
CS 516—Software Foundations via Formal Languages—Spring 2022

Problem Set 6

Model Answers

Problem 1

Suppose, toward a contradiction, that X is regular. Thus there is an n ∈ N−{0} with the property

of the Pumping Lemma, where X has been substituted for L. Suppose z = 0n1n2n3n. Since

n+ n ≤ n+ n, we have that z ∈ X . Thus, since |z| = 4n ≥ n, it follows there are u, v, w ∈ Str such

that z = uvw and properties (1)–(3) of the lemma hold. Since uvw = z = 0n1n2n3n, (1) tells us

that there are i, j, k ∈ N such that

u = 0
i, v = 0

j, w = 0
k
1
n
2
n
3
n, i+ j + k = n.

By (2), we have that j ≥ 1, and thus that n + j > n. By (3), we have that 0i+j+j+k1n2n3n =

0i0j0j0k1n2n3n = uvvw = uv2w ∈ X . Thus (i+j+j+k)+n ≤ n+n, so that n+j = i+j+k+j =

i+ j + j + k ≤ n. But n+ j ≤ n contradicts n+ j > n. Thus X is regular.

Problem 2

(a) G is

A→ 0A3 | A3 | B | C

B→ 1B3 | D

C→ 0C2 | D

D→% | 1D2 | D2

(b) We put the expression

{variables} A, B, C, D {start variable} A

{productions}

A -> 0A3 | A3 | B | C;

B -> 1B3 | D;

C -> 0C2 | D;

D -> % | 1D2 | D2

of G in the file ps6-p2-gram, and load G into Forlan, calling it gram:

- val gram = Gram.input "ps6-p2-gram";

val gram = - : gram

Then we compute and display the alphabet of gram, find parse trees pt1 and pt2 showing why

0012223 and 11112233 are generated by gram, and then display those parse trees:

- SymSet.output("", Gram.alphabet gram);

1

0, 1, 2, 3

val it = () : unit

- val pt1 = Gram.parseAlphabet gram (Str.fromString "0012223");

val pt1 = - : pt

- val pt2 = Gram.parseAlphabet gram (Str.fromString "11112233");

val pt2 = - : pt

- PT.output("", pt1);

A(0, A(C(0, C(D(1, D(D(%), 2), 2)), 2)), 3)

val it = () : unit

- PT.output("", pt2);

A(B(1, B(1, B(D(1, D(1, D(%), 2), 2)), 3), 3))

val it = () : unit

Here are drawings of the two parse trees:

%

A

0 3A

C

0 2C

A

B

B 3

1 B 3

D

1 D 2

D 2

%

(pt
1
) (pt

2
)

1

1

D

1 2D

D 2

(c) Continuing our Forlan session, we put our testing code

(* val inOrder : sym list -> bool

inOrder x tests whether an element of {0, 1, 2, 3}^* is in

{0}^*{1}^*{2}^*{3}^* *)

fun inOrder (b :: c :: ds) =

Sym.compare(b, c) <> GREATER andalso inOrder(c :: ds)

| inOrder _ = true;

(* val count : sym * sym list -> int

count(a, bs) counts the number of occurrences of a in bs *)

2

fun count(_, nil) = 0

| count(a, b :: bs) =

(if Sym.equal(a, b) then 1 else 0) + count(a, bs);

(* val inX : str -> bool

inX x tests whether an element x of {0, 1, 2, 3}^* is in X *)

fun inX (x : str) =

inOrder x andalso

let val i = count(Sym.fromString "0", x)

val j = count(Sym.fromString "1", x)

val k = count(Sym.fromString "2", x)

val l = count(Sym.fromString "3", x)

in i + j <= k + l end;

(* val upto : int -> str set

if n >= 0, then upto n returns all strings over alphabet {0, 1, 2,

3} of length no more than n *)

fun upto 0 : str set = Set.sing nil

| upto n =

let val xs = upto(n - 1)

val ys = Set.filter (fn x => length x = n - 1) xs

in StrSet.union

(xs, StrSet.concat(StrSet.fromString "0, 1, 2, 3", ys))

end;

