CS 516—Software Foundations via Formal Languages—Spring 2022

Problem Set 6

Model Answers

Problem 1

Suppose, toward a contradiction, that X is regular. Thus there is an $n \in \mathbb{N} - \{0\}$ with the property of the Pumping Lemma, where X has been substituted for L. Suppose $z = 0^n 1^n 2^n 3^n$. Since $n + n \le n + n$, we have that $z \in X$. Thus, since $|z| = 4n \ge n$, it follows there are $u, v, w \in \mathbf{Str}$ such that z = uvw and properties (1)–(3) of the lemma hold. Since $uvw = z = 0^n 1^n 2^n 3^n$, (1) tells us that there are $i, j, k \in \mathbb{N}$ such that

$$u = 0^i$$
, $v = 0^j$, $w = 0^k 1^n 2^n 3^n$, $i + j + k = n$.

By (2), we have that $j \geq 1$, and thus that n+j > n. By (3), we have that $0^{i+j+j+k}1^n2^n3^n = 0^i0^j0^j0^k1^n2^n3^n = uvvw = uv^2w \in X$. Thus $(i+j+j+k)+n \leq n+n$, so that $n+j=i+j+k+j=i+j+k \leq n$. But $n+j \leq n$ contradicts n+j > n. Thus X is regular.

Problem 2

(a) G is

$$\begin{split} \mathsf{A} &\rightarrow \mathsf{0A3} \mid \mathsf{A3} \mid \mathsf{B} \mid \mathsf{C} \\ \mathsf{B} &\rightarrow \mathsf{1B3} \mid \mathsf{D} \\ \mathsf{C} &\rightarrow \mathsf{0C2} \mid \mathsf{D} \\ \mathsf{D} &\rightarrow \% \mid \mathsf{1D2} \mid \mathsf{D2} \end{split}$$

(b) We put the expression

```
{variables} A, B, C, D {start variable} A
{productions}
A -> 0A3 | A3 | B | C;
B -> 1B3 | D;
C -> 0C2 | D;
D -> % | 1D2 | D2
```

of G in the file ps6-p2-gram, and load G into Forlan, calling it gram:

```
- val gram = Gram.input "ps6-p2-gram";
val gram = - : gram
```

Then we compute and display the alphabet of gram, find parse trees pt1 and pt2 showing why 0012223 and 11112233 are generated by gram, and then display those parse trees:

```
- SymSet.output("", Gram.alphabet gram);
```

```
0, 1, 2, 3  
val it = () : unit  
- val pt1 = Gram.parseAlphabet gram (Str.fromString "0012223"); 
val pt1 = - : pt  
- val pt2 = Gram.parseAlphabet gram (Str.fromString "11112233"); 
val pt2 = - : pt  
- PT.output("", pt1); 
A(0, A(C(0, C(D(1, D(D(\%), 2), 2)), 2)), 3) 
val it = () : unit  
- PT.output("", pt2); 
A(B(1, B(1, B(D(1, D(1, D(\%), 2), 2)), 3), 3)) 
val it = () : unit
```

Here are drawings of the two parse trees:

