
CS 516—Software Foundations via Formal Languages—Spring 2022

Problem Set 7

Model Answers

Problem 1

Suppose, toward a contradiction, that X is context-free. Thus there is an n ∈ N − {0} with the

property of the Pumping Lemma for Context-free Languages, where X has been substituted for L.

Let z = 0
n
1
n
2
n
3
n. Then z ∈ X and |z| = 4n ≥ n. Thus the property of the lemma tells us there

are u, v, w, x, y ∈ Str such that z = uvwxy and

(1) |vwx| ≤ n; and

(2) vx 6= %; and

(3) uviwxiy ∈ X , for all i ∈ N.

Because 0n1n2n3n = z = uvwxy, (1) tells us that:

• alphabet(vwx) does not include both 0 and 2; and

• alphabet(vwx) does not include both 1 and 3.

By (2), we have that alphabet(vx) is a nonempty subset of {0, 1, 2, 3}. And by (3), we have that

uwy = uv0wx0y ∈ X . Thus there are four cases to consider.

• (0 ∈ alphabet(vx)) Then 2 /∈ alphabet(vx). Thus uwy has less-than n occurrences of 0,

but n occurrences of 2, contradicting uwy ∈ X .

• (1 ∈ alphabet(vx)) Then 3 /∈ alphabet(vx). Thus uwy has less-than n occurrences of 1,

but n occurrences of 3, contradicting uwy ∈ X .

• (2 ∈ alphabet(vx)) Then 0 /∈ alphabet(vx). Thus uwy has less-than n occurrences of 2,

but n occurrences of 0, contradicting uwy ∈ X .

• (3 ∈ alphabet(vx)) Then 1 /∈ alphabet(vx). Thus uwy has less-than n occurrences of 3,

but n occurrences of 1, contradicting uwy ∈ X .

Because we obtained a contradiction in each case, we have an overall contradiction. Thus X is not

context-free.

Problem 2

From the assumptions, we know that L is a regular language, G is a grammar in Chomsky Normal

Form that generates L − {%}, k is the number of variables of G, n = 2k, z ∈ L has length at least

n, pt is a valid parse tree for G of height at least k+1, where rootLabel pt = sG and yield pt = z,

and pat is a path through pt whose length is the height of pt .
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It is consistent with these assumptions that L is { 0n | n ∈ N and n ≥ 1 }, G is the grammar

A→ AA | 0,

k = 1, n = 2k = 21 = 2, z = 000, pt is

0

A

AA

0 A A

0

and pat is [2, 1, 1]. Thus the first repetition of variables as we follow pat through pt happens

immediately.

Continuing the proof, this means that pt ′ = pt and pt ′′ = A(A(0),A(0)). Thus u = %, v = 0,

w = 00, x = % and y = %. But this means that |vwx| = |0(00)%| = |000| = 3 > 2 = n, violating

the property (1) we needed to prove.

Problem 3

We define languages Y , Z and W by:

Y = { 1n1j2k3n | n, j, k ∈ N and j ≤ k },

Z = { 0n1j2k2n | n, j, k ∈ N and j ≤ k },

W = { 1j2k | j, k ∈ N and j ≤ k }.

We will show that ΠA = X , ΠB = Y , ΠC = Z and ΠD = W . Thus we will be able to conclude

L(G) = ΠA = X .

Lemma PS7.3.1

(A) For all w ∈ ΠA, w ∈ X .

(B) For all w ∈ ΠB, w ∈ Y .

(C) For all w ∈ ΠC, w ∈ Z.

(D) For all w ∈ ΠD, w ∈ W .

Proof. By induction on Π. There are eleven productions to consider.

(A→ 0A3) Suppose w ∈ ΠA, and assume the inductive hypothesis: w ∈ X . Thus w = 0i1j2k3l

for some i, j, k, l ∈ N such that i + j ≤ k + l. Hence 0w3 = 00i1j2k3l3 = 0i+11j2k3l+1 ∈ X ,

because (i + 1) + j = i+ j + 1 ≤ k + l+ 1 = k + (l + 1).

