CS 516—Software Foundations via Formal Languages—Spring 2022

Problem Set 7

Model Answers

Problem 1

Suppose, toward a contradiction, that X is context-free. Thus there is an n € N — {0} with the
property of the Pumping Lemma for Context-free Languages, where X has been substituted for L.
Let z = 0"1"2"3". Then z € X and |z| = 4n > n. Thus the property of the lemma tells us there
are u,v,w, r,y € Str such that z = wwwxy and

(1) |Jowz| < n; and
(2) vz # %; and
(3) wviwz'y € X, for all i € N.
Because 0"1"2"3" = z = wvwzy, (1) tells us that:
e alphabet(vwz) does not include both 0 and 2; and
e alphabet(vwz) does not include both 1 and 3.

By (2), we have that alphabet(vz) is a nonempty subset of {0,1,2,3}. And by (3), we have that

wwy = uv®wa’y € X. Thus there are four cases to consider.

e (0 € alphabet(vx)) Then 2 ¢ alphabet(vz). Thus uwy has less-than n occurrences of 0,
but n occurrences of 2, contradicting uwy € X.

e (1 € alphabet(vz)) Then 3 ¢ alphabet(vz). Thus wwy has less-than n occurrences of 1,
but n occurrences of 3, contradicting uwy € X.

e (2 € alphabet(vz)) Then 0 ¢ alphabet(vz). Thus wwy has less-than n occurrences of 2,
but n occurrences of 0, contradicting uwy € X.

e (3 € alphabet(vz)) Then 1 ¢ alphabet(vz). Thus wwy has less-than n occurrences of 3,
but n occurrences of 1, contradicting uwy € X.

Because we obtained a contradiction in each case, we have an overall contradiction. Thus X is not
context-free.

Problem 2

From the assumptions, we know that L is a regular language, GG is a grammar in Chomsky Normal
Form that generates L — {%}, k is the number of variables of G, n = 2¥, z € L has length at least
n, pt is a valid parse tree for G of height at least k + 1, where rootLabel pt = s¢ and yield pt = z,
and pat is a path through pt whose length is the height of pt.



It is consistent with these assumptions that L is { 0" |n € Nand n > 1}, G is the grammar

A— AA |0,
k=1,n=2F=2'=2 2=000, pt is
A

/\
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0 A A
| |
0 0

and pat is [2,1,1]. Thus the first repetition of variables as we follow pat through pt happens
immediately.

Continuing the proof, this means that pt’ = pt and pt”’ = A(A(0),A(0)). Thus u = %, v = 0,
w = 00, x = % and y = %. But this means that |vwz| = |0(00)%| = |000| = 3 > 2 = n, violating
the property (1) we needed to prove.

Problem 3
We define languages Y, Z and W by:

Y ={1"172"3" | n,j,k € Nand j < k },
Z ={0"192F2" | n,j,k € Nand j <k},
W={12F|jkeNandj <k}

We will show that IIp = X, IIg =Y, IIc = Z and IIp = W. Thus we will be able to conclude
L(G)=TIp = X.

Lemma PS7.3.1
(A) For allw € IIp, w € X.

(B) For allw € Ilg, w e Y.
(C) For allw € Ilc, w € Z.

(D) For allw € Ilp, w € W.

Proof. By induction on II. There are eleven productions to consider.

(A — 0A3) Suppose w € Ila, and assume the inductive hypothesis: w € X. Thus w = 07172%3!
for some i, 7, k,l € N such that i + j < k + . Hence 0w3 = 00°172%3!3 = 0i+1172k3!+1 ¢ X
because (i+1)+j=i+j+1<k+i+1=k+(+1).

(A — A3) Suppose w € Tl, and assume the inductive hypothesis: w € X. Thus w = 07172*3! for
some 14, j, k,1 € N such that i + j < k + 1. Hence w3 = 0'172*3!3 = 0°172*3!*1 € X because
i+ <k4+Il<k+i+1=k+({1+1).