(* val partition : int -> str set * str set

if n >= 0, then partition n returns (xs, ys) where:

xs is all elements of upto n that are in X; and

ys is all elements of upto n that are not in X *)

fun partition n = Set.partition inX (upto n);

(* val test : int -> gram -> str option * str option

if n >= 0, then test n returns a function f such that, for all grammars

gram, f gram returns a pair (xOpt, yOpt) such that:

If there is an element of {0, 1, 2, 3}^* of length no more than n

that is in X but is not generated by gram, then xOpt = SOME x

for some such x; otherwise, xOpt = NONE.

3

If there is an element of {0, 1, 2, 3}^* of length no more than n

that is not in X but is generated by gram, then yOpt = SOME y

for some such y; otherwise, yOpt = NONE. *)

fun test n =

let val (goods, bads) = partition n

in fn gram =>

let val generated = Gram.generated gram

val goodNotGenOpt = Set.position (not o generated) goods

val badGenOpt = Set.position generated bads

in ((case goodNotGenOpt of

NONE => NONE

| SOME i => SOME(ListAux.sub(Set.toList goods, i))),

(case badGenOpt of

NONE => NONE

| SOME i => SOME(ListAux.sub(Set.toList bads, i))))

end

end;

in the file ps6-p2-testing.sml, and load it into Forlan:

- use "ps6-p2-testing.sml";

[opening ps6-p2-testing.sml]

val inOrder = fn : sym list -> bool

val count = fn : sym * sym list -> int

val inX = fn : str -> bool

val upto = fn : int -> str set

val partition = fn : int -> str set * str set

val test = fn : int -> gram -> str option * str option

val it = () : unit

Then we carry out the required testing:

- test 9 gram;

val it = (NONE,NONE) : str option * str option

Problem 3

(a) First, we give these definitions:

minAndRen = renameStatesCanonically ◦minimize,

faToDFAmar = minAndRen ◦ nfaToDFA ◦ efaToNFA ◦ faToEFA,

regToDFAmar = faToDFAmar ◦ regToFA,

allStrDFA = regToDFAmar((0+ 1+ 2)∗).

Thus minAndRen ∈ DFA→DFA, faToDFAmar ∈ FA→DFA, regToDFAmar ∈ Reg→DFA

and allStrDFA ∈ DFA.

We define lenDFA ∈ N→DFA by: lenDFAm = regToDFAmar((0 + 1+ 2)m).

4

We define hasStrDFA ∈ Str→DFA and notHasStrDFA ∈ Str→DFA by:

hasStrDFA x = regToDFAmar((0 + 1+ 2)∗(strToReg x)(0 + 1+ 2)∗),

notHasStrDFA x = minAndRen(minus(allStrDFA,hasStrDFA x)).

We let the DFA hasAllSymsDFA be

minAndRen(inter(hasStrDFA 0, inter(hasStrDFA 1,hasStrDFA 2))),

and let the DFA notHasAllSymsDFA be

minAndRen(minus(allStrDFA,hasAllSymsDFA)).

We define lenAndNotHasAllSymsDFA ∈ N→DFA by:

lenAndNotHasAllSymsDFAm =

minAndRen(inter(lenDFAm,notHasAllSymsDFA)).

We then define someLenNotHasAllSymsFA ∈ N→ FA by:

someLenNotHasAllSymsFAm =

concat(allStrDFA, concat(lenAndNotHasAllSymsDFAm, allStrDFA)).

We then define someLenNotHasAllSymsDFA ∈ N→DFA by:

someLenNotHasAllSymsDFAm = faToDFAmar(someLenNotHasAllSymsFAm).

And we define allLenHasAllSymsDFA ∈ N→DFA by:

allLenHasAllSymsDFAm =

minAndRen(minus(allStrDFA, someLenNotHasAllSymsDFAm)).

We let the DFA noBadDFA be

minAndRen(inter(notHasStrDFA 02, inter(notHasStrDFA 10,notHasStrDFA 21)).