(A→ A3) Suppose w ∈ ΠA, and assume the inductive hypothesis: w ∈ X . Thus w = 0i1j2k3l for

some i, j, k, l ∈ N such that i + j ≤ k + l. Hence w3 = 0
i
1
j
2
k
3
l
3 = 0

i
1
j
2
k
3
l+1 ∈ X , because

i+ j ≤ k + l ≤ k + l+ 1 = k + (l + 1).
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(A→ B) Suppose w ∈ ΠB, and assume the inductive hypothesis: w ∈ Y . Thus w = 1n1j2k3n

for some n, j, k ∈ N such that j ≤ k. Hence w = 001n1j2k3n = 001n+j2k3n ∈ X , because

0 + (n+ j) = n+ j ≤ n+ k = k + n.

(A→ C) Suppose w ∈ ΠC, and assume the inductive hypothesis: w ∈ Z. Thus w = 0n1j2k2n

for some n, j, k ∈ N such that j ≤ k. Hence w = 0n1j2k2n30 = 0n1j2k+n30 ∈ X , because

n+ j ≤ n+ k = (k + n) + 0.

(B→ 1B3) Suppose w ∈ ΠB, and assume the inductive hypothesis: w ∈ Y . Thus w = 1n1j2k3n

for some n, j, k ∈ N such that j ≤ k. Hence 1w3 = 11n1j2k3n3 = 1n+11j2k3n+1 ∈ Y , because

j ≤ k.

(B→D) Suppose w ∈ ΠD, and assume the inductive hypothesis: w ∈ W . Thus w = 1j2k for

some j, k ∈ N such that j ≤ k. Hence w = 101j2k30 ∈ Y , because j ≤ k.

(C→ 0C2) Suppose w ∈ ΠC, and assume the inductive hypothesis: w ∈ Z. Thus w = 0n1j2k2n

for some n, j, k ∈ N such that j ≤ k. Hence 0w2 = 00n1j2k2n2 = 0n+11j2k2n+1 ∈ Z, because

j ≤ k.

(C→D) Suppose w ∈ ΠD, and assume the inductive hypothesis: w ∈ W . Thus w = 1
j
2
k for

some j, k ∈ N such that j ≤ k. Hence w = 001j2k20 ∈ Z, because j ≤ k.

(D→%) We have that % = 1020 ∈ W , because 0 ≤ 0.

(D→ 1D2) Suppose w ∈ ΠD, and assume the inductive hypothesis: w ∈ W . Thus w = 1j2k for

some j, k ∈ N such that j ≤ k. Hence 1w2 = 11j2k2 = 1j+12k+1 ∈ W , because j + 1 ≤ k + 1.

(D→D2) Suppose w ∈ ΠD, and assume the inductive hypothesis: w ∈ W . Thus w = 1j2k for

some j, k ∈ N such that j ≤ k. Hence w2 = 1j2k2 = 1j2k+1 ∈ W , because j ≤ k ≤ k + 1.

✷

Lemma PS7.3.2

(1) For all n ∈ N, 2n ∈ ΠD.

(2) For all w ∈ ΠD and n ∈ N, 1nw2n ∈ ΠD.

(3) For all w ∈ ΠD and n ∈ N, 1nw3n ∈ ΠB.

(4) For all w ∈ ΠD and n ∈ N, 0nw2n ∈ ΠC.

(5) For all w ∈ ΠA and n ∈ N, w3n ∈ ΠA.

(6) For all w ∈ ΠB and n ∈ N, 0nw3n ∈ ΠA.

(7) For all w ∈ ΠC and n ∈ N, 0nw3n ∈ ΠA.

Proof.
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(1) We proceed by mathematical induction.

(Basis Step) We have 20 = % ∈ ΠD, because of the production D→%.

(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis: 2n ∈ ΠD. Then

2n+1 = 2n2 ∈ ΠD, because of the inductive hypothesis and the production D→D2.

(2) Suppose w ∈ ΠD. We must show that, for all n ∈ N, 1nw2n ∈ ΠD. We proceed by mathemat-

ical induction.

(Basis Step) We have 10w20 = w ∈ ΠD, by the assumption.

(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis: 1nw2n ∈ ΠD. Then

1n+1w2n+1 = 1(1nw2n)2 ∈ ΠD, because of the inductive hypothesis and the production

D→ 1D2.

(3) Suppose w ∈ ΠD. We must show that, for all n ∈ N, 1nw3n ∈ ΠB. We proceed by mathemat-

ical induction.

(Basis Step) We have 10w30 = w ∈ ΠB, because of the assumption and the production

B→D.