(A — B) Suppose w € Ilg, and assume the inductive hypothesis: w € Y. Thus w = 1"172%3"
for some n,j,k € N such that j < k. Hence w = 0017172F3" = 0°1"*92%3" ¢ X because
0+(n+j)=n+j<n+k=k+n.

(A — C) Suppose w € Tlc, and assume the inductive hypothesis: w € Z. Thus w = Q"172k2"
for some n,j,k € N such that j < k. Hence w = 0"172F2730 = 07192k+730 ¢ X because
n+j<n+k=(k+n)+0.

(B — 1B3) Suppose w € Ilg, and assume the inductive hypothesis: w € Y. Thus w = 17172+3"
for some n, j,k € N such that j < k. Hence 1w3 = 117172F3"3 = 1"*+1172k37+1 ¢ V| because
Jj< k.

(B — D) Suppose w € Ilp, and assume the inductive hypothesis: w € W. Thus w = 172* for
some j, k € N such that j < k. Hence w = 1°172%3% € Y, because j < k.

(C— 0C2) Suppose w € Ilc, and assume the inductive hypothesis: w € Z. Thus w = Q"172%2"
for some n, j, k € N such that j < k. Hence Qw2 = 007172+272 = qn+1172k27+1 ¢ 7 because
Jj<k.

(C— D) Suppose w € Ip, and assume the inductive hypothesis: w € W. Thus w = 172* for
some j, k € N such that j < k. Hence w = 0°172%20 € Z, because j < k.

(D — %) We have that % = 1°2° € W, because 0 < 0.

(D — 1D2) Suppose w € IIp, and assume the inductive hypothesis: w € W. Thus w = 172* for
some j, k € N such that j < k. Hence 1w2 = 1172F2 = 17+12F+1 ¢ W, because j +1 < k + 1.

D — D2) Suppose w € IIp, and assume the inductive hypothesis: w € W. Thus w = 192% for
y
some j, k € N such that j < k. Hence w2 = 172F2 = 192%+1 ¢ W, because j < k < k + 1.

a

Lemma PS7.3.2
(1) For alln € N, 2™ € Ilp.

(2) For all w € Tlp and n € N, 1"w2™ € Ip.
(3) For all w € IIp and n € N, 1"w3" € Ilg.
(4) For all w € IIp and n € N, 0™w2" € Ilc.
(5) For all w € Il and n € N, w3™ € Ila.

(6) For all w € Ilg and n € N, 0"w3™ € Ila.

(7) For all w € Ilc and n € N, 0"w3™ € Ila.

Proof.



(1) We proceed by mathematical induction.
(Basis Step) We have 2° = % € Ilp, because of the production D — %.

(Inductive Step) Suppose n € N, and assume the inductive hypothesis: 2™ € IIp. Then
2+l = 2n2 ¢ TIp, because of the inductive hypothesis and the production D — D2.

(2) Suppose w € IIp. We must show that, for all n € N, 1"w2™ € IIp. We proceed by mathemat-
ical induction.

(Basis Step) We have 1°w2° = w € IIp, by the assumption.

(Inductive Step) Suppose n € N, and assume the inductive hypothesis: 1"w2™ € IIp. Then
1" lyw2ntl = 1(1"w2™)2 € Ip, because of the inductive hypothesis and the production
D — 1D2.

(3) Suppose w € IIp. We must show that, for all n € N, 1"w3"™ € IIg. We proceed by mathemat-
ical induction.

(Basis Step) We have 1°w3° = w € Ilg, because of the assumption and the production
B—D.

(Inductive Step) Suppose n € N, and assume the inductive hypothesis: 1"w3™ € IIg. Then
17137+t = 1(1"w3™)3 € Ilg, because of the inductive hypothesis and the production
B — 1B3.

4) Follows similarly to the preceding parts, using productions C — 0C2 and C — D.

5) Follows similarly to the preceding parts, using the production A — A3.

6) Follows similarly to the preceding parts, using the productions A — 0A3 and A — B.

(4)
(5)
(6)
(7)

7) Follows similarly to the preceding parts, using the productions A — 0A3 and A — C.

a

Lemma PS7.3.3
W CIlp.

