1.2: Induction

In the section, we consider several induction principles, i.e., methods for proving that every element x of some set A has some property P(x).

Principle of Mathematical Induction

```
Theorem 1.2.1 (Principle of Mathematical Induction)
Suppose P(n) is a property of a natural number n.
lf
  (basis step)
```

```
and
   (inductive step)
                         for all n \in \mathbb{N}, if
                                                             then
then,
```

for all $n \in \mathbb{N}$, P(n).

Principle of Mathematical Induction

```
Theorem 1.2.1 (Principle of Mathematical Induction)
Suppose P(n) is a property of a natural number n.
lf
   (basis step)
                                       P(0) and
   (inductive step)
                     for all n \in \mathbb{N}, if
                                                   then
then,
                          for all n \in \mathbb{N}, P(n).
```

Principle of Mathematical Induction

Theorem 1.2.1 (Principle of Mathematical Induction)

Suppose P(n) is a property of a natural number n. If

(basis step)

P(0) and

(inductive step)

for all
$$n \in \mathbb{N}$$
, if (\dagger) $P(n)$, then $P(n+1)$,

then,

for all
$$n \in \mathbb{N}$$
, $P(n)$.

We refer to the formula (†) as the inductive hypothesis.

Principle of Strong Induction

Theorem 1.2.4 (Principle of Strong Induction)

Suppose P(n) is a property of a natural number n. If

```
for all n \in \mathbb{N}, if then P(n),
```

then

for all
$$n \in \mathbb{N}$$
, $P(n)$.

Principle of Strong Induction

Theorem 1.2.4 (Principle of Strong Induction) Suppose P(n) is a property of a natural number n. If

```
for all n \in \mathbb{N}, if (\dagger) for all m \in \mathbb{N}, if m < n, then P(m), then P(n),
```

then

for all
$$n \in \mathbb{N}$$
, $P(n)$.

We refer to the formula (†) as the inductive hypothesis.

Principle of Strong Induction

Theorem 1.2.4 (Principle of Strong Induction)

Suppose P(n) is a property of a natural number n. If

```
for all n \in \mathbb{N}, if (\dagger) for all m \in \mathbb{N}, if m < n, then P(m), then P(n),
```

then

for all
$$n \in \mathbb{N}$$
, $P(n)$.

We refer to the formula (†) as the inductive hypothesis.

Proof. Follows by mathematical induction, but using a property Q(n) derived from P(n). See the book. \square

Proposition 1.2.5

Every nonempty set of natural numbers has a least element.

Proof. Let X be a nonempty set of natural numbers.

We begin by using strong induction to show that, for all $n \in \mathbb{N}$,

Proposition 1.2.5

Every nonempty set of natural numbers has a least element.

Proof. Let X be a nonempty set of natural numbers.

We begin by using strong induction to show that, for all $n \in \mathbb{N}$,

if $n \in X$, then X has a least element.

Proposition 1.2.5

Every nonempty set of natural numbers has a least element.

Proof. Let X be a nonempty set of natural numbers.

We begin by using strong induction to show that, for all $n \in \mathbb{N}$,

if $n \in X$, then X has a least element.

Suppose $n \in \mathbb{N}$, and assume the inductive hypothesis: for all $m \in \mathbb{N}$, if m < n, then

Proposition 1.2.5

Every nonempty set of natural numbers has a least element.

Proof. Let X be a nonempty set of natural numbers.

We begin by using strong induction to show that, for all $n \in \mathbb{N}$,

if $n \in X$, then X has a least element.

Suppose $n \in \mathbb{N}$, and assume the inductive hypothesis: for all $m \in \mathbb{N}$, if m < n, then

if $m \in X$, then X has a least element.

We must show that

Proposition 1.2.5

Every nonempty set of natural numbers has a least element.

Proof. Let X be a nonempty set of natural numbers.

We begin by using strong induction to show that, for all $n \in \mathbb{N}$,

if $n \in X$, then X has a least element.

Suppose $n \in \mathbb{N}$, and assume the inductive hypothesis: for all $m \in \mathbb{N}$, if m < n, then

if $m \in X$, then X has a least element.

We must show that

if $n \in X$, then X has a least element.

Proof (cont.). Suppose $n \in X$. It remains to show that X has a least element.

Proof (cont.). Suppose $n \in X$. It remains to show that X has a least element. If n is less-than-or-equal-to every element of X, then we are done. Otherwise, there is an $m \in X$ such that m < n.

Proof (cont.). Suppose $n \in X$. It remains to show that X has a least element. If n is less-than-or-equal-to every element of X, then we are done. Otherwise, there is an $m \in X$ such that m < n. By the inductive hypothesis, we have that

if $m \in X$, then X has a least element.

