CS 516—Software Foundations via Formal Languages—Spring 2025

Problem Set 5

Due by 11:59pm on Thursday, April 3

Problem 1 (60 points)

(a) Define functions $\mathbf{zo}, \mathbf{oz} \in \{0, 1\}^* \to \mathbb{N}$ by recursion:

- $\mathbf{zo} \% = 0$,
- for all $w \in \{0,1\}^*$,

$$\mathbf{zo}(w\mathbf{1}) = \begin{cases} 0, & \text{if } w = \%, \\ \mathbf{zo} w, & \text{if } \mathbf{1} \text{ is a suffix of } w, \\ \mathbf{zo} w + 1, & \text{if } \mathbf{0} \text{ is a suffix of } w, \end{cases}$$

• for all
$$w \in \{0, 1\}^*$$
, $\mathbf{zo}(w0) = \mathbf{zo} w$;

and

- oz % = 0,
- for all $w \in \{0, 1\}^*$,

$$\mathbf{oz}(w\mathbf{0}) = \begin{cases} 0, & \text{if } w = \%, \\ \mathbf{oz} \, w, & \text{if } \mathbf{0} \text{ is a suffix of } w, \\ \mathbf{oz} \, w + 1, & \text{if } \mathbf{1} \text{ is a suffix of } w, \end{cases}$$

• for all $w \in \{0,1\}^*$, oz(w1) = oz w.

(Informally, $\mathbf{zo} w$ is the number of occurrences of 01 in w, and $\mathbf{oz} w$ is the number of occurrences of 10 in w. E.g., $\mathbf{zo}(1001) = \mathbf{oz}(1001) = 1$, $\mathbf{zo}(0101) = 2$ and $\mathbf{oz}(0101) = 1$.)

Define

$$X = \{ w \in \{0,1\}^* \mid \mathbf{zo} \ w \text{ is even or } \mathbf{oz} \ w \text{ is even} \}.$$

Find and draw (e.g., using JForlan) a DFA M such that L(M) = X. Hint: you may use Forlan to test your definition of M, but this is not required. [15 points]

(b) Prove that your answer to part (a) is correct using our standard method of proving the correctness of DFAs (induction on Λ plus proof by contradiction). Your proof must explicitly use the definitions of **zo** and **oz** (and must not use the informal concepts of numbers of occurrences of **01** and **10**). [45 points]

Problem 2 (20 points)

Let N be the DFA

Use Forlan to convert N into a regular expression α such that $L(\alpha) = L(N)$. Try to make α be as simple as possible. Include a transcript of your Forlan session.

Problem 3 (20 points)

Suppose M is a DFA. We say that M is *reversible* iff, for all $r \in Q_M$ and $a \in alphabet(M)$, there is a unique $q \in Q_M$ such that $q, a \to r \in T_M$.

For example,

is reversible. On the other hand the DFA N of Problem 2 is not reversible, because both $B, 1 \rightarrow A$ and $A, 1 \rightarrow A$ are transitions labeled by 1 leading into A. (And also because both $A, 0 \rightarrow B$ and $B, 0 \rightarrow B$ are transitions labeled by 0 leading into B.)

Either prove or disprove the following statement:

For all regular languages L, there is a reversible DFA M such that L(M) = L.