Proof. Suppose w € W, so that w = 172* for some j, k € N such that j < k. Since j < k, we have
that k = n + j for some n € N. Thus w = 192"+ = 1922/, By Lemma PS7.3.2(1), we have that
2" € IIp. Thus w = 192727 € lIp by Lemma PS7.3.2(2). O

Lemma PS7.3.4
Y C Ilg.

Proof. Suppose w € Y, so that w = 17172%3" for some n, j, k € N such that j < k. Since j < k, we
have that 192 € W C Ilp, by Lemma PS7.3.3. Thus w = 1"(172%)3" € IIg, by Lemma PS7.3.2(3).
O



Lemma PS7.3.5
Z Cllc.

Proof. Suppose w € Z, so that w = 0717252 for some n, j, k € N such that j < k. Since j < k, we
have that 192% € W C Ilp, by Lemma PS7.3.3. Thus w = 07(172%)2" € Il¢, by Lemma PS7.3.2(4).
O

Lemma PS7.3.6
X CIIa.

Proof. Suppose w € X, so that w = 0?172*3! for some i, j, k,I € N such that i + j < k + [. There
are two cases to consider.

e Suppose i < [. Thus [ =i+ n for some n € N, so that w = 0°172k3"*", Since i + j < k +1 =
k 414+ n, it follows that j <k + n. There are two subcases to consider.

— Suppose n < j. Thus j = n + m for some m € N. Hence w = 0!17Tm2k3itn —
Oi(1"1m2k3")3i. Since j < k 4+ n, we have that n + m < k + n, and thus m < k. Hence
171m2k3" € Y C Mg, by Lemma PS7.3.4. Thus w € Il by Lemma PS7.3.2(6).

— Suppose j < n. Thus n = j + m for some m € N — {0}. Hence w = 01192F3i+i+m —
(0%(172F37)3%)3™ = (0%(171°2%37)3%)3™. Since 0 < k, we have that 191°2%37 € Y C Tlg,
by Lemma PS7.3.4. By Lemma PS7.3.2(6), we have that 09(171°2%37)3% € TIx. Thus
w = (07(17192%37)3%)3™ < I, by Lemma PS7.3.2(5).

e Suppose | < i. Thus i = | + n for some n € N — {0}. Hence w = 0"*"172*3!. Since
l+n+j=i+j5 < k+1 it follows that n + j < k, so that k = n 4+ j + m for some m € N.
Thus w = 0H+n192n+i+m3l — 0(0"1929+m2m)3! . Since j < j +m, we have that 0"1927tm2n ¢
Z C ¢, by Lemma PS7.3.5. Thus w = 0/(0"1927+m2™)3! ¢ TI5, by Lemma PS7.3.2(7).

By Lemmas PS7.3.1, PS7.3.3, PS7.3.4, PS7.3.5 and PS7.3.6, we have that L(G) = Il = X,
g =Y, lIc = Z and IIp = W.

Problem 4

First we load the grammar

{variables} A, B, C, D {start variable} A

{productions}
A ->0A3 | A3 | B | C;
B -> 1B3 | D;
C -> 0C2 | D;

D -> % | 1D2 | D2
of Problem 3 (generating the language X) into Forlan, calling it old:

- val old = Gram.input "ps7-p3-gram";
val old = - : gram



Next, we load our Forlan/SML code ps7-p4-gen.sml

val minAndRen
val regToDFA

DFA.renameStatesCanonically o DFA.minimize;
nfaToDFA o efaToNFA o faToEFA o regToFA;

fun elimVars(gram, nil) = gram
| elimVars(gram, q :: gs) =
elimVars(Gram.eliminateVariable(gram, Sym.fromString q), gs);

(* DFA accepting all elements of {0, 1, 2, 3} * of even length *)

val evenLenDFA =
minAndRen(regToDFA(Reg.fromString "((0 + 1 + 2 + 3)(0 + 1 + 2 + 3))*"));

(* initial grammar generating Y *)

val new(Q =
Gram.restart
(Gram.renameVariablesCanonically(Gram.minus(old, evenLenDFA)));

(* better grammar generating Y, resulting from variable elimination *)
Val newl = ellmVarS(neWO [IIQII IIOII IIJII IILII IIFII IIHII IICII IIEII]).