But $m \in X$, and thus X has a least element. This completes our strong induction.

Proof (cont.). Now we use the result of our strong induction to prove that X has a least element. Since X is a nonempty subset of \mathbb{N} , there is an $n \in \mathbb{N}$ such that $n \in X$. By the result of our induction, we can conclude that

if $n \in X$, then X has a least element.

But $n \in X$, and thus X has a least element. \square

We can also do induction over a well-founded relation.

A relation R on a set A is well-founded iff every nonempty subset X of A has an R-minimal element, where an element $x \in X$ is R-minimal in X iff there is no $y \in X$ such that $y \in X$.

We can also do induction over a well-founded relation.

A relation R on a set A is well-founded iff every nonempty subset X of A has an R-minimal element, where an element $x \in X$ is R-minimal in X iff there is no $y \in X$ such that $y \in X$.

Given $x, y \in A$, we say that y is a predecessor of x in R iff y R x. Thus $x \in X$ is R-minimal in X iff none of x's predecessors in R (there may be none) are in X.

We can also do induction over a well-founded relation.

A relation R on a set A is well-founded iff every nonempty subset X of A has an R-minimal element, where an element $x \in X$ is R-minimal in X iff there is no $y \in X$ such that $y \in X$.

Given $x, y \in A$, we say that y is a predecessor of x in R iff y R x. Thus $x \in X$ is R-minimal in X iff none of x's predecessors in R (there may be none) are in X.

For example, in Proposition 1.2.5, we proved that the strict total ordering < on $\mathbb N$ is well-founded.

We can also do induction over a well-founded relation.

A relation R on a set A is well-founded iff every nonempty subset X of A has an R-minimal element, where an element $x \in X$ is R-minimal in X iff there is no $y \in X$ such that $y \in X$.

Given $x, y \in A$, we say that y is a predecessor of x in R iff y R x. Thus $x \in X$ is R-minimal in X iff none of x's predecessors in R (there may be none) are in X.

For example, in Proposition 1.2.5, we proved that the strict total ordering < on $\mathbb N$ is well-founded.

On the other hand, the strict total ordering < on $\mathbb Z$ is not well-founded, as

We can also do induction over a well-founded relation.

A relation R on a set A is well-founded iff every nonempty subset X of A has an R-minimal element, where an element $x \in X$ is R-minimal in X iff there is no $y \in X$ such that $y \in X$.

Given $x, y \in A$, we say that y is a predecessor of x in R iff y R x. Thus $x \in X$ is R-minimal in X iff none of x's predecessors in R (there may be none) are in X.

For example, in Proposition 1.2.5, we proved that the strict total ordering < on $\mathbb N$ is well-founded.

On the other hand, the strict total ordering < on \mathbb{Z} is *not* well-founded, as \mathbb{Z} itself lacks a <-minimal element.

Here's another negative example, showing that even if the underlying set is finite, the relation need not be well-founded.

Here's another negative example, showing that even if the underlying set is finite, the relation need not be well-founded.

Let $A = \{0,1\}$, and $R = \{(0,1),(1,0)\}$. Then is the only predecessor of 1 in R, and is the only predecessor of 0 in R.

Here's another negative example, showing that even if the underlying set is finite, the relation need not be well-founded.

Let $A = \{0, 1\}$, and $R = \{(0, 1), (1, 0)\}$. Then 0 is the only predecessor of 1 in R, and is the only predecessor of 0 in R.

Here's another negative example, showing that even if the underlying set is finite, the relation need not be well-founded.

Let $A = \{0, 1\}$, and $R = \{(0, 1), (1, 0)\}$. Then 0 is the only predecessor of 1 in R, and 1 is the only predecessor of 0 in R.

Here's another negative example, showing that even if the underlying set is finite, the relation need not be well-founded. Let $A = \{0,1\}$, and $R = \{(0,1),(1,0)\}$. Then 0 is the only predecessor of 1 in R, and 1 is the only predecessor of 0 in R. Of the nonempty subsets of A, we have that $\{0\}$ and $\{1\}$ have R-minimal elements. But consider A itself. Then 0 is not R-minimal in A, because

Here's another negative example, showing that even if the underlying set is finite, the relation need not be well-founded.

Let $A = \{0, 1\}$, and $R = \{(0, 1), (1, 0)\}$. Then 0 is the only predecessor of 1 in R, and 1 is the only predecessor of 0 in R.

