CS 516—Software Foundations via Formal Languages—Spring 2022

Problem Set 6
Model Answers

Problem 1

Suppose, toward a contradiction, that X is regular. Thus there is an n € N — {0} with the property
of the Pumping Lemma, where X has been substituted for L. Suppose z = 0™1"2"3™. Since
n+n < n+n, we have that z € X. Thus, since |z| = 4n > n, it follows there are u, v, w € Str such
that z = uvw and properties (1)—(3) of the lemma hold. Since uvw = z = 0"1"2"3" (1) tells us
that there are i, j, k € N such that

u=0, v=0, w=0%1"2"3", i+ j+k=n.
By (2), we have that j > 1, and thus that n 4+ j > n. By (3), we have that 0“+i+itk1nongn —

0707070%12"3" = wvvw = wv?w € X. Thus (i+j+j+k)+n <n+n,sothat n+j=i+j+k+j=
i1+ 7+ 7+k <n. But n+ 7 < n contradicts n + j > n. Thus X is regular.

Problem 2

(a) Gis
A—0A3|A3|B|C
B—1B3|D
C—0C2|D

D— % |1D2 | D2

(b) We put the expression

{variables} A, B, C, D {start variable} A
{productions}

A ->0A3 | A3 | B | C;

B -> 1B3 | D;

C -> 0C2 | D;

D ->7% | 1D2 | D2

of G in the file ps6-p2-gram, and load G into Forlan, calling it gram:

- val gram = Gram.input "ps6-p2-gram";
val gram = - : gram

Then we compute and display the alphabet of gram, find parse trees ptl and pt2 showing why
0012223 and 11112233 are generated by gram, and then display those parse trees:

- SymSet.output("", Gram.alphabet gram);



val it = () : unit
- val ptl = Gram.parseAlphabet gram (Str.fromString "0012223");

val ptl = - : pt
- val pt2 = Gram.parseAlphabet gram (Str.fromString "11112233");
val pt2 = - : pt

- PT.output("", ptl);

A0, A(C(o, c((1, DD(X), 2), 2)), 2)), 3)
val it = () : unit

- PT.output("", pt2);

A(B(1, B(1, B(D(1, D(1, D(%), 2), 2)), 3), 3))
val it = () : unit

Here are drawings of the two parse trees:

0 A 3
C 1 B 3
0 C 2 1 B 3

1 D 2 1 D 2
/\ /’\
D 2 1 D 2
| |
% %

(ptq) (pt2)

(c) Continuing our Forlan session, we put our testing code

(* val inOrder : sym list -> bool

inOrder x tests whether an element of {0, 1, 2, 3}"* is in

{037 #{137 {2}~ *{3}"* *)
fun inOrder (b :: ¢ :: ds) =
Sym.compare(b, c) <> GREATER andalso inOrder(c :: ds)
| inOrder _ = true;

(* val count : sym * sym list -> int

count(a, bs) counts the number of occurrences of a in bs *)



fun count(_, nil) =0
| count(a, b :: bs) =
(if Sym.equal(a, b) then 1 else 0) + count(a, bs);

(x val inX : str -> bool
inX x tests whether an element x of {0, 1, 2, 3}"* is in X *)

fun inX (x : str) =
inOrder x andalso
let val i = count(Sym.fromString "O", x)
val j = count(Sym.fromString "1", x)
val k = count(Sym.fromString "2", x)
val 1 = count(Sym.fromString "3", x)
in i + j <=k + 1 end;

(* val upto : int -> str set

if n >= 0, then upto n returns all strings over alphabet {0, 1, 2,
3} of length no more than n *)

fun upto 0 : str set = Set.sing nil
| upto n =
let val xs = upto(n - 1)

val ys = Set.filter (fn x => length x = n - 1) xs
in StrSet.union
(xs, StrSet.concat(StrSet.fromString "0, 1, 2, 3", ys))
end;
(* val partition : int -> str set * str set
if n >= 0, then partition n returns (xs, ys) where:
xs is all elements of upto n that are in X; and
ys is all elements of upto n that are not in X *)
fun partition n = Set.partition inX (upto n);

(* val test : int -> gram -> str option * str option

if n >= 0, then test n returns a function f such that, for all grammars
gram, f gram returns a pair (xOpt, yOpt) such that:

If there is an element of {0, 1, 2, 3}"* of length no more than n
that is in X but is not generated by gram, then xOpt = SOME x
for some such x; otherwise, xOpt = NONE.