(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis: 1nw3n ∈ ΠB. Then

1n+1w3n+1 = 1(1nw3n)3 ∈ ΠB, because of the inductive hypothesis and the production

B→ 1B3.

(4) Follows similarly to the preceding parts, using productions C→ 0C2 and C→ D.

(5) Follows similarly to the preceding parts, using the production A→ A3.

(6) Follows similarly to the preceding parts, using the productions A→ 0A3 and A→ B.

(7) Follows similarly to the preceding parts, using the productions A→ 0A3 and A→ C.

✷

Lemma PS7.3.3

W ⊆ ΠD.

Proof. Suppose w ∈ W , so that w = 1j2k for some j, k ∈ N such that j ≤ k. Since j ≤ k, we have

that k = n + j for some n ∈ N. Thus w = 1j2n+j = 1j2n2j . By Lemma PS7.3.2(1), we have that

2n ∈ ΠD. Thus w = 1j2n2j ∈ ΠD by Lemma PS7.3.2(2). ✷

Lemma PS7.3.4

Y ⊆ ΠB.

Proof. Suppose w ∈ Y , so that w = 1n1j2k3n for some n, j, k ∈ N such that j ≤ k. Since j ≤ k, we

have that 1j2k ∈ W ⊆ ΠD, by Lemma PS7.3.3. Thus w = 1n(1j2k)3n ∈ ΠB, by Lemma PS7.3.2(3).

✷
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Lemma PS7.3.5

Z ⊆ ΠC.

Proof. Suppose w ∈ Z, so that w = 0n1j2k2n for some n, j, k ∈ N such that j ≤ k. Since j ≤ k, we

have that 1j2k ∈ W ⊆ ΠD, by Lemma PS7.3.3. Thus w = 0n(1j2k)2n ∈ ΠC, by Lemma PS7.3.2(4).

✷

Lemma PS7.3.6

X ⊆ ΠA.

Proof. Suppose w ∈ X , so that w = 0i1j2k3l for some i, j, k, l ∈ N such that i+ j ≤ k + l. There

are two cases to consider.

• Suppose i ≤ l. Thus l = i + n for some n ∈ N, so that w = 0i1j2k3i+n. Since i+ j ≤ k + l =

k + i+ n, it follows that j ≤ k + n. There are two subcases to consider.

– Suppose n ≤ j. Thus j = n + m for some m ∈ N. Hence w = 0i1n+m2k3i+n =

0i(1n1m2k3n)3i. Since j ≤ k + n, we have that n +m ≤ k + n, and thus m ≤ k. Hence

1n1m2k3n ∈ Y ⊆ ΠB, by Lemma PS7.3.4. Thus w ∈ ΠA by Lemma PS7.3.2(6).

– Suppose j < n. Thus n = j + m for some m ∈ N − {0}. Hence w = 0i1j2k3i+j+m =

(0i(1j2k3j)3i)3m = (0i(1j102k3j)3i)3m. Since 0 ≤ k, we have that 1j102k3j ∈ Y ⊆ ΠB,

by Lemma PS7.3.4. By Lemma PS7.3.2(6), we have that 0i(1j102k3j)3i ∈ ΠA. Thus

w = (0i(1j102k3j)3i)3m ∈ ΠA, by Lemma PS7.3.2(5).

• Suppose l < i. Thus i = l + n for some n ∈ N − {0}. Hence w = 0l+n1j2k3l. Since

l + n + j = i + j ≤ k + l, it follows that n + j ≤ k, so that k = n + j +m for some m ∈ N.

Thus w = 0l+n1j2n+j+m3l = 0l(0n1j2j+m2n)3l. Since j ≤ j +m, we have that 0n1j2j+m2n ∈

Z ⊆ ΠC, by Lemma PS7.3.5. Thus w = 0l(0n1j2j+m2n)3l ∈ ΠA, by Lemma PS7.3.2(7).

✷

By Lemmas PS7.3.1, PS7.3.3, PS7.3.4, PS7.3.5 and PS7.3.6, we have that L(G) = ΠA = X ,

ΠB = Y , ΠC = Z and ΠD = W .