(c) Continuing our Forlan session, we put our testing code

```
(* val inOrder : sym list -> bool

inOrder x tests whether an element of {0, 1, 2, 3}^* is in
{0}^*{1}^*{2}^*{3}^* *)

fun inOrder (b :: c :: ds) =
        Sym.compare(b, c) <> GREATER and also inOrder(c :: ds)
        | inOrder _ = true;

(* val count : sym * sym list -> int
        count(a, bs) counts the number of occurrences of a in bs *)
```

```
= 0
fun count(_, nil)
  | count(a, b :: bs) =
      (if Sym.equal(a, b) then 1 else 0) + count(a, bs);
(* val inX : str -> bool
  inX x tests whether an element x of \{0, 1, 2, 3\}^* is in X *)
fun inX (x : str) =
     inOrder x andalso
     let val i = count(Sym.fromString "0", x)
         val j = count(Sym.fromString "1", x)
         val k = count(Sym.fromString "2", x)
         val 1 = count(Sym.fromString "3", x)
     in i + j \le k + l end;
(* val upto : int -> str set
  3} of length no more than n *)
fun upto 0 : str set = Set.sing nil
  | upto n
     let val xs = upto(n - 1)
         val ys = Set.filter (fn x \Rightarrow length x = n - 1) xs
     in StrSet.union
         (xs, StrSet.concat(StrSet.fromString "0, 1, 2, 3", ys))
     end;
(* val partition : int -> str set * str set
  if n \ge 0, then partition n returns (xs, ys) where:
  xs is all elements of upto n that are in X; and
  ys is all elements of upto n that are not in X *)
fun partition n = Set.partition inX (upto n);
(* val test : int -> gram -> str option * str option
  if n \ge 0, then test n returns a function f such that, for all grammars
  gram, f gram returns a pair (xOpt, yOpt) such that:
    If there is an element of \{0, 1, 2, 3\}^* of length no more than n
    that is in X but is not generated by gram, then xOpt = SOME x
    for some such x; otherwise, xOpt = NONE.
```

```
If there is an element of \{0, 1, 2, 3\}^* of length no more than n
          that is not in X but is generated by gram, then yOpt = SOME y
          for some such y; otherwise, yOpt = NONE. *)
     fun test n =
           let val (goods, bads) = partition n
           in fn gram =>
                   let val generated
                                         = Gram.generated gram
                       val goodNotGenOpt = Set.position (not o generated) goods
                       val badGenOpt
                                         = Set.position generated bads
                   in ((case goodNotGenOpt of
                             NONE => NONE
                           | SOME i => SOME(ListAux.sub(Set.toList goods, i))),
                       (case badGenOpt of
                             NONE => NONE
                            | SOME i => SOME(ListAux.sub(Set.toList bads, i))))
                   end
           end;
in the file ps6-p2-testing.sml, and load it into Forlan:
     - use "ps6-p2-testing.sml";
     [opening ps6-p2-testing.sml]
     val inOrder = fn : sym list -> bool
     val count = fn : sym * sym list -> int
     val inX = fn : str -> bool
     val upto = fn : int -> str set
     val partition = fn : int -> str set * str set
     val test = fn : int -> gram -> str option * str option
     val it = () : unit
Then we carry out the required testing:
     - test 9 gram;
     val it = (NONE, NONE) : str option * str option
Problem 3
```

(a) First, we give these definitions:

```
minAndRen = renameStatesCanonically \circ minimize,
 faToDFAmar = minAndRen \circ nfaToDFA \circ efaToNFA \circ faToEFA,
regToDFAmar = faToDFAmar \circ regToFA,
    \mathbf{allStrDFA} = \mathbf{regToDFAmar}((0+1+2)^*).
```