If there is an element of {0, 1, 2, 3}"* of length no more than n
that is not in X but is generated by gram, then yOpt = SOME y
for some such y; otherwise, yOpt = NONE. *)

fun test n =
let val (goods, bads) = partition n
in fn gram =>
let val generated = Gram.generated gram
val goodNotGenOpt = Set.position (not o generated) goods
val badGenOpt = Set.position generated bads
in ((case goodNotGenOpt of
NONE => NONE
| SOME i => SOME(ListAux.sub(Set.tolList goods, i))),
(case badGenOpt of
NONE => NONE
| SOME i => SOME(ListAux.sub(Set.toList bads, i))))
end
end;

in the file ps6-p2-testing.sml, and load it into Forlan:

- use "ps6-p2-testing.sml";

[opening ps6-p2-testing.sml]

val inOrder = fn : sym list -> bool

val count = fn : sym * sym list -> int

val inX = fn : str -> bool

val upto = fn : int -> str set

val partition = fn : int -> str set * str set

val test = fn : int -> gram -> str option * str option
val it = () : unit

Then we carry out the required testing:

- test 9 gram;
val it = (NONE,NONE) : str option * str option

Problem 3

(a) First, we give these definitions:

minAndRen
faToDFAmar = minAndRen o nfaToDFA o efaToNFA o faToEFA,
regToDFAmar = faToDFAmar o regToFA,
allStrDFA = regToDFAmar((0+ 1+ 2)").

renameStatesCanonically o minimize,

Thus minAndRen € DFA —-DFA | faToDFAmar € FA—DFA, regToDFAmar € Reg— DFA
and allStrDFA € DFA.
We define lenDFA € N — DFA by: lenDFA m = regToDFAmar((0 + 1+ 2)™).



We define hasStrDFA € Str — DFA and notHasStrDFA € Str — DFA by:

hasStrDFA z = regToDFAmar((0 + 1 + 2)*(strToRegz)(0 + 1+ 2)"),
notHasStrDFA z = minAndRen(minus(allStrDFA  hasStrDFA z)).

We let the DFA hasAllISymsDFA be
minAndRen(inter(hasStrDFA 0, inter(hasStrDFA 1, hasStrDFA 2))),
and let the DFA notHasAllSymsDFA be
minAndRen(minus(allStrDFA  hasAllSymsDFA)).
We define lenAndNotHasAllSymsDFA € N — DFA by:

lenAndNotHasAllSymsDFA m =
minAndRen(inter(lenDFA m, notHasAllSymsDFA)).

We then define someLenNotHasAllSymsFA € N — FA by:

someLenNotHasAllSymsFA m =
concat(allStrDFA  concat(lenAndNotHasAllSymsDFA m, allStrDFA)).

We then define someLenNotHasAllSymsDFA € N — DFA by:
someLenNotHasAllSymsDFA m = faToDFAmar(someLenNotHasAllSymsFA m).
And we define allLenHasAllSymsDFA € N — DFA by:

allLenHasAllSymsDFA m =
minAndRen(minus(allStrDFA, someLenNotHasAllSymsDFA m)).

We let the DFA noBadDFA be
minAndRen(inter(notHasStrDFA 02, inter(notHasStrDFA 10, notHasStrDFA 21)).
Finally, we define ansDFA € N — DFA by:

ansDFA m = minAndRen(inter(noBadDFA, allLenHasAllSymsDFA m)).

