
1.3: Inductive Definitions and Recursion

In this section, we will introduce and study ordered trees of
arbitrary (finite) arity, whose nodes are labeled by elements of
some set.

In later chapters, we will define regular expressions (in Chapter 3),
parse trees (in Chapter 4) and programs (in Chapter 5) as
restrictions of the trees we consider here.

The definition of the set of all trees is our first example of an
inductive definition—a definition in which we collect together all of
the values that can be constructed using a set of rules.

In this section, we will also see how to define functions by
recursion.

1 / 24

Inductive Definition of Trees

Suppose X is a set. The set TreeX of X -trees is the least set such
that, for all x ∈ X and trs ∈ List(TreeX), (x , trs) ∈ TreeX .

Ignoring the adjective “least” for the moment, some example
elements of TreeN are:

• Since 3 ∈ N and [] ∈ List(TreeN), we have that
(3, []) ∈ TreeN.

• For similar reasons, (1, []) and (6, []) are in TreeN.

• Because 4 ∈ N, and [(3, []), (1, []), (6, [])] ∈ List(TreeN), we
have that (4, [(3, []), (1, []), (6, [])]) ∈ TreeN.

• And we can continue like this forever.

2 / 24

Drawing Trees

Trees are often easier to comprehend if they are drawn.

We draw the X -tree (x , [tr 1, . . . , trn]) as

x

tr 1 · · · trn

(just writing x when n = 0). For example,

4

3 1 6

is the drawing of the N-tree

(4, [(3, []), (1, []), (6, [])]).

3 / 24

Drawing Trees (Cont.)

And

4

3 1 6

9

2

is the N-tree

(2, [(4, [(3, []), (1, []), (6, [])]), (9, [])]).

4 / 24

Tree Terminology and Notation

Consider the tree

x

tr 1 · · · trn

again.

The root label of this tree is x , and tr1 is the tree’s first child, etc.
We write rootLabel tr for the root label of tr .

5 / 24

Tree Terminology and Notation (Cont.)

We often write a tree (x , [tr 1, . . . , tr n]) in a more compact, linear
syntax:

• x(tr1, . . . , tr n), when n ≥ 1, and

• x , when n = 0.

Thus

(2, [(4, [(3, []), (1, []), (6, [])]), (9, [])]).

can be written as

2(4(3, 1, 6), 9).

6 / 24

Understanding the Definition

Consider the definition of TreeX again: the set TreeX of X -trees
is the least set such that, (†) for all x ∈ X and trs ∈ List(TreeX),
(x , trs) ∈ TreeX .

Let’s call a set U X -closed iff it satisfies property (†), where we
have replaced TreeX by U: for all x ∈ X and trs ∈ ListU,
(x , trs) ∈ U.

Thus the definition says that TreeX is the least X -closed set,
where we’ve yet to say just what “least” means.

From set theory, we have that, for all sets X , there is an X -closed
set U. (If X is a set, we can prove that there is a set U such that
X ⊆ U, U × U ⊆ U and ListU ⊆ U. Thus if x ∈ X and
trs ∈ ListU, then x ∈ U and trs ∈ U, so that (x , trs) ∈ U.)

If U is Z-closed, then it will also be N-closed. But if TreeN was
U, it would have elements like (−5, []), which are not wanted.

7 / 24

Understanding the Definition (Cont.)

To keep TreeX from having junk, we say that TreeX is the set U
such that:

• U is X -closed, and

• for all X -closed sets V , U ⊆ V .

This is what we mean by saying that TreeX is the least X -closed
set.

But how do we know that such a set U exists? (If U and U ′ are
both X -closed sets that are subsets of all X -closed sets, then
U ⊆ U ′ ⊆ U, and so U = U ′. Thus there is at most one U with
the above property.)

8 / 24

Justifying the Definition

We have that:

• There is an X -closed set V .

• If W is a nonempty set of X -closed sets, then
⋂

W is also an
X -closed set.

(Because W is nonempty,
⋂

W is well-defined. To see that⋂
W is X -closed, suppose x ∈ X and trs ∈ List

⋂
W. We

must show that (x , trs) ∈
⋂

W, i.e., that (x , trs) ∈ Z , for all
Z ∈ W. Suppose Z ∈ W. We must show that (x , trs) ∈ Z .
Because Z ∈ W, we have that

⋂
W ⊆ Z , so that

List
⋂

W ⊆ ListZ . Thus, since trs ∈ List
⋂

W, it follows
that trs ∈ ListZ . But Z is X -closed, and thus (x , trs) ∈ Z ,
as required.)