Thus $minAndRen \in DFA \rightarrow DFA$, $faToDFAmar \in FA \rightarrow DFA$, $regToDFAmar \in Reg \rightarrow DFA$ and all $StrDFA \in DFA$.

```
We define lenDFA \in \mathbb{N} \to DFA by: lenDFA m = regToDFAmar((0 + 1 + 2)^m).
```

```
We define \mathbf{hasStrDFA} \in \mathbf{Str} \to \mathbf{DFA} and \mathbf{notHasStrDFA} \in \mathbf{Str} \to \mathbf{DFA} by:
              \mathbf{hasStrDFA} \ x = \mathbf{regToDFAmar}((0+1+2)^*(\mathbf{strToReg} \ x)(0+1+2)^*),
          notHasStrDFA x = minAndRen(minus(allStrDFA, hasStrDFA x)).
   We let the DFA \mathbf{hasAllSymsDFA} be
           minAndRen(inter(hasStrDFA 0, inter(hasStrDFA 1, hasStrDFA 2))),
and let the DFA notHasAllSymsDFA be
                    minAndRen(minus(allStrDFA, hasAllSymsDFA)).\\
   We define lenAndNotHasAllSymsDFA \in \mathbb{N} \to DFA by:
                              lenAndNotHasAllSymsDFA m =
                   minAndRen(inter(lenDFA m, notHasAllSymsDFA)).
We then define someLenNotHasAllSymsFA \in \mathbb{N} \to \mathbf{FA} by:
                              someLenNotHasAllSymsFA m =
          \mathbf{concat}(\mathbf{allStrDFA}, \mathbf{concat}(\mathbf{lenAndNotHasAllSymsDFA}\ m, \mathbf{allStrDFA})).
We then define someLenNotHasAllSymsDFA \in \mathbb{N} \to \mathbf{DFA} by:
    someLenNotHasAllSymsDFA m = faToDFAmar(someLenNotHasAllSymsFA m).
And we define allLenHasAllSymsDFA \in \mathbb{N} \to DFA by:
                                 allLenHasAllSymsDFA m =
            minAndRen(minus(allStrDFA, someLenNotHasAllSymsDFA m)).
   We let the DFA noBadDFA be
   minAndRen(inter(notHasStrDFA 02, inter(notHasStrDFA 10, notHasStrDFA 21)).
   Finally, we define \mathbf{ansDFA} \in \mathbb{N} \to \mathbf{DFA} by:
         ansDFA m = minAndRen(inter(noBadDFA, allLenHasAllSymsDFA m)).
(b) We put our definition
     val minAndRen
                       = DFA.renameStatesCanonically o DFA.minimize;
     val faToDFAmar = minAndRen o nfaToDFA o efaToNFA o faToEFA;
     val regToDFAmar = faToDFAmar o regToFA;
     val allStrReg = Reg.fromString "(0 + 1 + 2)*";
     val allStrDFA = regToDFAmar allStrReg;
```

