CS 516—Software Foundations via Formal Languages—Spring 2022

Problem Set 1

Due by 5pm on Friday, February 4 Submission via Gradescope

Problem 1 (25 points)

Suppose X is a set, and $x \in X$. What are the elements of $\emptyset \to X$, $X \to \emptyset$, $\{x\} \to X$ and $X \to \{x\}$? Prove that your answers are correct.

Problem 2 (25 points)

Use mathematical induction (Theorem 1.2.1) to prove that, for all $n \in \mathbb{N}$, if $n \ge 4$, then $2^n < n!$. Here n! is the factorial of n, defined recursively by:

- (1) 0! = 1;
- (2) (n+1)! = (n+1) * n!, for all $n \in \mathbb{N}$.

Problem 3 (25 points)

Use strong induction (Theorem 1.2.4) to prove that, for all $n \in \mathbb{N}$, if $n \ge 1$, then there are $i, j \in \mathbb{N}$ such that $n = 2^i(2j+1)$.

Problem 4 (25 points)

Define $f \in \mathbb{Z} \to \mathbb{Z}$ by:

$$f n = \begin{cases} 0 & \text{if } n = 0, \\ 1 - n & \text{if } n \ge 1, \\ -n - 1 & \text{if } n \le -1. \end{cases}$$

Given $n \in \mathbb{Z}$, define the *l*-th iteration of f on n $(f^l(n) \in \mathbb{Z})$, for $l \in \mathbb{N}$, by recursion:

$$f^0(n) = n,$$

$$f^{l+1}(n) = f(f^l(n))$$

Then we have that:

- (1) For all $n \in \mathbb{Z}$, $f^1(n) = f n$.
- (2) For all $n \in \mathbb{Z}$ and $l, m \in \mathbb{N}$, $f^{l+m}(n) = f^m(f^l(n))$.

Let R be the relation on \mathbb{Z} defined by: for all $n, m \in \mathbb{Z}$, n R m iff |n| < |m|. Here |n| is the absolute value of n: n, if $n \ge 0$; and -n, if $n \le -1$. We have the following properties of absolute value, where $n, m \in \mathbb{Z}$:

- (1) if $n \le m$, then |n m| = m n;
- (2) if $m \le n$, then |n m| = n m.

Because $|\cdot| \in \mathbb{Z} \to \mathbb{N}$ and \langle is well-founded on \mathbb{N} , Proposition 1.2.10 tells us that R is well-founded on \mathbb{Z} .

Use well-founded induction on R (Theorem 1.2.8) to show that, for all $n \in \mathbb{Z}$, there is an $l \in \mathbb{N}$ such that $f^{l}(n) = 0$.