
CS 516—Software Foundations via Formal Languages—Spring 2022

Problem Set 5

Model Answers

Problem 1

Let M be the finite automaton
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of Problem 2 of Problem Set 4. The model answers to Problem 3 of Problem Set 4 proved that

L(M) = X , and we put the expression of M in Forlan’s concrete syntax in the file ps5-p1-fa (see

the course website):

{states} A, B, C, D {start state} A {accepting states} B, C, D

{transitions}

A, % -> B | C | D;

B, 0 -> C;

C, 0 -> D; C, 1 -> B;

D, 1 -> C

We load M into Forlan, calling it fa:

- val fa = FA.input "ps5-p1-fa";

val fa = - : fa

We use the function faToRegPerms to convert fa to a regular expression, using weak simplification

as the simplification function. This tries eliminating states in all possible orders, and uses the

permutation on states that results in the simplest possible regular expression. We bind the result

to reg’, and display it:

- val reg’ = faToRegPerms (NONE, Reg.weaklySimplify) fa;

val reg’ = - : reg

- Reg.output("", reg’);

% + (% + 0 + 1)(01 + 10)*(% + 0 + 1)

val it = () : unit

Finally, we locally simplify reg’, yielding the regular expression reg, and display reg:

- val reg = #2 (Reg.locallySimplify (NONE, Reg.obviousSubset) reg’);
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val reg = - : reg

- Reg.output("", reg);

(% + 0 + 1)(01 + 10)*(% + 0 + 1)

val it = () : unit

Problem 2

First, we put the definition

val faToDFA = nfaToDFA o efaToNFA o faToEFA;

fun subst(fa, x, y) =

if FA.accepted fa x

then FA.union

(injDFAToFA (DFA.minus(faToDFA fa, faToDFA(strToFA x))),

strToFA y)

else fa;

of subst in the file ps5-p2.sml (see the course website), and load it into Forlan:

- use "ps5-p2.sml";

[opening ps5-p2.sml]

val faToDFA = fn : fa -> dfa

val subst = fn : fa * str * str -> fa

val it = () : unit

Next, we put the definition

fun test(reg, x, y, reg’) =

let val reg = Reg.fromString reg

val x = Str.fromString x

val y = Str.fromString y

val reg’ = Reg.fromString reg’

val fa = subst(regToFA reg, x, y)

val fa’ = regToFA reg’

in DFA.equivalent(faToDFA fa, faToDFA fa’) end;

of our testing function test in the file ps5-p2-testing.sml, (see the course website) and load it

into Forlan:

- use "ps5-p2-testing.sml";

[opening ps5-p2-testing.sml]

val test = fn : string * string * string * string -> bool

val it = () : unit

Finally, we run tests corresponding to the examples from the description of Problem 2:

- test("01 + 10", "01", "11", "11 + 10");

val it = true : bool

- test("01 + 10", "01", "01", "01 + 10");
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val it = true : bool

- test("01 + 10", "01", "10", "10");

val it = true : bool

- test("01 + 10", "11", "12", "01 + 10");

val it = true : bool

Problem 3

First, we put the definition

fun superAccepted fa w =

let val start = FA.startState fa

val accepting = FA.acceptingStates fa

val qs = FA.processStr fa (Set.sing start, w)

in Set.isNonEmpty qs andalso SymSet.subset(qs, accepting) end;

of superAccepted in the file ps5-p3.sml (see the course website), and load it into Forlan:

- use "ps5-p3.sml";

[opening ps5-p3.sml]

val superAccepted = fn : fa -> str -> bool

val it = () : unit

Next, we put the definition

fun test reg w =

let val fa = regToFA reg

in FA.accepted fa w = superAccepted fa w end;

of test in the file ps5-p3-testing.sml (see the course website), and load it into Forlan:

- use "ps5-p3-testing.sml";

[opening ps5-p3-testing.sml]

val test = fn : reg -> str -> bool

val it = () : unit

Finally, we show that arguments 0∗ and 0 suffice to make test return false:

- test (Reg.fromString "0*") (Str.fromString "0");

val it = false : bool

Problem 4
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(b)

Lemma PS5.4.1

(1) g% = 0.