(* renaming of variables so as to make the symmetry clear: <A>/A,
<B>/B, <C>/C, <D>/D %)

val new =
Gram.renameVariables
(newl,
SymRel.fromString
("(D, <A>), (B, b," "
"(G, <B>), (I, B)," ~
"(K, <C>), M, O," ~
"(P, <D>), (N, D)"));

for generating a grammar new generating Y into Forlan:

- use "ps7-p4-gen.sml";

[opening ps7-p4-gen.sml]

val minAndRen = fn : dfa -> dfa

val regToDFA = fn : reg -> dfa

val elimVars = fn : gram * string list -> gram

val evenLenDFA = - : dfa
val new0O = - : gram
val newl = - : gram
val new = - : gram

val it = () : unit

And then we output new:



- Gram.output("", new);

{variables} A, B, C, D, <A>, <B>, <C>, <D> {start variable} <A>

{productions}

A ->D | <B>3 | <C>3 | 0B3 | 0C2 | 0C3 | 1B3 | A33 | 0<A>33 | 00A33;

B ->7% | <D>2 | 1D2 | 1D3 | 11B33; C -> J | <D>2 | 0D2 | 1D2 | 00C22;

D ->7 | 12 | D22 | 1<D>22 | 11D22;

<A> -> <D> | B3 | C3 | 0<B>3 | 0<C>2 | 0<C>3 | 1<B>3 | <A>33 | 0A33 | 00<A>33;
<B> -> D2 | 1<D>2 | 1<D>3 | 11<B>33; <C> -> D2 | 0<D>2 | 1<D>2 | 00<C>22;

<D> -> 2 | <D>22 | 1D22 | 11<D>22

val it = () : unit

When producing this grammar, we renamed the variables so as to emphasize the connection between
pairs of variables: (A) (the start variable) and A; (B) and B; (C) and C; and (D) and D.

We can make an educated guess as to what the languages generated by these variables are. To
confirm our guess we wrote the Forlan/SML code ps7-p4-testing.sml

(* val inOrder : sym list -> bool

inOrder x tests whether an element of {0, 1, 2, 3}"* is in

{0} *{1}"*{2}"%{3}"* *)

fun inOrder (b :: ¢ :: ds) =
Sym.compare(b, c) <> GREATER andalso
inOrder(c :: ds)

| inOrder _ = true;
(* val count : sym * sym list -> int
count(a, x) counts the number of occurrences of a in x *)

fun count(_, nil) =0
| count(a, b :: bs) =
(if Sym.equal(a, b) then 1 else 0) + count(a, bs);

(x val inLan : (int * int * int * int -> bool) -> str -> bool

inlan f x tests whether x is in {0}"*{1}"*{2}"*{3}"* and £(i, j, k,
1) holds, where i, j, k and 1, respectively, are the numbers of Os,
1s, 2s and 3s, respectively, in x *)

fun inLan (f : int * int * int * int -> bool) (x : str) =
inOrder
let val

x andalso
i

val j = count(Sym.fromString "1", x)
k

= count(Sym.fromString "O", x)
val k = count(Sym.fromString "2", x)

val 1 = count(Sym.fromString "3", x)
in £(i, j, k, 1) end;

(x val even : int -> bool



even n tests whether n is even *)
fun even (n : int) = nmod 2 =0
(* val odd : int -> bool

odd n tests whether n is odd *)
fun odd (n : int) = nmod 2 = 1
(* val inYgen : bool -> str -> bool *)

fun inYgen (b : bool) =
inLan
(fn (i, j, k, 1) =>
i+ j <=k + 1 andalso
((if b then odd else even) (i + j + k + 1)))