Of the nonempty subsets of A, we have that $\{0\}$ and $\{1\}$ have R-minimal elements. But consider A itself. Then 0 is not R-minimal in A, because $1 \in A$ and $1 R \setminus 0$. And 1 is not R-minimal in A, because $0 \in A$ and $0 R \setminus 1$. Hence R is not well-founded.

Principle of Well-founded Induction

Theorem 1.2.8 (Principle of Well-founded Induction)

Suppose A is a set, R is a well-founded relation on A, and P(x) is a property of an element $x \in A$.

If

for all
$$x \in A$$
, if then $P(x)$,

then

for all
$$x \in A$$
, $P(x)$.

Principle of Well-founded Induction

Theorem 1.2.8 (Principle of Well-founded Induction)

Suppose A is a set, R is a well-founded relation on A, and P(x) is a property of an element $x \in A$.

If

for all
$$x \in A$$
, if (\dagger) for all $y \in A$, if $y \in A$, then $P(y)$, then $P(x)$,

then

for all
$$x \in A$$
, $P(x)$.

We refer to the formula (†) as the inductive hypothesis.

Principle of Well-founded Induction

Theorem 1.2.8 (Principle of Well-founded Induction)

Suppose A is a set, R is a well-founded relation on A, and P(x) is a property of an element $x \in A$.

If

for all
$$x \in A$$
, if (\dagger) for all $y \in A$, if $y \in A$, then $P(y)$, then $P(x)$,

then

for all
$$x \in A$$
, $P(x)$.

We refer to the formula (†) as the *inductive hypothesis*. When $A = \mathbb{N}$ and R = <, this is the same as the principle of strong induction.

Proof. Suppose A is a set, R is a well-founded relation on A, P(x) is a property of an element $x \in A$, and

```
(‡) for all x \in A, if for all y \in A, if y R x, then P(y), then P(x).
```

We must show that, for all $x \in A$, P(x).

Proof. Suppose A is a set, R is a well-founded relation on A, P(x) is a property of an element $x \in A$, and

(‡) for all $x \in A$, if for all $y \in A$, if y R x, then P(y), then P(x).

We must show that, for all $x \in A$, P(x).

Suppose, toward a contradiction, that it is not the case that, for all $x \in A$, P(x). Hence there is an $x \in A$ such that P(x) is false.

Proof. Suppose A is a set, R is a well-founded relation on A, P(x) is a property of an element $x \in A$, and

```
(‡) for all x \in A, if for all y \in A, if y R x, then P(y), then P(x).
```

We must show that, for all $x \in A$, P(x).

Suppose, toward a contradiction, that it is not the case that, for all $x \in A$, P(x). Hence there is an $x \in A$ such that P(x) is false. Let $X = \{x \in A \mid P(x) \text{ is false }\}$. Thus $x \in X$, showing that X is non-empty.

Proof. Suppose A is a set, R is a well-founded relation on A, P(x) is a property of an element $x \in A$, and

```
(‡) for all x \in A, if for all y \in A, if y R x, then P(y), then P(x).
```

We must show that, for all $x \in A$, P(x).

Suppose, toward a contradiction, that it is not the case that, for all $x \in A$, P(x). Hence there is an $x \in A$ such that P(x) is false. Let $X = \{x \in A \mid P(x) \text{ is false}\}$. Thus $x \in X$, showing that X is non-empty. Because R is well-founded on A, it follows that there is a $z \in X$ that is R-minimal in X, i.e., such that there is no $y \in X$ such that $y \in X$.

Proof of Well-founded Induction (Cont.)

Proof (cont.). By (\ddagger) , we have that if for all $y \in A$, if y R z, then P(y), then P(z).

Proof of Well-founded Induction (Cont.)

Proof (cont.). By (\ddagger) , we have that if for all $y \in A$, if y R z, then P(y), then P(z).

Because $z \in X$, we have that P(z) is false. Thus, to obtain a contradiction, it will suffice to show that

Proof (cont.). By (‡), we have that

if for all $y \in A$, if y R z, then P(y), then P(z).

Because $z \in X$, we have that P(z) is false. Thus, to obtain a contradiction, it will suffice to show that

for all $y \in A$, if y R z, then P(y).

Proof (cont.). By (\ddagger) , we have that

if for all $y \in A$, if y R z, then P(y), then P(z).

Because $z \in X$, we have that P(z) is false. Thus, to obtain a contradiction, it will suffice to show that

for all
$$y \in A$$
, if $y R z$, then $P(y)$.

Suppose $y \in A$, and y R z. We must show that P(y).

Proof (cont.). By (\ddagger) , we have that

if for all $y \in A$, if y R z, then P(y), then P(z).

