \le 1$.
- (4) We show that $Y^{-2,0} \subseteq \{ \% \} \cup Y^{-1,1} \{ 0 \} \subseteq Y^{-2,0}$.
	- To show that $Y^{-2,0} \subseteq \{ \% \} \cup Y^{-1,1}\{0\}$, suppose $w \in Y^{-2,0}$. If $w = \%$, then $w \in Y$ $\{\% \} \cup Y^{-1,1}\{0\}$. So, suppose $w \neq \%$. Then $w = xa$ for some $x \in \{0,1\}^*$ and $a \in \{0,1\}$. We cannot have $a = 1$, as then $1 \in \mathbf{dsfxs}\, w$ (contradicting $w \in Y^{-2,0}$). Thus $a = 0$, so that $w = x0$. To see that that $x \in Y^{-1,1}$, suppose v is a suffix of x. Because v0 is a suffix of $w \in Y^{-2,0}$, we have that $-2 \le \text{diff}(v0) \le 0$. But $\text{diff}(v0) = \text{diff } v + -1$, and thus $-1 \le \text{diff } v \le 1$. Thus $w = x0 \in Y^{-1,1}\{0\} \subseteq \{\% \} \cup Y^{-1,1}\{0\}.$
	- To show that $\{\% \} \cup Y^{-1,1}\{0\} \subseteq Y^{-2,0}$, suppose $w \in \{\% \} \cup Y^{-1,1}\{0\}$. If $w \in \{\% \}$, then $w \in Y^{-2,0}$. Otherwise, we have that $w \in Y^{-1,1}\{0\}$, so that $w = x0$, for some $x \in Y^{-1,1}$. To see that $w \in Y^{-2,0}$, suppose v is a suffix of $w = x0$. We must show that $-2 \le \text{diff } v \le 0$. If $v = \%$, then this is true. Otherwise $v = u_0$ for some suffix u of x. Because $x \in Y^{-1,1}$, we have that $-1 \le \text{diff } u \le 1$. Thus $-2 \le \text{diff } v \le 0$.

In what follows, we will show that $\Lambda_A = \{ \%, \}$, $\Lambda_B = Y^{0,2}$, $\Lambda_C = Y^{-1,1}$ and $\Lambda_D = Y^{-2,0}$.

Lemma PS4.3.6

- *(A)* For all $w \in \Lambda_A$, $w \in \{ \% \}.$
- *(B)* For all $w \in \Lambda_B$, $w \in Y^{0,2}$.
- *(C)* For all $w \in \Lambda_{\mathsf{C}}$, $w \in Y^{-1,1}$.
- *(D)* For all $w \in \Lambda_D$, $w \in Y^{-2,0}$.

Proof. We proceed by induction on Λ . There are 8 (1 plus the number of transitions) parts to show.

(empty string) Clearly $\% \in \{ \% \}$, as required.

- $(A, \mathcal{K} \to B)$ Suppose $w \in \Lambda_A$, and assume the inductive hypothesis: $w \in {\mathcal{K}}$. We must show that $w\% \in Y^{0,2}$. And $w\% = \% \% = \% \in Y^{0,2}$.
- $(A, \mathcal{H} \to \mathsf{C})$ Suppose $w \in \Lambda_A$, and assume the inductive hypothesis: $w \in \{\mathcal{H}\}\$. We must show that $w\% \in Y^{-1,1}$. And $w\% = \% \% = \% \in Y^{-1,1}$.
- $(A, \mathcal{K} \to D)$ Suppose $w \in \Lambda_A$, and assume the inductive hypothesis: $w \in \{\mathcal{K}\}\$. We must show that $w\% \in Y^{-2,0}$. And $w\% = \% \% = \% \in Y^{-2,0}$.
- $(B, 0 \to C)$ Suppose $w \in \Lambda_B$, and assume the inductive hypothesis: $w \in Y^{0,2}$. We must show that $w0 \in Y^{-1,1}$. And $w0 \in Y^{0,2}\{0\} \subseteq Y^{-1,1}$, by Lemma PS4.3.5(3).
- $(C, 0 \to D)$ Suppose $w \in \Lambda_C$, and assume the inductive hypothesis: $w \in Y^{-1,1}$. We must show that $w0 \in Y^{-2,0}$. And $w0 \in Y^{-1,1}\{0\} \subseteq Y^{-2,0}$, by Lemma PS4.3.5(4).
- $(C, 1 \rightarrow B)$ Suppose $w \in \Lambda_C$, and assume the inductive hypothesis: $w \in Y^{-1,1}$. We must show that $w1 \in Y^{0,2}$. And $w1 \in Y^{-1,1}{1 \subseteq Y^{0,2}}$, by Lemma PS4.3.5(2).
- $(D, 1 \rightarrow C)$ Suppose $w \in \Lambda_D$, and assume the inductive hypothesis: $w \in Y^{-2,0}$. We must show that $w1 \in Y^{-1,1}$. And $w1 \in Y^{-2,0}{1 \subseteq Y^{-1,1}}$, by Lemma PS4.3.5(3).