9 / 24

Justifying the Definition (Cont.)

Let W be the set of all subsets of V that are X -closed. Thus W is
a nonempty set of X -closed sets, since V ∈ W.

Let U =
⋂

W. Then U is X -closed, and is a subset of all other
X -closed sets (if T is an X -closed set, then
T ∩ V =

⋂
{T ,V } ∈ W), i.e., it is the least X -closed set.

10 / 24

Principle of Induction on Trees

Because trees are defined via an inductive definition, we get an
induction principle for trees almost for free:

Theorem 1.3.3 (Principle of Induction on Trees)
Suppose X is a set and P(tr) is a property of an element

tr ∈ TreeX.

If

for all x ∈ X and trs ∈ List(TreeX),
if (†) for all i ∈ [1 : |trs|], P(trs i),
then P((x , trs)),

then

for all tr ∈ TreeX , P(tr).

We refer to (†) as the inductive hypothesis.

11 / 24

Proof of Principle of Induction on Trees

Proof. Suppose X is a set, P(tr) is a property of an element
tr ∈ TreeX , and

(‡) for all x ∈ X and trs ∈ List(TreeX),
if for all i ∈ [1 : |trs|], P(trs i),
then P((x , trs)).

We must show that

for all tr ∈ TreeX , P(tr).

Let U = { tr ∈ TreeX | P(tr) }. We will show that U is X -closed.
Suppose x ∈ X and trs ∈ ListU. We must show that (x , trs) ∈ U.
It will suffice to show that P((x , trs)). By (‡), it will suffice to
show that, for all i ∈ [1 : |trs|], P(trs i). Suppose i ∈ [1 : |trs|].
We must show that P(trs i). Because trs ∈ ListU, we have that
trs i ∈ U. Hence P(trs i), as required.

12 / 24

Proof of Principle of Induction on Trees (Cont.)

Proof (cont.). Because U is X -closed, we have that
TreeX ⊆ U, as TreeX is the least X -closed set. Hence, for all
tr ∈ TreeX , tr ∈ U, so that, for all tr ∈ TreeX , P(tr). ✷

13 / 24

Destructing Trees

Proposition 1.3.4
Suppose X is a set. For all tr ∈ TreeX, there are x ∈ X and

trs ∈ List(TreeX) such that tr = (x , trs).

Proof. Suppose X is a set. We use induction on trees to prove
that, for all tr ∈ TreeX , there are x ∈ X and trs ∈ List(TreeX)
such that tr = (x , trs). Suppose x ∈ X , trs ∈ List(TreeX), and
assume the inductive hypothesis: for all i ∈ [1 : |trs|], there are
x ′ ∈ X and trs ′ ∈ List(TreeX) such that trs i = (x ′, trs ′). We
must show that there are x ′ ∈ X and trs ′ ∈ List(TreeX) such that
(x , trs) = (x ′, trs ′). And this holds, since x ∈ X ,
trs ∈ List(TreeX) and (x , trs) = (x , trs). ✷

14 / 24

Predecessor Relation on Trees

Suppose X is a set. Let the predecessor relation predTreeX on
TreeX be the set of all pairs of X -trees (tr , tr ′) such that there
are x ∈ X and trs ′ ∈ List(TreeX) such that tr ′ = (x , trs ′) and
trs ′ i = tr for some i ∈ [1 : |trs ′|].

Thus the predecessors of a tree (x , [tr 1, . . . , trn]) are its children
tr1, . . . , trn.

Proposition 1.3.5
If X is a set, then predTreeX is a well-founded relation on TreeX.

Proof. Suppose X is a set and Y is a nonempty subset of
TreeX . Mimicking Proposition 1.2.5, we can use the principle of
induction on trees to prove that, for all tr ∈ TreeX , if tr ∈ Y ,
then Y has a predTreeX -minimal element. Because Y is nonempty,
we can conclude that Y has a predTreeX -minimal element. ✷

15 / 24

Recursion

Suppose R is a well-founded relation on a set A. We can define a
function f from A to a set B by well-founded recursion on R .

The details are in the book, but the idea is simple: when f is
called with an element x ∈ A, it may call itself recursively on as
many of the predecessors of x in R as it wants.

