
Chapter 1: Mathematical Background

This chapter consists of the material on set theory, induction,
inductive definitions and recursion that will be required in later
chapters.
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1.1: Basic Set Theory

In this section, we will cover the material on logic, sets, relations,
functions and data structures that will be needed in what follows.

Much of this material should be at least partly familiar.

The book starts with a review of classical logic.
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Describing Sets by Listing Their Elements;
Sets of Numbers

We write ∅ for the empty set—the set with no elements. Finite
sets can be described by listing their elements inside set braces:
{x1, . . . , xn}.

We write:

• N for the set {0, 1, . . .} of all natural numbers;

• Z for the set {. . . ,−1, 0, 1, . . .} of all integers;

• R for the set of all real numbers.
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Relationships between Sets

Sets A and B are equal (A = B) iff (if and only if) they have the
same elements, i.e., for all x , x ∈ A iff x ∈ B .

Suppose A and B are sets. We say that:

• A is a subset of B (A ⊆ B) iff, for all x ∈ A, x ∈ B ;

• A is a proper subset of B (A ( B) iff A ⊆ B but A 6= B .

For example, ∅ ( N, N ⊆ N and N ( Z.

Of course, A = B iff A ⊆ B and B ⊆ A.

We also have the notions of superset (A ⊇ B) and proper superset
(A ) B).
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Set Formation

We will make extensive use of the { · · · | · · · } notation for forming
sets. Let’s consider two representative examples of its use.

Let

A = { n | n ∈ N and n2 ≥ 20 } = { n ∈ N | n2 ≥ 20 }.

Then, for all n,

n ∈ A iff n ∈ N and n2 ≥ 20.

Is 5 ∈ A? Yes—5 ∈ N and 52 ≥ 20.

Is 5.5 ∈ A? No—5.5 6∈ N.

Is 4 ∈ A? No—42 6≥ 20.
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Set Formation (Cont.)

Let

B = { n3 +m2 | n,m ∈ N and n,m ≥ 1 }.

Then, for all l ,

l ∈ B iff l = n3 +m2
, for some n,m such that n,m ∈ N and n,m ≥ 1

iff l = n3 +m2
, for some n,m ∈ N such that n,m ≥ 1.

Is 9 ∈ B? To answer “yes”, we must show

9 = n3 +m2 and n,m ∈ N and n,m ≥ 1,

for some values of n,m. Yes—9 = 23 + 12 and 2, 1 ∈ N and
2, 1 ≥ 1.
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Set Formation (Cont.)

Given n,m ∈ Z, we write [n : m] for { l ∈ Z | l ≥ n and l ≤ m }.

Thus [n : m] is all of the integers that are at least n and no more
than m.

For example, [−2 : 1] is {−2,−1, 0, 1} and [3 : 2] is ∅.
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Operations on Sets

Recall the following operations on sets A and B :

A ∪ B = { x | x ∈ A or x ∈ B } (union)

A ∩ B = { x | x ∈ A and x ∈ B } (intersection)

A− B = { x ∈ A | x 6∈ B } (difference)

A× B = { (x , y) | x ∈ A and y ∈ B } (product)

P A = {X | X ⊆ A } (power set).

A− B is formed by removing the elements of B from A, if
necessary. For example, {0, 1, 2} − {1, 4} = {0, 2}. A× B consists
of all ordered pairs (x , y), where x comes from A and y comes from
B . For example, {0, 1} × {1, 2} = {(0, 1), (0, 2), (1, 1), (1, 2)}. We
can also write A× B × C , etc. Finally, P A consists of all of the
subsets of A. For example, P {0, 1} = {∅, {0}, {1}, {0, 1}}.
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Generalized Union and Intersection

If X is a set of sets, then the generalized union of X (
⋃

X ) is

{ a | a ∈ A, for some A ∈ X }.

For example
⋃

{{0, 1}, {1, 2}, {2, 3}} = {0, 1, 2, 3} = {0, 1} ∪ {1, 2} ∪ {2, 3},
⋃

∅ = ∅.

If X is a nonempty set of sets, then the generalized intersection of
X (

⋂

X ) is

{ a | a ∈ A, for all A ∈ X }.

For example
⋂

{{0, 1}, {1, 2}, {2, 3}} = ∅ = {0, 1} ∩ {1, 2} ∩ {2, 3}.
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Relations and Functions

A relation R is a set of ordered pairs.

The domain of a relation R (domainR) is { x | (x , y) ∈ R ,

for some y }, and the range of R (rangeR) is { y | (x , y) ∈ R ,

for some x }.

We say that R is a relation from a set X to a set Y iff
domainR ⊆ X and rangeR ⊆ Y , and that R is a relation on a
set A iff domainR ∪ rangeR ⊆ A.

We often write x R y for (x , y) ∈ R .

Consider the relation

R = {(0, 1), (1, 2), (0, 2)}.