Lemma PS4.3.7

For all $w \in \{0, 1\}^*$:

- *(A)* if $w \in \{% \}$, then $w \in \Lambda_A$;
- *(B)* if $w \in Y^{0,2}$, then $w \in \Lambda_B$;
- *(C)* if $w \in Y^{-1,1}$ *, then* $w \in \Lambda_{\mathsf{C}}$ *;*
- *(D)* if $w \in Y^{-2,0}$, then $w \in \Lambda_D$.

Proof. We proceed by strong string induction. Suppose $w \in \{0, 1\}^*$, and assume the inductive hypothesis: for all $x \in \{0,1\}^*$, if x is a proper substring of w, then

- (A) if $x \in \{% \}$, then $x \in \Lambda_A$;
- (B) if $x \in Y^{0,2}$, then $x \in \Lambda_B$;
- (C) if $x \in Y^{-1,1}$, then $x \in \Lambda_{\mathsf{C}}$;
- (D) if $x \in Y^{-2,0}$, then $x \in \Lambda_{\mathcal{D}}$.

We must show that

- (A) if $w \in \{ \% \}$, then $w \in \Lambda_A$;
- (B) if $w \in Y^{0,2}$, then $w \in \Lambda_{\mathsf{B}}$;
- (C) if $w \in Y^{-1,1}$, then $w \in \Lambda_{\mathsf{C}}$;
- (D) if $w \in Y^{-2,0}$, then $w \in \Lambda_{\mathsf{D}}$.

There are four cases to consider.

- (A) Suppose $w \in \{\% \}$. We must show that $w \in \Lambda_A$. Because A is M's start state, $w = \% \in \Lambda_A$.
- (B) Suppose $w \in Y^{0,2}$. We must show that $w \in \Lambda_B$. By Lemma PS4.3.5(2), we have that $w \in \{ \% \} \cup Y^{-1,1}\{1\}.$ Thus there are two subcases to consider.
	- Suppose $w \in \{\% \}$. Because A is M's start state, we have $\% \in \Lambda_A$. And since $(A, \%, B) \in$ T_M , it follows that $w = \% = \% \% \in \Lambda_B$.
- Suppose $w \in Y^{-1,1}{1}$, so that $w = x1$, for some $x \in Y^{-1,1}$. Because x is a proper substring of w, part (C) of the inductive hypothesis tells us that $x \in \Lambda_{\mathsf{C}}$. Thus $w =$ $x1 \in A_B$, because of the transition $(C, 1, B)$.
- (C) Suppose $w \in Y^{-1,1}$. We must show that $w \in \Lambda_{\mathsf{C}}$. By Lemma PS4.3.5(3), we have that $w \in \{ \% \} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\}.$ Thus there are three subcases to consider.
	- Suppose $w \in \{\% \}$. Because A is M's start state, we have $\% \in \Lambda_A$. And since $(A, \%, C) \in$ T_M , it follows that $w = \% = \% \% \in \Lambda_{\mathsf{C}}$.
	- Suppose $w \in Y^{0,2}\{0\}$, so that $w = x0$, for some $x \in Y^{0,2}$. Because x is a proper substring of w, part (B) of the inductive hypothesis tells us that $x \in \Lambda_B$. Thus $w = x0 \in \Lambda_C$, because of the transition $(B, 0, C)$.
	- Suppose $w \in Y^{-2,0}{1}$, so that $w = x1$, for some $x \in Y^{-2,0}$. Because x is a proper substring of w, part (D) of the inductive hypothesis tells us that $x \in \Lambda_D$. Thus $w =$ $x1 \in \Lambda_{\mathsf{C}}$, because of the transition $(\mathsf{D}, \mathsf{1}, \mathsf{C})$.
- (D) Suppose $w \in Y^{-2,0}$. We must show that $w \in \Lambda_{D}$. By Lemma PS4.3.5(4), we have that $w \in \{ \% \} \cup Y^{-1,1}\{0\}.$ Thus there are two subcases to consider.
	- Suppose $w \in \{\% \}$. Because A is M's start state, we have $\% \in \Lambda_A$. And since $(A, \%, D) \in$ T_M , it follows that $w = \% = \% \% \in \Lambda_D$.
	- Suppose $w \in Y^{-1,1}\{0\}$, so that $w = x0$, for some $x \in Y^{-1,1}$. Because x is a proper substring of w, part (C) of the inductive hypothesis tells us that $x \in \Lambda_{\mathsf{C}}$. Thus $w =$ $x0 \in \Lambda_D$, because of the transition $(C, 0, D)$.

Lemma PS4.3.8

- *(A)* $\Lambda_A = \{\% \}.$
- *(B)* $\Lambda_B = Y^{0,2}$.
- *(C)* $\Lambda_c = Y^{-1,1}$.
- *(D)* $\Lambda_{\text{D}} = Y^{-2,0}$ *.*

Proof. Follows by Lemmas PS4.3.6 and PS4.3.7. \Box

Lemma PS4.3.9 $L(M) = X$.

Proof. Because M's set of accepting states is $\{B, C, D\}$, it follows that $L(M) = \Lambda_B \cup \Lambda_C \cup \Lambda_D$. And by Lemma PS4.3.8 and Lemma PS4.3.5(1), we have that $\Lambda_{\mathsf{B}} \cup \Lambda_{\mathsf{C}} \cup \Lambda_{\mathsf{D}} = Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0} = X$. Thus $L(M) = X$. \Box