val allStrFA = injDFAToFA allStrDFA;

```
fun lenDFA m = regToDFAmar(Reg.power(Reg.fromString "0 + 1 + 2", m));
     fun hasStrReg x
           Reg.concat(allStrReg, Reg.concat(strToReg x, allStrReg));
     fun hasStrDFA x
                       = regToDFAmar(hasStrReg x);
     fun notHasStrDFA x = minAndRen(DFA.minus(allStrDFA, hasStrDFA x));
     val hasAllSymsDFA
           minAndRen
           (DFA.inter
            (hasStrDFA(Str.fromString "0"),
             DFA.inter
             (hasStrDFA(Str.fromString "1"),
              hasStrDFA(Str.fromString "2"))));
     val notHasAllSymsDFA = minAndRen(DFA.minus(allStrDFA, hasAllSymsDFA));
     fun lenAndNotHasAllSymsDFA m =
           minAndRen(DFA.inter(lenDFA m, notHasAllSymsDFA));
     fun lenAndNotHasAllSymsFA m = injDFAToFA(lenAndNotHasAllSymsDFA m);
     fun someLenNotHasAllSymsFA m =
           FA.concat(allStrFA, FA.concat(lenAndNotHasAllSymsFA m, allStrFA));
     fun someLenNotHasAllSymsDFA m = faToDFAmar(someLenNotHasAllSymsFA m);
     fun allLenHasAllSymsDFA m =
           minAndRen(DFA.minus(allStrDFA, someLenNotHasAllSymsDFA m));
     val noBadDFA =
           minAndRen
           (DFA.inter
            (notHasStrDFA(Str.fromString "02"),
             DFA.inter
             (notHasStrDFA(Str.fromString "10"),
              notHasStrDFA(Str.fromString "21"))));
     fun ansDFA m = minAndRen(DFA.inter(noBadDFA, allLenHasAllSymsDFA m));
of ansDFA in the file ps6-p3.sml, and load it into Forlan:
     - use "ps6-p3.sml";
     [opening ps6-p3.sml]
     val minAndRen = fn : dfa -> dfa
     val faToDFAmar = fn : fa -> dfa
     val regToDFAmar = fn : reg -> dfa
     val allStrReg = - : reg
     val \ all StrDFA = - : dfa
     val \ all StrFA = - : fa
     val lenDFA = fn : int -> dfa
```

```
val hasStrReg = fn : str -> reg
     val hasStrDFA = fn : str -> dfa
     val notHasStrDFA = fn : str -> dfa
     val hasAllSymsDFA = - : dfa
     val notHasAllSymsDFA = - : dfa
     val lenAndNotHasAllSymsDFA = fn : int -> dfa
     val lenAndNotHasAllSymsFA = fn : int -> fa
     val someLenNotHasAllSymsFA = fn : int -> fa
     val someLenNotHasAllSymsDFA = fn : int -> dfa
     val allLenHasAllSymsDFA = fn : int -> dfa
     val\ noBadDFA = -: dfa
     val ansDFA = fn : int -> dfa
     val it = () : unit
Next we put our testing code
     (* val hasBad2 : str -> bool
        has Bad2 x tests whether x has one or more of 02, 10 and 21 as a
        substring *)
     fun hasBad2 x =
           Str.substr(Str.fromString "02", x) orelse
           Str.substr(Str.fromString "10", x) orelse
           Str.substr(Str.fromString "21", x)
     (* val hasSym sym * str -> bool
        hasSym(a, x) tests whether a is a symbol in x *)
     fun hasSym(a, x) = Str.substr([a], x);
     (* val hasAllSyms : str -> bool
        has All Syms x tests whether x has at least one occurrence of
        all of 0, 1 and 2 *)
     fun hasAllSyms x =
          hasSym(Sym.fromString "0", x) andalso
          hasSym(Sym.fromString "1", x) andalso
          hasSym(Sym.fromString "2", x)
     (* val inX : int -> str -> bool
        if m \ge 0 and x is in \{0, 1, 2\}^*, inX m x tests whether x is in X_m *)
     fun inX m x =
           not(hasBad2 x) andalso
           Set.all
```

```
(fn y => if length y = m then hasAllSyms y else true)
      (StrSet.substrings x);
(* val upto : int -> str set
   if n \ge 0, then upto n returns all strings over alphabet \{0, 1, 2\} of
   length no more than n *)
fun upto 0 : str set = Set.sing nil
  | upto n
      let val xs = upto(n - 1)
          val ys = Set.filter (fn x \Rightarrow length x = n - 1) xs
      in StrSet.union
         (xs, StrSet.concat(StrSet.fromString "0, 1, 2", ys))
      end;
(* val partition : int -> int -> str set * str set
   if m \ge 0 and n \ge 0, then partition m n returns (xs, ys) where:
   xs is all elements of upto n that are in X_m; and
   ys is all elements of upto n that are not in X_m *
fun partition m n = Set.partition (inX m) (upto n);
(* val test : int -> int -> dfa -> str option * str option
   if m \ge 0 and n \ge 0, then test m n returns a function f such that,
   for all DFAs dfa, f dfa returns a pair (xOpt, yOpt) such that:
     If there is an element of \{0, 1, 2\}^* of length no more than n that
     is in X_m but is not accepted by dfa, then xOpt = SOME x for some
     such x; otherwise, xOpt = NONE.
     If there is an element of \{0, 1, 2\}^* of length no more than n that
     is not in X_m but is accepted by dfa, then yOpt = SOME y for some
     such y; otherwise, yOpt = NONE. *)
fun test m n =
      let val (goods, bads) = partition m n
      in fn dfa =>
              let val determAccepted = DFA.determAccepted dfa
                  val goodNotAccOpt = Set.position (not o determAccepted) goods
                  val badAccOpt
                                     = Set.position determAccepted bads
              in ((case goodNotAccOpt of
                        NONE => NONE
                      | SOME i => SOME(ListAux.sub(Set.toList goods, i))),
```

```
(case badAccOpt of
                             NONE => NONE
                           | SOME i => SOME(ListAux.sub(Set.toList bads, i))))
                   end
           end;
     (* doit m prints the required information about ansDFA m *)
     fun doit m =
           let val dfa = ansDFA m
               val bs = DFA.alphabet dfa
               val n = DFA.numStates dfa
               val res =
                     case test m 12 dfa of
                          (NONE, NONE) => "test succeeded"
                                       => "test failed"
           in print "m = "; print(Int.toString m); print ": ";
              print "alphabet is {"; print(SymSet.toString bs); print "}; ";
              print "number of states is "; print(Int.toString n); print "; ";
              print res; print "\n"
           end;
in the file ps6-p3-testing.sml, and load it into Forlan:
     - use "ps6-p3-testing.sml";
     [opening ps6-p3-testing.sml]
     val hasBad2 = fn : str -> bool
     val hasSym = fn : sym * str -> bool
     val hasAllSyms = fn : str -> bool
     val inX = fn : int -> str -> bool
     val upto = fn : int -> str set
     val partition = fn : int -> int -> str set * str set
     val test = fn : int -> int -> dfa -> str option * str option
     val doit = fn : int -> unit
```