(2) For all x ∈ {0, 1}∗, g(x1) = g x;

(3) For all x ∈ {0, 1}∗, if 00 is a suffix of x, then g(x0) = g x+ 1.

(4) For all x ∈ {0, 1}∗, if 00 is not suffix of x, then g(x0) = g x.

Proof.

(1) To show that f % ⊆ ∅, suppose y ∈ f %. Thus y ∈ {0, 1}∗ and y000 is a prefix of %—

contradiction. Thus y ∈ ∅. Since ∅ ⊆ f %, it follows that f % = ∅. Thus g% = |f %| = |∅| = 0.

(2) Suppose x ∈ {0, 1}∗.

To show that f(x1) ⊆ f x, suppose y ∈ f(x1). Thus y ∈ {0, 1}∗ and y000 is a prefix of x1. Since

y000 6= x1, it follows that y000 is a prefix of x, and thus that y ∈ f x.

To show that f x ⊆ f(x1), suppose y ∈ f x. Thus y ∈ {0, 1}∗ and y000 is a prefix of x. Hence

y000 is a prefix of x1, so that y ∈ f(x1).

Thus f(x1) = f x. Finally, g(x1) = |f(x1)| = |f x| = g x.

(3) Suppose x ∈ {0, 1}∗ and 00 is a suffix of x. Thus x = z00 for some z ∈ {0, 1}∗.

To show that f(x0) ⊆ f x ∪ {z}, suppose y ∈ f(x0). Thus y ∈ {0, 1}∗ and y000 is a prefix

of x0 = z000. There are two cases to consider. (1) Suppose y000 is prefix of z00 = x. Then

y ∈ f x ⊆ f x ∪ {z}. (2) Suppose y000 = z000. Then y = z ∈ f x ∪ {z}.

To show that f x ∪ {z} ⊆ f(x0), suppose y ∈ f x ∪ {z}. There are two cases to consider. (1)

Suppose y ∈ f x. Then y ∈ {0, 1}∗ and y000 is a prefix of x, so that y000 is also a prefix of x0.

Thus y ∈ f(x0). (2) Suppose y = z. Then y000 = z000 = x0, so that y000 is a prefix of x0, and

thus y ∈ f(x0).

Thus f(x0) = f x∪{z}. Because x = z00, we have that z 6∈ f x—since otherwise we would have

z000 is a prefix of x = z00, which is impossible.

Finally, g(x0) = |f(x0)| = |f x ∪ {z}| = |f x|+ 1 = g x+ 1, because z 6∈ f x.

(4) Suppose x ∈ {0, 1}∗ and 00 is not a suffix of x.

To show that f(x0) ⊆ f x, suppose y ∈ f(x0). Thus y ∈ {0, 1}∗ and y000 is a prefix of x0. Then

y000 6= x0, since otherwise 00 would be a suffix of x. Thus y000 is a prefix of x. Hence y ∈ f x.

To show that f x ⊆ f(x0), suppose y ∈ f x. Thus y ∈ {0, 1}∗ and y000 is a prefix of x. Hence

y000 is a prefix of x0, so that y ∈ f(x0).

Thus f(x0) = f x. Finally, g(x0) = |f(x0)| = |f x| = g x.

✷

Lemma PS5.4.2

(1) % ∈ X .
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(2) For all w ∈ {0, 1}∗, if w ∈ X , then w1 ∈ X .

(3) For all w ∈ {0, 1}∗, if w ∈ X and 00 is a suffix of w, then w0 /∈ X .

(4) For all w ∈ {0, 1}∗, if w ∈ X and 00 is not a suffix of w, then w0 ∈ X .

(5) For all w ∈ {0, 1}∗, if w /∈ X , then w1 /∈ X .