(b) We put our definition

val minAndRen = DFA.renameStatesCanonically o DFA.minimize;
val faToDFAmar = minAndRen o nfaToDFA o efaToNFA o faToEFA;
val regToDFAmar = faToDFAmar o regToFA;

val allStrReg = Reg.fromString "(0 + 1 + 2)x*";
val allStrDFA = regToDFAmar allStrReg;
val allStrFA injDFAToFA allStrDFA;



fun

fun

fun
fun

val

val

fun

fun

fun

fun

fun

val

fun

lenDFA m = regToDFAmar (Reg.power (Reg.fromString "O + 1 + 2", m));

hasStrReg x =

Reg.concat(allStrReg, Reg.concat(strToReg x, allStrReg));
hasStrDFA x regToDFAmar (hasStrReg x) ;
notHasStrDFA x = minAndRen(DFA.minus(allStrDFA, hasStrDFA x));

hasA11SymsDFA =
minAndRen
(DFA.inter
(hasStrDFA(Str.fromString "0"),
DFA.inter
(hasStrDFA(Str.fromString "1"),
hasStrDFA(Str.fromString "2"))));
notHasA11SymsDFA = minAndRen(DFA.minus(allStrDFA, hasAl1SymsDFA));

lenAndNotHasA11SymsDFA m =
minAndRen(DFA.inter(lenDFA m, notHasA11SymsDFA));
lenAndNotHasA11lSymsFA m = injDFAToFA(lenAndNotHasAllSymsDFA m);

someLenNotHasAl11SymsFA m =
FA.concat(allStrFA, FA.concat(lenAndNotHasAllSymsFA m, allStrFA));
someLenNotHasA11SymsDFA m = faToDFAmar (someLenNotHasAl11SymsFA m);

alllenHasAl1SymsDFA m =
minAndRen (DFA.minus (allStrDFA, someLenNotHasA1llSymsDFA m));

noBadDFA =
minAndRen
(DFA.inter
(notHasStrDFA(Str.fromString "02"),
DFA.inter
(notHasStrDFA(Str.fromString "10"),
notHasStrDFA(Str.fromString "21"))));

ansDFA m = minAndRen(DFA.inter (noBadDFA, allLenHasAllSymsDFA m));

of ansDFA in the file ps6-p3.sml, and load it into Forlan:

- use "ps6-p3.sml";

[opening ps6-p3.sml]

val
val
val
val
val
val
val

minAndRen = fn : dfa -> dfa
faToDFAmar = fn : fa -> dfa
regToDFAmar = fn : reg -> dfa

allStrReg = - : reg
allStrDFA = - : dfa
allStrFA = - : fa

lenDFA = fn : int -> dfa



val hasStrReg = fn : str -> reg

val hasStrDFA = fn : str -> dfa

val notHasStrDFA = fn : str -> dfa

val hasAllSymsDFA = - : dfa

val notHasAl11SymsDFA = - : dfa

val lenAndNotHasAl1SymsDFA = fn : int -> dfa
val lenAndNotHasAl1SymsFA = fn : int -> fa
val someLenNotHasAl11SymsFA = fn : int -> fa
val someLenNotHasAl11SymsDFA = fn : int -> dfa
val allLenHasAllSymsDFA = fn : int -> dfa
val noBadDFA = - : dfa

val ansDFA = fn : int -> dfa

val it = () : unit

Next we put our testing code

(* val hasBad2 : str -> bool

hasBad2 x tests whether x has one or more of 02, 10 and 21 as a
substring *)

fun hasBad2 x =
Str.substr(Str.fromString "02", x) orelse
Str.substr(Str.fromString "10", x) orelse
Str.substr(Str.fromString "21", x)
(* val hasSym sym * str -> bool
hasSym(a, x) tests whether a is a symbol in x *)
fun hasSym(a, x) = Str.substr([al, x);