Finally, we apply the function doit to each of the required values of m, printing the required information about each ansDFA m:

```
- app doit [0, 1, 2, 3, 4, 5];
m = 0: alphabet is {}; number of states is 1; test succeeded
m = 1: alphabet is {}; number of states is 1; test succeeded
m = 2: alphabet is {0, 1, 2}; number of states is 3; test succeeded
m = 3: alphabet is {0, 1, 2}; number of states is 9; test succeeded
m = 4: alphabet is {0, 1, 2}; number of states is 18; test succeeded
m = 5: alphabet is {0, 1, 2}; number of states is 30; test succeeded
val it = (): unit
```

val it = () : unit

Note that the alphabets of the DFAs when m is 0 and 1 are empty. $(X_0 = \emptyset, X_1 = \{\%\})$ and $X_2 = \{\%, 0, 1, 2\}$.

- (c) Easy calculations using the functions' specifications show that:
 - $L(\min AndRen M) = L(M)$, for all DFAs M;
 - $L(\mathbf{faToDFAmar} M) = L(M)$, for all FAs M;
 - $L(\mathbf{regToDFAmar} \alpha) = L(\alpha)$, for all regular expressions α ;
 - $L(\mathbf{allStrDFA}) = \{0, 1, 2\}^*.$

Define $\mathbf{Len} \in \mathbb{N} \to \mathbf{Lan}$ by

Len
$$m = \{ w \in \{0, 1, 2\}^* \mid |w| = m \}.$$

Because $\{0,1,2\}^m = \mathbf{Len}\,m$, for all $m \in \mathbb{N}$, we have that $L(\mathbf{lenDFA}\,m) = \mathbf{Len}\,m$, for all $m \in \mathbb{N}$. Define $\mathbf{HasStr} \in \mathbf{Str} \to \mathbf{Lan}$ and $\mathbf{NotHasStr} \in \mathbf{Str} \to \mathbf{Lan}$ by:

$$\mathbf{HasStr}\, x = \{ w \in \{0, 1, 2\}^* \mid x \text{ is a substring of } w \},$$

$$\mathbf{NotHasStr}\, x = \{ w \in \{0, 1, 2\}^* \mid x \text{ is not a substring of } w \}.$$

Because $\mathbf{HasStr}\,x = \{0,1,2\}^* \{x\} \{0,1,2\}^*$, for all $x \in \{0,1,2\}^*$, we have that $L(\mathbf{hasStrDFA}\,x) = \mathbf{HasStr}\,x$, for all $x \in \{0,1,2\}^*$. And, because $\{0,1,2\}^* - \mathbf{HasStr}\,x = \mathbf{NotHasStr}\,x$, for all $x \in \{0,1,2\}^*$, and complementation corresponds to negation, we have that $L(\mathbf{notHasStrDFA}\,x) = \mathbf{NotHasStr}\,x$, for all $x \in \{0,1,2\}^*$.