(x val inY : str -> bool
val inYeven : str -> bool

inY tests for membership of Y
inYeven tests for membership of Y, but where the length is even *)

val inY = inYgen true
val inYeven = inYgen false

(* val in123gen : bool -> str -> bool *)

fun in123gen (b : bool) =
inLan
(fn (i, j, k, 1) =>
i = 0 andalso 1 <= j andalso j - 1 <= k andalso
((if b then odd else even) (j + k + 1)))

(x val in123 : str -> bool
val inl123even : str -> bool

in123 tests for membership in {1"n1"j2°k3™n | j<=kandn + j+k +n

is odd};

in123even tests for membership in {1"n1"j2°k3™n | j <=k and n + j + k +n
is even} *)

val in123
val inl23even = inl23gen false

in123gen true

(* val inO12gen : bool -> str -> bool *)



fun in012gen (b : bool) =
inLan
(fn (1, j, k, 1) =>
1 = 0 andalso i <= k andalso j <= k - i andalso
((if b then odd else even) (i + j + k)))

(* val in012 : str -> bool
val inOl12even : str -> bool

in012 tests for membership in {0"n1"j2°k2™n | j <=k andn + j+k +n

is odd};

in012even tests for membership in {0"n1"j2°k2°n | j <=k andn + j +k +n
is even} *)

val in012
val inO12even

in012gen true

in012gen false

(* val inl2gen : bool -> str -> bool *)

fun ini2gen (b : bool)
inLan
(fn (i, j, k, 1) =>
i = 0 andalso 1 = 0 andalso j <= k andalso
((if b then odd else even) (j + k)))

(x val ini12 : str -> bool
val inl2even : str -> bool

in12 tests for membership in {17j2°k | j <= k and j + k is odd};
inl2even tests for membership in {1°j2°k | j <= k and j + k is even} *)

val inl2 inl2gen true

val inl2even = inl2gen false
(* val upto : int -> str set

if n >= 0, then upto n returns all strings over alphabet {0, 1, 2,
3} of length no more than n *)

fun upto 0 : str set = Set.sing nil
| upto n =
let val xs = upto(n - 1)
val ys = Set.filter (fn x => length x = n - 1) xs
in StrSet.union
(xs, StrSet.concat(StrSet.fromString "0, 1, 2, 3", ys))

end;



(* val partition : int -> (str -> bool) -> str set * str set
if n >= 0, then partition n p returns (xs, ys) where:
xs is all elements of upto n that are satisfied by p; and
ys is all elements of upto n that are not satisfied by p *)
fun partition n (p : str -> bool) = Set.partition p (upto n);
(* val test : int -> (str -> bool) -> gram -> str option * str option

if n >= 0, then test n p returns a function f such that, for all
grammars gram, f gram returns a pair (xOpt, yOpt) such that:

If there is an element of {0, 1, 2, 3}* of length no more than n

that is satisfied by p but is not generated by gram, then xOpt
SOME x for some such x; otherwise, xOpt = NONE.

If there is an element of {0, 1, 2, 3}* of length no more than n

that is not satisfied by p but is generated by gram, then yOpt
SOME y for some such y; otherwise, yOpt = NONE. *)

fun test n (p : str -> bool) =
let val (goods, bads) = partition n p
in fn gram =>
let val generated = Gram.generated gram
val goodNotGenOpt = Set.position (not o generated) goods
val badGenOpt = Set.position generated bads
in ((case goodNotGenOpt of
NONE => NONE
| SOME i => SOME(ListAux.sub(Set.tolist goods, i))),
(case badGenOpt of
NONE => NONE
| SOME i => SOME(ListAux.sub(Set.toList bads, i))))
end
end;

(* val changeStartVariable : gram * sym -> gram

if q is a variable of gram, then changeStartVariable(gram, q)
returns the simplification of the grammar formed by changing gram’s
start variables to be q; otherwise, it raises an exception *)

fun changeStartVariable(gram, q) =
let val {vars, start, prods} = Gram.toConcr gram
in if SymSet.memb(q, vars)
then Gram.simplify

10



(x doit

(Gram. fromConcr{vars = vars, start = q, prods = prods})

else raise Fail "symbol must be variable of grammar"

end;