Finally, we define ansDFA ∈ N→DFA by:

ansDFAm = minAndRen(inter(noBadDFA, allLenHasAllSymsDFAm)).

(b) We put our definition

val minAndRen = DFA.renameStatesCanonically o DFA.minimize;

val faToDFAmar = minAndRen o nfaToDFA o efaToNFA o faToEFA;

val regToDFAmar = faToDFAmar o regToFA;

val allStrReg = Reg.fromString "(0 + 1 + 2)*";

val allStrDFA = regToDFAmar allStrReg;

val allStrFA = injDFAToFA allStrDFA;

5

fun lenDFA m = regToDFAmar(Reg.power(Reg.fromString "0 + 1 + 2", m));

fun hasStrReg x =

Reg.concat(allStrReg, Reg.concat(strToReg x, allStrReg));

fun hasStrDFA x = regToDFAmar(hasStrReg x);

fun notHasStrDFA x = minAndRen(DFA.minus(allStrDFA, hasStrDFA x));

val hasAllSymsDFA =

minAndRen

(DFA.inter

(hasStrDFA(Str.fromString "0"),

DFA.inter

(hasStrDFA(Str.fromString "1"),

hasStrDFA(Str.fromString "2"))));

val notHasAllSymsDFA = minAndRen(DFA.minus(allStrDFA, hasAllSymsDFA));

fun lenAndNotHasAllSymsDFA m =

minAndRen(DFA.inter(lenDFA m, notHasAllSymsDFA));

fun lenAndNotHasAllSymsFA m = injDFAToFA(lenAndNotHasAllSymsDFA m);

fun someLenNotHasAllSymsFA m =

FA.concat(allStrFA, FA.concat(lenAndNotHasAllSymsFA m, allStrFA));

fun someLenNotHasAllSymsDFA m = faToDFAmar(someLenNotHasAllSymsFA m);

fun allLenHasAllSymsDFA m =

minAndRen(DFA.minus(allStrDFA, someLenNotHasAllSymsDFA m));

val noBadDFA =

minAndRen

(DFA.inter

(notHasStrDFA(Str.fromString "02"),

DFA.inter

(notHasStrDFA(Str.fromString "10"),

notHasStrDFA(Str.fromString "21"))));

fun ansDFA m = minAndRen(DFA.inter(noBadDFA, allLenHasAllSymsDFA m));

of ansDFA in the file ps6-p3.sml, and load it into Forlan:

- use "ps6-p3.sml";

[opening ps6-p3.sml]

val minAndRen = fn : dfa -> dfa

val faToDFAmar = fn : fa -> dfa

val regToDFAmar = fn : reg -> dfa

val allStrReg = - : reg

val allStrDFA = - : dfa

val allStrFA = - : fa

val lenDFA = fn : int -> dfa

6

val hasStrReg = fn : str -> reg

val hasStrDFA = fn : str -> dfa

val notHasStrDFA = fn : str -> dfa

val hasAllSymsDFA = - : dfa

val notHasAllSymsDFA = - : dfa

val lenAndNotHasAllSymsDFA = fn : int -> dfa

val lenAndNotHasAllSymsFA = fn : int -> fa

val someLenNotHasAllSymsFA = fn : int -> fa

val someLenNotHasAllSymsDFA = fn : int -> dfa

val allLenHasAllSymsDFA = fn : int -> dfa

val noBadDFA = - : dfa

val ansDFA = fn : int -> dfa

val it = () : unit

Next we put our testing code

(* val hasBad2 : str -> bool

hasBad2 x tests whether x has one or more of 02, 10 and 21 as a

substring *)

fun hasBad2 x =

Str.substr(Str.fromString "02", x) orelse

Str.substr(Str.fromString "10", x) orelse

Str.substr(Str.fromString "21", x)

(* val hasSym sym * str -> bool

hasSym(a, x) tests whether a is a symbol in x *)

fun hasSym(a, x) = Str.substr([a], x);