(* val hasAllSyms : str -> bool

hasAllSyms x tests whether x has at least one occurrence of
all of 0, 1 and 2 *)

fun hasAllSyms x =
hasSym(Sym.fromString "O", x) andalso
hasSym(Sym.fromString "1", x) andalso
hasSym(Sym.fromString "2", x)

(x val inX : int -> str -> bool
if m >= 0 and x is in {0, 1, 2}"*, inX m x tests whether x is in X_m *)
fun inX m x =

not (hasBad2 x) andalso
Set.all



(fn y => if length y = m then hasAllSyms y else true)
(StrSet.substrings x);

(* val upto : int -> str set

if n >= 0, then upto n returns all strings over alphabet {0, 1, 2} of
length no more than n *)

fun upto 0 : str set = Set.sing nil
| upto n =
let val xs = upto(n - 1)

val ys = Set.filter (fn x => length x = n - 1) xs
in StrSet.union

(xs, StrSet.concat(StrSet.fromString "O, 1, 2", ys))
end;

(* val partition : int -> int -> str set * str set
if m >= 0 and n >= 0, then partition m n returns (xs, ys) where:
xs is all elements of upto n that are in X_m; and
ys is all elements of upto n that are not in X_m *)

fun partition m n = Set.partition (inX m) (upto n);

(* val test : int -> int -> dfa -> str option * str option

if m >= 0 and n >= 0, then test m n returns a function f such that,
for all DFAs dfa, f dfa returns a pair (xOpt, yOpt) such that:

If there is an element of {0, 1, 2}"* of length no more than n that
is in X_m but is not accepted by dfa, then xOpt = SOME x for some
such x; otherwise, xOpt = NONE.

If there is an element of {0, 1, 2}"* of length no more than n that
is not in X_m but is accepted by dfa, then yOpt = SOME y for some
such y; otherwise, yOpt = NONE. *)

fun test m n =
let val (goods, bads) = partition m n
in fn dfa =>
let val determAccepted = DFA.determAccepted dfa
val goodNotAccOpt = Set.position (not o determAccepted) goods

val badAccOpt = Set.position determAccepted bads
in ((case goodNotAccOpt of
NONE => NONE
| SOME i => SOME(ListAux.sub(Set.tolList goods, i))),



e
end;

(case badAccOpt of
=> NONE
| SOME i => SOME(ListAux.sub(Set.toList bads, i))))

nd

NONE

(* doit m prints the required information about ansDFA m *)

fun

doit m =
let val d
val b
val n
val r

in print
print
print
print

end;

fa = ansDFA m

)

es =

case test m 12 dfa of

DFA.alphabet dfa
DFA.numStates dfa

(NONE, NONE) => "test succeeded"
"test failed"
"m = "; print(Int.toString m); print ": ";

=>

"alphabet is {"; print(SymSet.toString bs); print "}; ";

"number of states is "; print(Int.toString n); print "; ";

res; print "\n"

in the file ps6-p3-testing.sml, and load it into Forlan:

- use "ps6-p3-testing.sml";

[opening ps6-p3-testing.sml]

val
val
val
val
val
val
val
val
val

hasBad2 = fn :

hasSym = fn :

hasAl11Syms
inX = fn :
upto = fn :

partition = fn : int

test = fn
doit = fn
it = () :u

= fn :

int -> str set
-> int
: int -> int -> dfa -> str option * str option

nit

str -> bool
sym * str -> bool

str -> bool
int -> str -> bool

: int -> unit

-> str set * str set

Finally, we apply the function doit to each of the required values of m, printing the required
information about each ansDFA m:

- app doit [0, 1, 2, 3, 4, 5];

