CS 516—Software Foundations via Formal Languages—Spring 2022

Final Examination

Model Answers

Question 1

Question 2

 $A \rightarrow B\langle 2 \rangle \mid \langle 0 \rangle C$, $B \rightarrow \%$ | 0B1, $C \rightarrow \% \mid 1C2,$ $\langle 0 \rangle \rightarrow \% \mid 0 \langle 0 \rangle,$ $\langle 2 \rangle \rightarrow \% \mid 2\langle 2 \rangle.$

Question 3

To see that the statement is false, let $A = \{0, 10\}$ and $B = \{01, 0\}$. Then $010 \in A^*$ and 010 \in B^{*}, so that 010 \in A^{*} \cap B^{*}. But $A \cap B = \{0\}$, so that 010 \notin $(A \cap B)^*$. Thus $(A \cap B)^* \neq A^* \cap B^*$.

Question 4

Because $x \notin Y$, it follows that $(Y \cup \{x\}) - \{x\} = Y$. We can start by defining a regular expression α_x such that $L(\alpha_x) = \{x\}$. (α_x will look just like x, in abbreviated form.) Then we can convert α_x into a DFA M_x , in a sequence of stages: regular expression to FA, FA to EFA, EFA to NFA, NFA to DFA, so that $L(M_x) = \{x\}$. Finally, we can define the DFA N by:

 $N = \min\{(M, M_x)\}.$

Then $L(N) = L(\min \mathbf{u}(M, M_x)) = L(M) - L(M_x) = (Y \cup \{x\}) - \{x\} = Y$.

Question 5

 M is

First, we show by induction on Λ that:

- (A) for all $w \in \Lambda_{\mathsf{A}}, w \in X$ and 0 is not a suffix of w;
- (B) for all $w \in \Lambda_B$, $w \in X$ and 0 is a suffix of w;
- (C) for all $w \in \Lambda_{\mathsf{C}}$, $w \notin X$.

There are seven (one plus the number of transitions) parts to show.

- (empty string) We must show that $\mathcal{C} \in X$ and 0 is not suffix of \mathcal{C} . The latter property is obvious, and the former follows by Lemma 5.1(1).
- $(A, 0 \rightarrow B)$ Suppose $w \in \Lambda_A$, and assume the inductive hypothesis, $w \in X$ and 0 is not a suffix of w. We must show that $w0 \in X$ and 0 is a suffix of w0. The latter property is obvious, and the former one follows by Lemma 5.1(3).
- $(A, 1 \rightarrow A)$ Suppose $w \in \Lambda_A$, and assume the inductive hypothesis, $w \in X$ and 0 is not a suffix of w. We must show that $w1 \in X$ and 0 is not a suffix of w1. The latter property is obvious, and the former one follows by Lemma 5.1(2).
- $(B, 0 \to C)$ Suppose $w \in \Lambda_B$, and assume the inductive hypothesis, $w \in X$ and 0 is a suffix of w. We must show that $w_0 \notin X$, which follows by Lemma 5.1(4).
- $(B, 1 \rightarrow A)$ Suppose $w \in \Lambda_B$, and assume the inductive hypothesis, $w \in X$ and 0 is a suffix of w. We must show that $w1 \in X$ and 0 is not a suffix of w1. The latter property is obvious, and the former one follows from Lemma 5.1(2).
- $(C, 0 \to C)$ Suppose $w \in \Lambda_C$, and assume the inductive hypothesis, $w \notin X$. We must show that $w0 \notin X$, and this follows by Lemma 5.1(5).
- $(C, 1 \to C)$ Suppose $w \in \Lambda_C$, and assume the inductive hypothesis, $w \notin X$. We must show that $w1 \notin X$, and this follows by Lemma 5.1(5).

Now we use the result of our induction on Λ to show that $L(M) = X$.

 $(L(M) \subseteq X)$ Suppose $w \in L(M)$. Because $A_M = \{A, B\}$, we have that $w \in L(M)$ $\Lambda_A \cup \Lambda_B$. Thus by parts (A) and (B) of our induction on Λ , we have $w \in X$.

 $(X \subseteq L(M))$ Suppose $w \in X$. Since $X \subseteq \{0,1\}^*$, we have that $w \in \{0,1\}^*$. Suppose, toward a contradiction, that $w \notin L(M)$. Because $w \notin L(M) = \Lambda_A \cup \Lambda_B$, and $w \in \{0,1\}^*$ $({\bf alphabet} M)^* = \Lambda_{\mathsf{A}} \cup \Lambda_{\mathsf{B}} \cup \Lambda_{\mathsf{C}}$, it follows that $w \in \Lambda_{\mathsf{C}}$. But part (C) of our induction on Λ tells us that $w \notin X$ —contradiction. Thus $w \in L(M)$.

Question 6

Suppose, toward a contradiction, that L is regular. Thus there is an $n \in \mathbb{N} - \{0\}$ with the property of the Pumping Lemma for Regular Languages. Let $z = 0^{2n} 1^2 2^0 3^{2n+1}$. Because $2n < 2n + 1, 2 > 0, 2n + 2 = 2(n + 1)$ is even, and $0 + (2n + 1) = 2n + 1$ is odd, we have that $z \in L$. Furthermore $|z| = 2n + 2 + 0 + (2n + 1) = 4n + 3 \ge n$, and thus the property of the lemma tells us that there are $u, v, w \in \mathbf{Str}$ such that $z = uvw$ and

- (1) $|uv| \leq n$; and
- (2) $v \neq \%$; and
- (3) $uv^iw \in L$, for all $i \in \mathbb{N}$.

Since $0^{2n}1^22^03^{2n+1} = z = uvw$, (1) tells us that $uv \in \{0\}^*$. Thus (2) tells us that $v = 0^m$ for some $m \in \mathbb{N}$ such that $m \ge 1$. Thus $uv^2w = uvvw$ has exactly $2n + m$ 0's, but has exactly $2n + 1$ 3's. Because $2n + m \geq 2n + 1$, it follows that $uv^2w \notin L$. But according to (3), $uv^2w \in L$, giving us our contradiction. Thus L is not regular.