(* val hasAllSyms : str -> bool

hasAllSyms x tests whether x has at least one occurrence of

all of 0, 1 and 2 *)

fun hasAllSyms x =

hasSym(Sym.fromString "0", x) andalso

hasSym(Sym.fromString "1", x) andalso

hasSym(Sym.fromString "2", x)

(* val inX : int -> str -> bool

if m >= 0 and x is in {0, 1, 2}^*, inX m x tests whether x is in X_m *)

fun inX m x =

not(hasBad2 x) andalso

Set.all

7

(fn y => if length y = m then hasAllSyms y else true)

(StrSet.substrings x);

(* val upto : int -> str set

if n >= 0, then upto n returns all strings over alphabet {0, 1, 2} of

length no more than n *)

fun upto 0 : str set = Set.sing nil

| upto n =

let val xs = upto(n - 1)

val ys = Set.filter (fn x => length x = n - 1) xs

in StrSet.union

(xs, StrSet.concat(StrSet.fromString "0, 1, 2", ys))

end;

(* val partition : int -> int -> str set * str set

if m >= 0 and n >= 0, then partition m n returns (xs, ys) where:

xs is all elements of upto n that are in X_m; and

ys is all elements of upto n that are not in X_m *)

fun partition m n = Set.partition (inX m) (upto n);

(* val test : int -> int -> dfa -> str option * str option

if m >= 0 and n >= 0, then test m n returns a function f such that,

for all DFAs dfa, f dfa returns a pair (xOpt, yOpt) such that:

If there is an element of {0, 1, 2}^* of length no more than n that

is in X_m but is not accepted by dfa, then xOpt = SOME x for some

such x; otherwise, xOpt = NONE.

If there is an element of {0, 1, 2}^* of length no more than n that

is not in X_m but is accepted by dfa, then yOpt = SOME y for some

such y; otherwise, yOpt = NONE. *)

fun test m n =

let val (goods, bads) = partition m n

in fn dfa =>

let val determAccepted = DFA.determAccepted dfa

val goodNotAccOpt = Set.position (not o determAccepted) goods

val badAccOpt = Set.position determAccepted bads

in ((case goodNotAccOpt of

NONE => NONE

| SOME i => SOME(ListAux.sub(Set.toList goods, i))),

8

(case badAccOpt of

NONE => NONE

| SOME i => SOME(ListAux.sub(Set.toList bads, i))))

end

end;

(* doit m prints the required information about ansDFA m *)

fun doit m =

let val dfa = ansDFA m

val bs = DFA.alphabet dfa

val n = DFA.numStates dfa

val res =

case test m 12 dfa of

(NONE, NONE) => "test succeeded"

| _ => "test failed"

in print "m = "; print(Int.toString m); print ": ";

print "alphabet is {"; print(SymSet.toString bs); print "}; ";

print "number of states is "; print(Int.toString n); print "; ";

print res; print "\n"

end;

in the file ps6-p3-testing.sml, and load it into Forlan:

- use "ps6-p3-testing.sml";

[opening ps6-p3-testing.sml]

val hasBad2 = fn : str -> bool

val hasSym = fn : sym * str -> bool

val hasAllSyms = fn : str -> bool

val inX = fn : int -> str -> bool

val upto = fn : int -> str set

val partition = fn : int -> int -> str set * str set

val test = fn : int -> int -> dfa -> str option * str option

val doit = fn : int -> unit

val it = () : unit

Finally, we apply the function doit to each of the required values of m, printing the required

information about each ansDFAm:

- app doit [0, 1, 2, 3, 4, 5];

m = 0: alphabet is {}; number of states is 1; test succeeded

m = 1: alphabet is {}; number of states is 1; test succeeded

m = 2: alphabet is {0, 1, 2}; number of states is 3; test succeeded

m = 3: alphabet is {0, 1, 2}; number of states is 9; test succeeded

m = 4: alphabet is {0, 1, 2}; number of states is 18; test succeeded

m = 5: alphabet is {0, 1, 2}; number of states is 30; test succeeded

val it = () : unit

Note that the alphabets of the DFAs when m is 0 and 1 are empty. (X0 = ∅, X1 = {%} and

X2 = {%, 0, 1, 2}).