(6) For all w ∈ {0, 1}∗, if w /∈ X and 00 is a suffix of w, then w0 ∈ X .

(7) For all w ∈ {0, 1}∗, if w /∈ X and 00 is not a suffix of w, then w0 /∈ X .

Proof.

(1) By Lemma PS5.4.1(1), we have that g% = 0 is even. Thus % ∈ X .

(2) Suppose w ∈ {0, 1}∗ and w ∈ X . Then g w is even, so that g(w1) = g w is even, by

Lemma PS5.4.1(2). Thus w1 ∈ X .

(3) Suppose w ∈ {0, 1}∗, w ∈ X and 00 is a suffix of w. Thus g w is even, so that g(w0) = g w + 1

is odd, by Lemma PS5.4.1(3). Thus w0 /∈ X .

(4) Suppose w ∈ {0, 1}∗, w ∈ X and 00 is not a suffix of w. Thus g w is even, so that g(w0) = g w

is even, by Lemma PS5.4.1(4). Thus w0 ∈ X .

(5) Suppose w ∈ {0, 1}∗ and w /∈ X . Then g w is odd, so that g(w1) = g w is odd, by

Lemma PS5.4.1(2). Thus w1 /∈ X .

(6) Suppose w ∈ {0, 1}∗, w /∈ X and 00 is a suffix of w. Thus g w is odd, so that g(w0) = g w+1 is

even, by Lemma PS5.4.1(3). Thus w0 ∈ X .

(7) Suppose w ∈ {0, 1}∗, w /∈ X and 00 is not a suffix of w. Thus g w is odd, so that g(w0) = g w

is odd, by Lemma PS5.4.1(4). Thus w0 /∈ X .

✷

Lemma PS5.4.3

(A) For all w ∈ ΛA, w ∈ X and 0 is not a suffix of w.

(B) For all w ∈ ΛB, w ∈ X and 0, but not 00, is a suffix of w.

(C) For all w ∈ ΛC, w ∈ X and 00 is a suffix of w.

(D) For all w ∈ ΛD, w /∈ X and 00 is a suffix of w.

(E) For all w ∈ ΛE, w /∈ X and 1 is a suffix of w.

(F) For all w ∈ ΛF, w /∈ X and 0, but not 00, is a suffix of w.

Proof. We proceed by induction on Λ. There are 13 (1 plus the number of transitions) parts to

show. Note that whenever we assume w ∈ Λq, for some q ∈ QM , we have that w ∈ (alphabetM)∗ =

{0, 1}∗.
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(empty string) We must show that % ∈ X and 0 is not a suffix of %. The latter property is

obvious, and the former follows by Lemma PS5.4.2(1).

(A, 0→ B) Suppose w ∈ ΛA, and assume the inductive hypothesis: w ∈ X and 0 is not a suffix

of w. We must show that w0 ∈ X and 0, but not 00, is a suffix of w0. Clearly 0 is a suffix of

w0. And since 0 is not a suffix of w, we have that 00 is not a suffix of w0. Since w ∈ X and

00 is not a suffix of w, Lemma PS5.4.2(4) tells us that w0 ∈ X .

(A, 1→ A) Suppose w ∈ ΛA, and assume the inductive hypothesis: w ∈ X and 0 is not a suffix

of w. We must show that w1 ∈ X and 0 is not a suffix of w1. The latter property is obvious.

And the former property holds by Lemma PS5.4.2(2).

(B, 0→ C) Suppose w ∈ ΛB, and assume the inductive hypothesis: w ∈ X and 0, but not 00, is

a suffix of w. We must show that w0 ∈ X and 00 is a suffix of w0. Since 0 is a suffix of w, we

have that 00 is a suffix of w0. Because 00 is not a suffix of w, Lemma PS5.4.2(4) tells us that

w0 ∈ X .