Problem 4

First we load the grammar

{variables} A, B, C, D {start variable} A

{productions}

A -> 0A3 | A3 | B | C;

B -> 1B3 | D;

C -> 0C2 | D;

D -> % | 1D2 | D2

of Problem 3 (generating the language X) into Forlan, calling it old:

- val old = Gram.input "ps7-p3-gram";

val old = - : gram
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Next, we load our Forlan/SML code ps7-p4-gen.sml

val minAndRen = DFA.renameStatesCanonically o DFA.minimize;

val regToDFA = nfaToDFA o efaToNFA o faToEFA o regToFA;

fun elimVars(gram, nil) = gram

| elimVars(gram, q :: qs) =

elimVars(Gram.eliminateVariable(gram, Sym.fromString q), qs);

(* DFA accepting all elements of {0, 1, 2, 3}^* of even length *)

val evenLenDFA =

minAndRen(regToDFA(Reg.fromString "((0 + 1 + 2 + 3)(0 + 1 + 2 + 3))*"));

(* initial grammar generating Y *)

val new0 =

Gram.restart

(Gram.renameVariablesCanonically(Gram.minus(old, evenLenDFA)));

(* better grammar generating Y, resulting from variable elimination *)

val new1 = elimVars(new0, ["Q", "O", "J", "L", "F", "H", "C", "E"]);

(* renaming of variables so as to make the symmetry clear: <A>/A,

<B>/B, <C>/C, <D>/D *)

val new =

Gram.renameVariables

(new1,

SymRel.fromString

("(D, <A>), (B, A)," ^

"(G, <B>), (I, B)," ^

"(K, <C>), (M, C)," ^

"(P, <D>), (N, D)"));

for generating a grammar new generating Y into Forlan:

- use "ps7-p4-gen.sml";

[opening ps7-p4-gen.sml]

val minAndRen = fn : dfa -> dfa

val regToDFA = fn : reg -> dfa

val elimVars = fn : gram * string list -> gram

val evenLenDFA = - : dfa

val new0 = - : gram

val new1 = - : gram

val new = - : gram

val it = () : unit

And then we output new:

6



- Gram.output("", new);

{variables} A, B, C, D, <A>, <B>, <C>, <D> {start variable} <A>

{productions}

A -> D | <B>3 | <C>3 | 0B3 | 0C2 | 0C3 | 1B3 | A33 | 0<A>33 | 00A33;

B -> % | <D>2 | 1D2 | 1D3 | 11B33; C -> % | <D>2 | 0D2 | 1D2 | 00C22;

D -> % | 12 | D22 | 1<D>22 | 11D22;

<A> -> <D> | B3 | C3 | 0<B>3 | 0<C>2 | 0<C>3 | 1<B>3 | <A>33 | 0A33 | 00<A>33;

<B> -> D2 | 1<D>2 | 1<D>3 | 11<B>33; <C> -> D2 | 0<D>2 | 1<D>2 | 00<C>22;

<D> -> 2 | <D>22 | 1D22 | 11<D>22

val it = () : unit

When producing this grammar, we renamed the variables so as to emphasize the connection between

pairs of variables: 〈A〉 (the start variable) and A; 〈B〉 and B ; 〈C 〉 and C ; and 〈D〉 and D .

We can make an educated guess as to what the languages generated by these variables are. To

confirm our guess we wrote the Forlan/SML code ps7-p4-testing.sml

(* val inOrder : sym list -> bool

inOrder x tests whether an element of {0, 1, 2, 3}^* is in

{0}^*{1}^*{2}^*{3}^* *)

fun inOrder (b :: c :: ds) =

Sym.compare(b, c) <> GREATER andalso

inOrder(c :: ds)

| inOrder _ = true;

(* val count : sym * sym list -> int

count(a, x) counts the number of occurrences of a in x *)

fun count(_, nil) = 0

| count(a, b :: bs) =

(if Sym.equal(a, b) then 1 else 0) + count(a, bs);

(* val inLan : (int * int * int * int -> bool) -> str -> bool

inLan f x tests whether x is in {0}^*{1}^*{2}^*{3}^* and f(i, j, k,

l) holds, where i, j, k and l, respectively, are the numbers of 0s,

1s, 2s and 3s, respectively, in x *)

fun inLan (f : int * int * int * int -> bool) (x : str) =

inOrder x andalso

let val i = count(Sym.fromString "0", x)

val j = count(Sym.fromString "1", x)

val k = count(Sym.fromString "2", x)

val l = count(Sym.fromString "3", x)

in f(i, j, k, l) end;