9

(c) Easy calculations using the functions’ specifications show that:

• L(minAndRenM) = L(M), for all DFAs M ;

• L(faToDFAmarM) = L(M), for all FAs M ;

• L(regToDFAmarα) = L(α), for all regular expressions α;

• L(allStrDFA) = {0, 1, 2}∗.

Define Len ∈ N→ Lan by

Lenm = {w ∈ {0, 1, 2}∗ | |w| = m }.

Because {0, 1, 2}m = Lenm, for all m ∈ N, we have that L(lenDFAm) = Lenm, for all m ∈ N.

Define HasStr ∈ Str→ Lan and NotHasStr ∈ Str→ Lan by:

HasStrx = {w ∈ {0, 1, 2}∗ | x is a substring of w },

NotHasStrx = {w ∈ {0, 1, 2}∗ | x is not a substring of w }.

Because HasStr x = {0, 1, 2}∗ {x} {0, 1, 2}∗, for all x ∈ {0, 1, 2}∗, we have that L(hasStrDFA x) =

HasStrx, for all x ∈ {0, 1, 2}∗. And, because {0, 1, 2}∗ − HasStrx = NotHasStrx, for all x ∈

{0, 1, 2}∗, and complementation corresponds to negation, we have that L(notHasStrDFAx) =

NotHasStrx, for all x ∈ {0, 1, 2}∗.

Let

HasAllSyms = {w ∈ {0, 1, 2}∗ | {0, 1, 2} ⊆ alphabetw }.

Then we have that L(hasAllSymsDFA) = HasStr 0 ∩ HasStr 1 ∩ HasStr 2 = HasAllSyms,

because intersection corresponds to conjunction (“and”). Let

NotHasAllSyms = {w ∈ {0, 1, 2}∗ | {0, 1, 2} 6⊆ alphabetw }.

Since {0, 1, 2}∗ − HasAllSyms = NotHasAllSyms, we have that L(notHasAllSymsDFA) =

NotHasAllSyms.

Define LenAndNotHasAllSyms ∈ N→ Lan by

LenAndNotHasAllSymsm = {w ∈ {0, 1, 2}∗ | |w| = m and {0, 1, 2} 6⊆ alphabetw }.

Because LenAndNotHasAllSymsm = Lenm ∩NotHasAllSyms, for all m ∈ N, we have that

L(lenAndNotHasAllSymsDFAm) = LenAndNotHasAllSymsm, for all m ∈ N.

Define SomeLenNotHasAllSyms ∈ N→ Lan by:

SomeLenNotHasAllSymsm =

{w ∈ {0, 1, 2}∗ | there is a substring v of w such that |v| = m and {0, 1, 2} 6⊆ alphabet v }.

Because

SomeLenNotHasAllSymsm = {0, 1, 2}∗ (LenAndNotHasAllSymsm) {0, 1, 2}∗,

for allm ∈ N, we have that L(someLenNotHasAllSymsDFAm) = SomeLenNotHasAllSymsm,

for all m ∈ N.

10

Define AllLenHasAllSyms ∈ N→ Lan by:

AllLenHasAllSymsm =

{w ∈ {0, 1, 2}∗ | for all substrings v of w, if |v| = m, then {0, 1, 2} ⊆ alphabet v }.

Because {0, 1, 2}∗−SomeLenNotHasAllSymsm = AllLenHasAllSyms, for all m ∈ N, we have

that L(allLenHasAllSymsDFAm) = AllLenHasAllSymsm, for all m ∈ N.

Let

NoBad = {w ∈ {0, 1, 2}∗ | neither 02, 10 nor 21 are substrings of w }.

Since NoBad = NotHasStr 02∩NotHasStr 10∩NotHasStr 21, we have that L(noBadDFA) =

NoBad.

Finally, because NoBad ∩ AllLenHasAllSymsm = Xm, for all m ∈ N, we have that

L(ansDFAm) = Xm, for all m ∈ N.

11