Because $z \in X$, we have that P(z) is false. Thus, to obtain a contradiction, it will suffice to show that

for all $y \in A$, if y R z, then P(y).

Suppose $y \in A$, and y R z. We must show that P(y). Because z is R-minimal in X, it follows that $y \notin X$.

Proof (cont.). By (\ddagger) , we have that

if for all $y \in A$, if y R z, then P(y), then P(z).

Because $z \in X$, we have that P(z) is false. Thus, to obtain a contradiction, it will suffice to show that

for all
$$y \in A$$
, if $y R z$, then $P(y)$.

Suppose $y \in A$, and y R z. We must show that P(y). Because z is R-minimal in X, it follows that $y \notin X$. Thus P(y). \square

Let the predecessor relation $\operatorname{pred}_{\mathbb{N}}$ on \mathbb{N} be $\{(n, n+1) \mid n \in \mathbb{N}\}$.

Let the predecessor relation $\operatorname{pred}_{\mathbb{N}}$ on \mathbb{N} be $\{(n,n+1)\mid n\in\mathbb{N}\}$. Then $\operatorname{pred}_{\mathbb{N}}$ is well-founded on \mathbb{N} , because $\operatorname{pred}_{\mathbb{N}}\subseteq <$ and < is well-founded on \mathbb{N} (see Proposition 1.2.9 in the book).

Let the predecessor relation $\operatorname{pred}_{\mathbb{N}}$ on \mathbb{N} be $\{(n, n+1) \mid n \in \mathbb{N}\}$.

Then $\operatorname{pred}_{\mathbb{N}}$ is well-founded on \mathbb{N} , because $\operatorname{pred}_{\mathbb{N}} \subseteq <$ and < is well-founded on \mathbb{N} (see Proposition 1.2.9 in the book).

0 has no predecessors in $\operatorname{pred}_{\mathbb{N}}$, and, for all $n \in \mathbb{N}$, n is the only predecessor of n+1 in $\operatorname{pred}_{\mathbb{N}}$. Consequently, if a zero/non-zero case analysis is used, a proof by well-founded induction on $\operatorname{pred}_{\mathbb{N}}$ will look like a proof by

Let the predecessor relation $\operatorname{pred}_{\mathbb{N}}$ on \mathbb{N} be $\{(n, n+1) \mid n \in \mathbb{N}\}$.

Then $\operatorname{pred}_{\mathbb{N}}$ is well-founded on \mathbb{N} , because $\operatorname{pred}_{\mathbb{N}} \subseteq <$ and < is well-founded on \mathbb{N} (see Proposition 1.2.9 in the book).

0 has no predecessors in $\operatorname{pred}_{\mathbb{N}}$, and, for all $n \in \mathbb{N}$, n is the only predecessor of n+1 in $\operatorname{pred}_{\mathbb{N}}$. Consequently, if a zero/non-zero case analysis is used, a proof by well-founded induction on $\operatorname{pred}_{\mathbb{N}}$ will look like a proof by mathematical induction.

Let R be the relation on \mathbb{Z} such that, for all $n, m \in \mathbb{Z}$, n R m iff |n| < |m|.

Let R be the relation on \mathbb{Z} such that, for all $n, m \in \mathbb{Z}$, n R m iff |n| < |m|.

Since $|\cdot| \in \mathbb{Z} \to \mathbb{N}$ and < is well-founded on \mathbb{N} , Proposition 1.2.10 from the book tells us that R is well-founded on \mathbb{Z} .

Let R be the relation on \mathbb{Z} such that, for all $n, m \in \mathbb{Z}$, n R m iff |n| < |m|.

Since $|\cdot| \in \mathbb{Z} \to \mathbb{N}$ and < is well-founded on \mathbb{N} , Proposition 1.2.10 from the book tells us that R is well-founded on \mathbb{Z} .

If we do a well-founded induction on R, when proving P(n), for $n \in \mathbb{Z}$, we can make use of P(m) for any $m \in \mathbb{Z}$ whose absolute value is strictly less than the absolute value of n.

E.g., when proving P(-10), we could make use of

Let R be the relation on \mathbb{Z} such that, for all $n, m \in \mathbb{Z}$, n R m iff |n| < |m|.

Since $|\cdot| \in \mathbb{Z} \to \mathbb{N}$ and < is well-founded on \mathbb{N} , Proposition 1.2.10 from the book tells us that R is well-founded on \mathbb{Z} .

If we do a well-founded induction on R, when proving P(n), for $n \in \mathbb{Z}$, we can make use of P(m) for any $m \in \mathbb{Z}$ whose absolute value is strictly less than the absolute value of n.

E.g., when proving P(-10), we could make use of P(5) or P(-9).