8 8 8B 8 88
|

val

0: alphabet
1: alphabet
2: alphabet
3: alphabet
4: alphabet
5: alphabet
it=(0 :u

is {}; number

is {};
is {0,
is {0,
is {0,
is {0,
nit

number
1, 2%;
; number

of states

of states

number

; number
; number

Note that the alphabets of the DFAs when

Xo = {%,

0,1,2}).

of
of
of
of

is 1; test succeeded
is 1; test succeeded
states is 3; test succeeded
states is 9; test succeeded
states is 18; test succeeded
states is 30; test succeeded

is 0 and 1 are empty. (Xo = 0, X1 = {%} and



(c) Easy calculations using the functions’ specifications show that:
e L(minAndRen M) = L(M), for all DFAs M;
o L(faToDFAmar M) = L(M), for all FAs M;
e L(regToDFAmar o) = L(«a), for all regular expressions «;
e L(allStrDFA) = {0,1,2}*.
Define Len € N — Lan by
Lenm ={w € {0,1,2}* | |lw| =m}.

Because {0,1,2}™ = Lenm, for all m € N, we have that L(lenDFA m) = Lenm, for all m € N.
Define HasStr € Str — Lan and NotHasStr € Str — Lan by:

HasStrz = {w € {0,1,2}* | z is a substring of w },
NotHasStrz = {w € {0,1,2}" | z is not a substring of w }.

Because HasStrz = {0,1,2}* {z} {0,1,2}*, for all z € {0,1,2}*, we have that L(hasStrDFA z)
HasStr z, for all z € {0,1,2}*. And, because {0,1,2}* — HasStr 2 = NotHasStr z, for all =
{0,1,2}*, and complementation corresponds to negation, we have that L(notHasStrDFA z)
NotHasStr z, for all « € {0,1,2}*.

Let

m

HasAllSyms = {w € {0,1,2}* | {0,1,2} C alphabetw }.

Then we have that L(hasAllSymsDFA) = HasStr0 N HasStr 1 N HasStr2 = HasAllSyms,
because intersection corresponds to conjunction (“and”). Let

NotHasAllSyms = {w € {0,1,2}" | {0,1,2} ¢ alphabetw }.

Since {0,1,2}* — HasAllSyms = NotHasAllSyms, we have that L(notHasAllSymsDFA) =
NotHasAllSyms.
Define LenAndNotHasAllSyms € N — Lan by

LenAndNotHasAllSymsm = {w € {0,1,2}* | |lw| = m and {0, 1,2} ¢ alphabetw }.

Because LenAndNotHasAllSymsm = Lenm N NotHasAllSyms, for all m € N, we have that
L(lenAndNotHasAllSymsDFA m) = LenAndNotHasAllSymsm, for all m € N.
Define SomeLenNotHasAllSyms € N — Lan by:

SomeLenNotHasAllSymsm =
{w € {0,1,2}" | there is a substring v of w such that |v| = m and {0, 1,2} Z alphabetv }.

Because
SomeLenNotHasAllSymsm = {0, 1,2}* (LenAndNotHasAllSymsm) {0, 1,2}*,

for all m € N, we have that L(someLenNotHasAllSymsDFA m) = SomeLenNotHasAllSymsm,
for all m € N.
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Define AllLenHasAllSyms € N — Lan by:

AllLenHasAllSymsm =
{w € {0,1,2}* | for all substrings v of w, if |[v| = m, then {0, 1,2} C alphabetv }.

Because {0,1,2}* — SomeLenNotHasAllSymsm = AllLenHasAllSyms, for all m € N, we have
that L(allLenHasAllSymsDFA m) = AllLenHasAllSymsm, for all m € N.
Let
NoBad = {w € {0,1,2}" | neither 02, 10 nor 21 are substrings of w }.

Since NoBad = NotHasStr 02N NotHasStr 10N NotHasStr 21, we have that L(noBadDFA) =
NoBad.

Finally, because NoBad N AllLenHasAllSymsm = X,,, for all m € N, we have that
L(ansDFA m) = X,,, for all m € N.
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