Let

HasAllSyms =
$$\{ w \in \{0, 1, 2\}^* \mid \{0, 1, 2\} \subseteq \text{alphabet } w \}.$$

Then we have that $L(\mathbf{hasAllSymsDFA}) = \mathbf{HasStr0} \cap \mathbf{HasStr1} \cap \mathbf{HasStr2} = \mathbf{HasAllSyms}$, because intersection corresponds to conjunction ("and"). Let

NotHasAllSyms =
$$\{ w \in \{0, 1, 2\}^* \mid \{0, 1, 2\} \not\subseteq \text{alphabet } w \}.$$

Since $\{0,1,2\}^*$ – HasAllSyms = NotHasAllSyms, we have that L(notHasAllSymsDFA) = NotHasAllSyms.

Define LenAndNotHasAllSyms $\in \mathbb{N} \to \text{Lan}$ by

LenAndNotHasAllSyms
$$m = \{ w \in \{0,1,2\}^* \mid |w| = m \text{ and } \{0,1,2\} \not\subseteq \text{alphabet } w \}.$$

Because LenAndNotHasAllSyms $m = \text{Len } m \cap \text{NotHasAllSyms}$, for all $m \in \mathbb{N}$, we have that L(lenAndNotHasAllSymsDFA m) = LenAndNotHasAllSyms m, for all $m \in \mathbb{N}$.

Define SomeLenNotHasAllSyms $\in \mathbb{N} \to Lan$ by:

$$SomeLenNotHasAllSyms m =$$

```
\{w \in \{0,1,2\}^* \mid \text{there is a substring } v \text{ of } w \text{ such that } |v| = m \text{ and } \{0,1,2\} \not\subseteq \text{alphabet } v\}.
```

Because

$$\mathbf{SomeLenNotHasAllSyms}\,m = \{0,1,2\}^*\,(\mathbf{LenAndNotHasAllSyms}\,m)\,\{0,1,2\}^*,$$

for all $m \in \mathbb{N}$, we have that $L(\mathbf{someLenNotHasAllSymsDFA} m) = \mathbf{SomeLenNotHasAllSyms} m$, for all $m \in \mathbb{N}$.

Define AllLenHasAllSyms $\in \mathbb{N} \to Lan$ by:

Let

${\bf AllLen Has All Syms}\, m =$

 $\{\,w\in\{\mathsf{0},\mathsf{1},\mathsf{2}\}^*\mid \text{for all substrings }v\text{ of }w,\text{ if }|v|=m,\text{ then }\{\mathsf{0},\mathsf{1},\mathsf{2}\}\subseteq\mathbf{alphabet}\,v\,\}.$

Because $\{0,1,2\}^*$ – SomeLenNotHasAllSyms m= AllLenHasAllSyms, for all $m\in\mathbb{N}$, we have that $L(\mathbf{allLenHasAllSymsDFA}\ m)=\mathbf{AllLenHasAllSyms}\ m$, for all $m\in\mathbb{N}$.

 $\mathbf{NoBad} = \{\, w \in \{\mathsf{0},\mathsf{1},\mathsf{2}\}^* \mid \text{neither 02},\mathsf{10} \text{ nor 21 are substrings of } w \,\}.$

Since $NoBad = NotHasStr 02 \cap NotHasStr 10 \cap NotHasStr 21$, we have that L(noBadDFA) = NoBad.

Finally, because **NoBad** \cap **AllLenHasAllSyms** $m = X_m$, for all $m \in \mathbb{N}$, we have that $L(\mathbf{ansDFA} \ m) = X_m$, for all $m \in \mathbb{N}$.