(* val even : int -> bool
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even n tests whether n is even *)

fun even (n : int) = n mod 2 = 0

(* val odd : int -> bool

odd n tests whether n is odd *)

fun odd (n : int) = n mod 2 = 1

(* val inYgen : bool -> str -> bool *)

fun inYgen (b : bool) =

inLan

(fn (i, j, k, l) =>

i + j <= k + l andalso

((if b then odd else even) (i + j + k + l)))

(* val inY : str -> bool

val inYeven : str -> bool

inY tests for membership of Y

inYeven tests for membership of Y, but where the length is even *)

val inY = inYgen true

val inYeven = inYgen false

(* val in123gen : bool -> str -> bool *)

fun in123gen (b : bool) =

inLan

(fn (i, j, k, l) =>

i = 0 andalso l <= j andalso j - l <= k andalso

((if b then odd else even) (j + k + l)))

(* val in123 : str -> bool

val in123even : str -> bool

in123 tests for membership in {1^n1^j2^k3^n | j <= k and n + j + k + n

is odd};

in123even tests for membership in {1^n1^j2^k3^n | j <= k and n + j + k + n

is even} *)

val in123 = in123gen true

val in123even = in123gen false

(* val in012gen : bool -> str -> bool *)
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fun in012gen (b : bool) =

inLan

(fn (i, j, k, l) =>

l = 0 andalso i <= k andalso j <= k - i andalso

((if b then odd else even) (i + j + k)))

(* val in012 : str -> bool

val in012even : str -> bool

in012 tests for membership in {0^n1^j2^k2^n | j <= k and n + j + k + n

is odd};

in012even tests for membership in {0^n1^j2^k2^n | j <= k and n + j + k + n

is even} *)

val in012 = in012gen true

val in012even = in012gen false

(* val in12gen : bool -> str -> bool *)

fun in12gen (b : bool) =

inLan

(fn (i, j, k, l) =>

i = 0 andalso l = 0 andalso j <= k andalso

((if b then odd else even) (j + k)))

(* val in12 : str -> bool

val in12even : str -> bool

in12 tests for membership in {1^j2^k | j <= k and j + k is odd};

in12even tests for membership in {1^j2^k | j <= k and j + k is even} *)

val in12 = in12gen true

val in12even = in12gen false

(* val upto : int -> str set

if n >= 0, then upto n returns all strings over alphabet {0, 1, 2,

3} of length no more than n *)

fun upto 0 : str set = Set.sing nil

| upto n =

let val xs = upto(n - 1)

val ys = Set.filter (fn x => length x = n - 1) xs

in StrSet.union

(xs, StrSet.concat(StrSet.fromString "0, 1, 2, 3", ys))

end;
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(* val partition : int -> (str -> bool) -> str set * str set

if n >= 0, then partition n p returns (xs, ys) where:

xs is all elements of upto n that are satisfied by p; and

ys is all elements of upto n that are not satisfied by p *)

fun partition n (p : str -> bool) = Set.partition p (upto n);

(* val test : int -> (str -> bool) -> gram -> str option * str option

if n >= 0, then test n p returns a function f such that, for all

grammars gram, f gram returns a pair (xOpt, yOpt) such that:

If there is an element of {0, 1, 2, 3}* of length no more than n

that is satisfied by p but is not generated by gram, then xOpt =

SOME x for some such x; otherwise, xOpt = NONE.

If there is an element of {0, 1, 2, 3}* of length no more than n

that is not satisfied by p but is generated by gram, then yOpt =

SOME y for some such y; otherwise, yOpt = NONE. *)

fun test n (p : str -> bool) =

let val (goods, bads) = partition n p

in fn gram =>

let val generated = Gram.generated gram

val goodNotGenOpt = Set.position (not o generated) goods

val badGenOpt = Set.position generated bads

in ((case goodNotGenOpt of

NONE => NONE

| SOME i => SOME(ListAux.sub(Set.toList goods, i))),

(case badGenOpt of

NONE => NONE

| SOME i => SOME(ListAux.sub(Set.toList bads, i))))

end

end;