(B, 1→ A) Suppose w ∈ ΛB, and assume the inductive hypothesis: w ∈ X and 0, but not 00, is

a suffix of w. We must show that w1 ∈ X and 0 is not a suffix of w1. The latter property is

obvious, and the former follows by Lemma PS5.4.2(2).

(C, 0→ D) Suppose w ∈ ΛC, and assume the inductive hypothesis: w ∈ X and 00 is a suffix of

w. We must show that w0 /∈ X and 00 is a suffix of w0. The latter property holds, since 0 is

a suffix of w. Because 00 is a suffix of w, Lemma PS5.4.2(3) tells us that w0 /∈ X .

(C, 1→ A) Suppose w ∈ ΛC, and assume the inductive hypothesis: w ∈ X and 00 is a suffix of

w. We must show that w1 ∈ X and 0 is not a suffix of w1. The latter property is obvious.

And the former follows by Lemma PS5.4.2(2).

(D, 0→ C) Suppose w ∈ ΛD, and assume the inductive hypothesis: w /∈ X and 00 is a suffix of

w. We must show that w0 ∈ X and 00 is a suffix of w0. The latter property holds, since 0 is

a suffix of w. Because 00 is a suffix of w, Lemma PS5.4.2(6) tells us that w0 ∈ X .

(D, 1→ E) Suppose w ∈ ΛD, and assume the inductive hypothesis: w /∈ X and 00 is a suffix of

w. We must show that w1 /∈ X and 1 is a suffix of w1. The latter property obviously holds.

And the former follows by Lemma PS5.4.2(5).

(E, 0→ F) Suppose w ∈ ΛE, and assume the inductive hypothesis: w /∈ X and 1 is a suffix of w.

We must show that w0 /∈ X and 0, but not 00, is a suffix of w0. Clearly 0 is a suffix of w0.

Because 0 is not a suffix of w, it follows that 00 is not a suffix of w0. Because 00 is not a suffix

of w, Lemma PS5.4.2(7) tells us that w0 /∈ X .

(E, 1→ E) Suppose w ∈ ΛE, and assume the inductive hypothesis: w /∈ X and 1 is a suffix of w.

We must show that w1 /∈ X and 1 is a suffix of w1. The latter property obviously holds. And

the former follows by Lemma PS5.4.2(5).

(F, 0→ D) Suppose w ∈ ΛF, and assume the inductive hypothesis: w /∈ X and 0, but not 00, is

a suffix of w. We must show that w0 /∈ X and 00 is a suffix of w0. Since 0 is a suffix of w, we

have that 00 is a suffix of w0. Because 00 is not a suffix of w, Lemma PS5.4.2(7) tells us that

w0 6∈ X .

6



(F, 1→ E) Suppose w ∈ ΛF, and assume the inductive hypothesis: w /∈ X and 0, but not 00, is a

suffix of w. We must show that w1 /∈ X and 1 is a suffix of w1. The latter property is obvious.

And the former follows by Lemma PS5.4.2(5).

✷

Proposition PS5.4.4

L(M) = X .

Proof. We show that L(M) ⊆ X ⊆ L(M).

(L(M) ⊆ X) Suppose w ∈ L(M). Because AM = {A,B,C}, we have that w ∈ L(M) = ΛA ∪

ΛB ∪ ΛC. Thus, by Lemma PS5.4.3(A)–(C), we have that w ∈ X .

(X ⊆ L(M)) Suppose w ∈ X . Since X ⊆ {0, 1}∗, we have that w ∈ {0, 1}∗. Suppose, toward

a contradiction, that w 6∈ L(M). Because w 6∈ L(M) = ΛA ∪ ΛB ∪ ΛC and w ∈ {0, 1}∗ =

(alphabetM)∗ = ΛA ∪ ΛB ∪ ΛC ∪ ΛD ∪ ΛE ∪ ΛF, we must have that w ∈ ΛD ∪ ΛE ∪ ΛF. But

then Lemma PS5.4.3(D)–(F) tells us that w 6∈ X—contradiction. Thus w ∈ L(M).

✷
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