: int -> (str -> bool) -> gram -> sym -> str option * str option *)

fun doit n p gram q = test n p (changeStartVariable(gram, q));

which we now load into Forlan:

- use "ps7-p4-testing.sml";

[opening ps7-p4-testing.sml]

val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val

inOrder = fn : sym list -> bool
count = fn : sym * sym list -> int

inLan = fn : (int * int * int * int -> bool) -> str -> bool

even = fn : int -> bool

odd = fn : int -> bool

inYgen = fn : bool -> str -> bool
inY = fn : str -> bool

inYeven = fn : str -> bool

inl123gen = fn : bool -> str -> bool
in123 = fn : str -> bool

inl23even = fn : str -> bool
in012gen = fn : bool -> str -> bool
in012 = fn : str -> bool

in0O12even = fn : str -> bool
inl2gen = fn : bool -> str -> bool
inl2 = fn : str -> bool

inl2even = fn : str -> bool

upto = fn : int -> str set

partition = fn : int -> (str -> bool) ->
test = fn : int -> (str -> bool) -> gram
changeStartVariable = fn : gram * sym —>
doit = fn : int -> (str -> bool) -> gram

it = () : unit

str set * str set

-> str option * str option

gram

-> sym —> str option * str option

We then use the function doit to verify the connections between the variables of new and their

languages on

all strings over the alphabet {0,1,2,3}* of length no more than 9:

- doit 9
val it =
- doit 9
val it =
- doit 9
val it =

- doit 9

val it =

- doit 9

val it =

- doit 9

inY new (Sym.fromString "<A>");
(NONE,NONE) : str option * str option
inYeven new (Sym.fromString "A");
(NONE,NONE) : str option * str option
in123 new (Sym.fromString "<B>");
(NONE,NONE) : str option * str option
in123even new (Sym.fromString "B");
(NONE,NONE) : str option * str option
in012 new (Sym.fromString "<C>");
(NONE,NONE) : str option * str option
in012even new (Sym.fromString "C");

11



(NONE,NONE) : str option * str option
- doit 9 inl2 new (Sym.fromString "<D>");
(NONE,NONE) : str option * str option
- doit 9 inl2even new (Sym.fromString "D");
val it = (NONE,NONE) : str option * str option

val it

val it

Working outside of Forlan, we then formulate the grammar

{variables} <A>, <B>, <C>, <D>, A, B, C, D
{start variable} <A>

{productions}

<A> -> 0<A>3 | A 3 | <B> | <C>;
A ->0A3 | <3| B | C;
<B> -> 1<B>3 | <D>;

B ->1B3 | D

<C> -> 0<C>2 | <D>;

cC ->0C2 1| D;
<D> -> 2 | 1<D>2 | D 2;
D ->% 1 1D2 | <D>2

that is inspired by new, and which we put in the file ps7-p4-gram. We load this grammar into
Forlan, calling it final:

- val final = Gram.input "ps7-p4-gram";
val final = - : gram

Finally, we check that its variables generate the same languages as the variables of new, when we
restrict our attention to strings over the alphabet {0, 1,2,3}* of length no more than 9:

- doit 9 inY final (Sym.fromString "<A>");

val it = (NONE,NONE) : str option * str option
- doit 9 inYeven final (Sym.fromString "A");
val it = (NONE,NONE) : str option * str option
- doit 9 in123 final (Sym.fromString "<B>");
val it = (NONE,NONE) : str option * str option
- doit 9 inl123even final (Sym.fromString "B");
val it = (NONE,NONE) : str option * str option
- doit 9 in012 final (Sym.fromString "<C>");
val it = (NONE,NONE) : str option * str option
- doit 9 inO12even final (Sym.fromString "C");
val it = (NONE,NONE) : str option * str option
- doit 9 in12 final (Sym.fromString "<D>");
val it = (NONE,NONE) : str option * str option
- doit 9 inl2even final (Sym.fromString "D");
val it = (NONE,NONE) : str option * str option
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