Then, domainR = {0, 1}, rangeR = {1, 2}, R is a relation from
{0, 1} to {1, 2}, and R is a relation on {0, 1, 2}.
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Properties of Relations

A relation R is:

• reflexive on a set A iff, for all x ∈ A, (x , x) ∈ R ;

• transitive iff, for all x , y , z , if (x , y) ∈ R and (y , z) ∈ R , then
(x , z) ∈ R ;

• symmetric iff, for all x , y , if (x , y) ∈ R , then (y , x) ∈ R ;

• a function iff, for all x , y , z , if (x , y) ∈ R and (x , z) ∈ R , then
y = z .

Is R = {(0, 1), (1, 2), (0, 2)} reflexive on {0, 1, 2}? No—(0, 0) 6∈ R .
Is R transitive? Yes; since (0, 1), (1, 2) ∈ R , (0, 2) ∈ R required.
Is R symmetric? No—(0, 1) ∈ R , but (1, 0) 6∈ R .
Is R a function? No—(0, 1) ∈ R and (0, 2) ∈ R .

The book talks about total orderings like ≤ on N, as well as the
corresponding strict total orderings, like < on N.
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More on Functions

The relation

f = {(0, 1), (1, 2), (2, 0)}

is a function.

If f is a function and x ∈ domain f , we write f x for the
application of f to x , i.e., the unique y such that (x , y) ∈ f .

We say that f is a function from a set X to a set Y iff f is a
function, domain f = X and range f ⊆ Y .

We write X → Y for the set of all functions from X to Y .

For the f defined above, we have that f 0 = 1, f 1 = 2, f 2 = 0, f
is a function from {0, 1, 2} to {0, 1, 2}, and
f ∈ {0, 1, 2} → {0, 1, 2}.
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Bijections

A bijection f from a set X to a set Y is a function from X to Y

such that, for all y ∈ Y , there is a unique x ∈ X such that
(x , y) ∈ f .

For example,

f = {(0, 5.1), (1, 2.6), (2, 0.5)}

is a bijection from {0, 1, 2} to {0.5, 2.6, 5.1}.

We can visualize f as a one-to-one correspondence between these
sets:

1

0

2

0.5

5.1

2.6

f
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Set Cardinality

We say that a set X is equinumerous to a set Y (X ∼= Y ) iff there
is a bijection from X to Y . It’s not hard to show that for all sets
X ,Y ,Z :

• X ∼= X ;

• If X ∼= Y ∼= Z , then X ∼= Z ;

• If X ∼= Y , then Y ∼= X .
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Finite and Infinite Sets

A set X is finite iff X ∼= [1 : n], for some n ∈ N; otherwise X is
infinite.

A set X is countably infinite iff X ∼= N.

A set X is countable iff X is either finite or countably infinite;
otherwise X is uncountable.

Every set X has a size or cardinality (|X |) and we have that, for all
sets X and Y , |X | = |Y | iff X ∼= Y . The sizes of finite sets are
natural numbers.
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Set Size Examples

• The sets ∅ and {0.5, 2.6, 5.1} are finite, and are thus also
countable;

• The sets N, Z, R and P N are infinite;

• The set N is countably infinite, and is thus countable;

• The set Z is countably infinite, and is thus countable, because
of the existence of the following bijection:

3· · · · · ·024

· · · · · ·0 1−1−2 2

· · ·· · ·

1

• The sets R and P N are uncountable.
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Data Structures: Booleans

Bool = {true, false}.

We have the usual negation (not), conjunction (and) and
disjunction (or) operations on booleans.
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Options

OptionX = {none} ∪ { some x | x ∈ X }.

For example, OptionBool = {none, some true, some false}.

E.g., we could define a function f ∈ N× N→OptionBool by:

f (n,m) =







none, if m = 0,
some true if m 6= 0 and n = ml for some l ∈ N,

some false if m 6= 0 and n 6= ml for all l ∈ N.
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Lists

A list is a function with domain [1 : n], for some n ∈ N.

For example ∅ is a list, as it is a function with domain ∅ = [1 : 0].

And {(1, 3), (2, 5), (3, 7)} is a list, as it is a function with domain
[1 : 3].

We abbreviate a list {(1, x1), (2, x2), . . . , (n, xn)} to [x1, x2, . . . , xn].
Thus ∅ and {(1, 3), (2, 5), (3, 7)} are abbreviated to [ ] and [3, 5, 7].

| · | doubles as list length.

f @ g is list concatenation. E.g., [2, 3, 4] @ [5, 6] = [2, 3, 4, 5, 6].

Concatenation is associative (f @ g) @ h = f @ (g @ h) and has [ ]
as its identity ([ ] @ f = f = f @ [ ]).

ListX is all X -lists, i.e., all lists whose ranges are subsets of X ,
i.e., whose elements come from X .
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