(* val changeStartVariable : gram * sym -> gram

if q is a variable of gram, then changeStartVariable(gram, q)

returns the simplification of the grammar formed by changing gram’s

start variables to be q; otherwise, it raises an exception *)

fun changeStartVariable(gram, q) =

let val {vars, start, prods} = Gram.toConcr gram

in if SymSet.memb(q, vars)

then Gram.simplify
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(Gram.fromConcr{vars = vars, start = q, prods = prods})

else raise Fail "symbol must be variable of grammar"

end;

(* doit : int -> (str -> bool) -> gram -> sym -> str option * str option *)

fun doit n p gram q = test n p (changeStartVariable(gram, q));

which we now load into Forlan:

- use "ps7-p4-testing.sml";

[opening ps7-p4-testing.sml]

val inOrder = fn : sym list -> bool

val count = fn : sym * sym list -> int

val inLan = fn : (int * int * int * int -> bool) -> str -> bool

val even = fn : int -> bool

val odd = fn : int -> bool

val inYgen = fn : bool -> str -> bool

val inY = fn : str -> bool

val inYeven = fn : str -> bool

val in123gen = fn : bool -> str -> bool

val in123 = fn : str -> bool

val in123even = fn : str -> bool

val in012gen = fn : bool -> str -> bool

val in012 = fn : str -> bool

val in012even = fn : str -> bool

val in12gen = fn : bool -> str -> bool

val in12 = fn : str -> bool

val in12even = fn : str -> bool

val upto = fn : int -> str set

val partition = fn : int -> (str -> bool) -> str set * str set

val test = fn : int -> (str -> bool) -> gram -> str option * str option

val changeStartVariable = fn : gram * sym -> gram

val doit = fn : int -> (str -> bool) -> gram -> sym -> str option * str option

val it = () : unit

We then use the function doit to verify the connections between the variables of new and their

languages on all strings over the alphabet {0, 1, 2, 3}∗ of length no more than 9:

- doit 9 inY new (Sym.fromString "<A>");

val it = (NONE,NONE) : str option * str option

- doit 9 inYeven new (Sym.fromString "A");

val it = (NONE,NONE) : str option * str option

- doit 9 in123 new (Sym.fromString "<B>");

val it = (NONE,NONE) : str option * str option

- doit 9 in123even new (Sym.fromString "B");

val it = (NONE,NONE) : str option * str option

- doit 9 in012 new (Sym.fromString "<C>");

val it = (NONE,NONE) : str option * str option

- doit 9 in012even new (Sym.fromString "C");
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val it = (NONE,NONE) : str option * str option

- doit 9 in12 new (Sym.fromString "<D>");

val it = (NONE,NONE) : str option * str option

- doit 9 in12even new (Sym.fromString "D");

val it = (NONE,NONE) : str option * str option

Working outside of Forlan, we then formulate the grammar

{variables} <A>, <B>, <C>, <D>, A, B, C, D

{start variable} <A>

{productions}

<A> -> 0<A>3 | A 3 | <B> | <C>;

A -> 0 A 3 | <A>3 | B | C;

<B> -> 1<B>3 | <D>;

B -> 1 B 3 | D;

<C> -> 0<C>2 | <D>;

C -> 0 C 2 | D;

<D> -> 2 | 1<D>2 | D 2;

D -> % | 1 D 2 | <D>2

that is inspired by new, and which we put in the file ps7-p4-gram. We load this grammar into

Forlan, calling it final:

- val final = Gram.input "ps7-p4-gram";

val final = - : gram

Finally, we check that its variables generate the same languages as the variables of new, when we

restrict our attention to strings over the alphabet {0, 1, 2, 3}∗ of length no more than 9:

- doit 9 inY final (Sym.fromString "<A>");

val it = (NONE,NONE) : str option * str option

- doit 9 inYeven final (Sym.fromString "A");

val it = (NONE,NONE) : str option * str option

- doit 9 in123 final (Sym.fromString "<B>");

val it = (NONE,NONE) : str option * str option

- doit 9 in123even final (Sym.fromString "B");

val it = (NONE,NONE) : str option * str option

- doit 9 in012 final (Sym.fromString "<C>");

val it = (NONE,NONE) : str option * str option

- doit 9 in012even final (Sym.fromString "C");

val it = (NONE,NONE) : str option * str option

- doit 9 in12 final (Sym.fromString "<D>");

val it = (NONE,NONE) : str option * str option

- doit 9 in12even final (Sym.fromString "D");

val it = (NONE,NONE) : str option * str option
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