CS 516—Software Foundations via Formal Languages—Spring 2025

Problem Set 3

Due by 11:59pm on Thursday, March 6

Problem 1 (25 Points)

Define a function diff $\in \{0,1\}^* \to \mathbb{Z}$ by: for all $w \in \{0,1\}^*$,

diff w = the number of 1's in w – the number of 0's in w.

Let $X = \{ w \in \{0, 1\}^* \mid |w| \le 6 \text{ and } \text{diff } w = 0 \}.$

Use Forlan to find and show the correctness of a regular expression α such that $L(\alpha) = X$. Try to make α as simple as possible (see **Reg.compareComplexity**), and use Forlan to display the size, number of concatenations, and number of symbols of α , as well as whether α is standardized. Try to do as much as possible of the work of finding and showing the correctness of α using Forlan. See the book or the Forlan manual for some useful functions for creating regular expressions that were not covered in the slides. (Include a listing of your Forlan session.)

Problem 2 (5 Points)

Solve Exercise 3.3.7, finding regular expressions α and β such that $\mathbf{cc} \alpha = \mathbf{cc} \beta$ but size $\alpha \neq$ size β . Use Forlan to check your solution. (Provide a transcript of your Forlan session.)

Problem 3 (10 Points)

Use Reg.locallySimplifyTrace to illustrate how reduction rule (20) works as part of local simplification. (Include a listing of your Forlan session.)

Problem 4 (60 points)

Let diff be as in Problem 1, and define $Y = \{w \in \{0,1\}^* \mid \text{for all prefixes } v \text{ of } w, -2 \leq \text{diff } v \leq 2\}.$

(a) Find a regular expression α such that $L(\alpha) = Y$. [15 points]

(b) Prove that your answer to part (a) is correct. [45 points]