Typically, such a definition will be concrete enough that we can
regard it as defining an algorithm as well as a function.

16 / 24

Examples of Well-founded Recursion

• If we define f ∈ N→ B by well-founded recursion on <, then,
when f is called with n ∈ N, it may call itself recursively on
any strictly smaller natural numbers. In the case n = 0, it
can’t make any recursive calls.

• If we define f ∈ N→ B by well-founded recursion on the
predecessor relation predN, then when f is called with n ∈ N,
it may call itself recursively on n − 1, in the case when n ≥ 1,
and may make no recursive calls, when n = 0.

Thus, if such a definition case-splits according to whether its
input is 0 or not, it can be split into two parts:

• f 0 = · · · ;
• for all n ∈ N, f (n + 1) = · · · f n · · · .

We say that such a definition is by recursion on N.

17 / 24

Examples of Well-founded Recursion (Cont.)

• If we define f ∈ TreeX → B by well-founded recursion on the
predecessor relation predTreeX , then when f is called on an
X -tree (x , [tr 1, . . . , trn]), it may call itself recursively on any
of tr1, . . . , trn. When n = 0, it may make no recursive calls.
We say that such a definition is by structural recursion.

18 / 24

Examples of Well-founded Recursion (Cont.)

• For example, we may define the size of an X -tree
(x , [tr 1, . . . , trn]) by summing the recursively computed sizes
of tr1, . . . , trn, and then adding 1. Then, e.g., the size of

4

3 1 6

9

2

is 6.

This defines a function size ∈ TreeX → N.

19 / 24

Examples of Well-founded Recursion (Cont.)

• And we may define the height of an X -tree (x , [tr 1, . . . , tr n])
as

• 0, when n = 0, and
• 1 plus the maximum of the recursively computed heights of

tr1, . . . , tr n, when n ≥ 1.

E.g., the height of

4

3 1 6

9

2

is 2.

This defines a function height ∈ TreeX → N.

20 / 24

Examples of Well-founded Recursion (Cont.)

• Given a set X , we can define a well-founded relation sizeTreeX
on TreeX by: for all tr , tr ′ ∈ TreeX , tr sizeTreeX tr ′ iff
size tr < size tr ′.

If we define a function f ∈ TreeX → B by well-founded
recursion on sizeTreeX , when f is called with an X -tree tr , it
may call itself recursively on any X -trees with strictly smaller
sizes.

• Given a set X , we can define a well-founded relation
heightTreeX on TreeX by: for all tr , tr ′ ∈ TreeX ,
tr heightTreeX tr ′ iff height tr < height tr ′.

If we define a function f ∈ TreeX → B by well-founded
recursion on heightTreeX , when f is called with an X -tree tr ,
it may call itself recursively on any X -trees with strictly
smaller heights.

21 / 24

Examples of Well-founded Recursion (Cont.)

• Given a set X , we can define a well-founded relation
lengthListX on ListX by: for all xs, ys ∈ ListX ,
xs lengthListX ys iff |xs| < |ys|.

If we define a function f ∈ ListX → B by well-founded
recursion on lengthListX , when f is called with an X -list xs, it
may call itself recursively on any X -lists with strictly smaller
lengths.

22 / 24

Paths in Trees

We can think of an N− {0}-list [n1, n2, . . . , nm] as a path through
an X -tree tr : one starts with tr itself, goes to the n1-th child of tr ,
selects the n2-th child of that tree, etc., stopping when the list is
exhausted.

Consider the N-tree

4

3 1 6

9

2

Then:

• [] takes us to the whole tree.
• [1] takes us to the tree 4(3, 1, 6).
• [1, 3] takes us to the tree 6.
• [1, 4] takes us to no tree.

23 / 24

Paths in Trees

We say that xs ∈ List(N− {0}) is a valid path for an X -tree tr iff
following the directions of xs takes us from the top of tr to some
tree.

The trees that can be reached from an X -tree tr by following valid
paths are the subtrees of tr . And subtrees are leaves when they
have no children.

If xs is a valid path for an X -tree tr , and tr ′ is an X -tree, then we
can form a new tree by replacing the subtree at position xs in tr by
tr ′.

For example, replacing the subtree at position [1, 2] in
4(3(2, 1(7)), 6) by 3(7, 8) gives us 4(3(2, 3(7, 8)), 6).

24 / 24

