
Chapter 2: Formal Languages

In this chapter, we

• say what symbols, strings, alphabets and (formal) languages
are,

• show how to use various induction principles to prove
language equalities, and

• give an introduction to the Forlan toolset.

In subsequent chapters, we will study four more restricted kinds of
languages: the regular (Chapter 3), context-free (Chapter 4),
recursive and recursively enumerable (Chapter 5) languages.
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2.1: Symbols, Strings, Alphabets and (Formal)
Languages

In this section, we define the basic notions of the subject: symbols,
strings, alphabets and (formal) languages.
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Symbols

A symbol is one of the following finite sequences of ASCII
characters:

• One of the digits 0–9;

• One of the upper case letters A–Z;

• One of the lower case letters a–z
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〈 and 〉, in which 〈 and 〉 are properly nested, followed by a 〉.

For example, 〈id〉 and 〈〈a, 〉b〉 are symbols. On the other hand,
〈a〉〉 is not a symbol since 〈 and 〉 are not properly nested in a〉.

We write Sym for the set of all symbols. It is countably infinite.
(Any set whose elements can be unambiguously described as finite
sequences of ASCII characters is countable, since we can
enumerate them first by length and then in dictionary order.)
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Strings

A string is a list of symbols.
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We typically abbreviate the empty string [ ] to %, and abbreviate
[a1, . . . , an] to a1 · · · an, when n ≥ 1.

We write Str for List Sym, the set of all strings. It is countably
infinite.

Because strings are lists, we have that |x | is the length of a string
x , and that x @ y is the concatenation of strings x and y .

We typically abbreviate x @ y to xy .

Concatenation is associative: for all x , y , z ∈ Str,

(xy)z = x(yz).

% is the identify for concatenation: for all x ∈ Str,

%x = x = x%.
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Raising a String to a Power

We define the string xn resulting from raising a string x to a power

n ∈ N by recursion on n:

x0 = %, for all x ∈ Str;

xn+1 = xxn, for all x ∈ Str and n ∈ N.

We assign this operation higher precedence than concatenation, so
that xxn means x(xn) in the above definition.
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Raising a String to a Power

We define the string xn resulting from raising a string x to a power

n ∈ N by recursion on n:

x0 = %, for all x ∈ Str;

xn+1 = xxn, for all x ∈ Str and n ∈ N.

We assign this operation higher precedence than concatenation, so
that xxn means x(xn) in the above definition.

Proposition 2.1.2

For all x ∈ Str and n,m ∈ N, xn+m = xnxm.

Proof. An easy mathematical induction on n. The string x and
the natural number m can be fixed at the beginning of the proof.
✷
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Prefixes, Suffixes and Substrings

Suppose x and y are strings. We say that:

• x is a prefix of y iff y = xv for some v ∈ Str;

• x is a suffix of y iff y = ux for some u ∈ Str;

• x is a substring of y iff y = uxv for some u, v ∈ Str.

A prefix, suffix or substring of a string other than the string itself is
called proper.

For example:

• 12 is a of 1234;

• 234 is a of 1234;

• 23 is a of 1234.
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Alphabets

An alphabet is a finite subset of Sym. We use Σ to name
alphabets.
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alphabets.

We write Alp for the set of all alphabets. Alp is countably infinite.

We define alphabet ∈ Str→ Alp by right recursion:

alphabet% = ∅;

alphabet(ax) = {a} ∪ alphabet x , for all a ∈ Sym and x ∈ Str.

I.e., alphabetw consists of all of the symbols occurring in the
string w . E.g., alphabet(01101) = {0, 1}.

If Σ is an alphabet, then we write Σ∗ for ListΣ.
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Languages

We say that L is a language iff L ⊆ Σ∗, for some Σ ∈ Alp.
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If Σ ∈ Alp, then we say that L is a Σ-language iff L ⊆ Σ∗.

Here are some example languages (all are {0, 1}-languages):

• ∅;

• {0, 1}∗;

• {010, 1001, 1101};

• { 0n1n | n ∈ N };

• {w ∈ {0, 1}∗ | w is a palindrome }.

Every language is countable, because Str is countably infinite and
every language is a subset of Str.

Furthermore, Σ∗ is countably infinite, as long as the alphabet Σ is
nonempty. (∅∗ = {%}.)
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Languages (Cont.)

We write Lan for the set of all languages. It is uncountable: even
P {0}∗, the set of all {0}-languages, has the same size as P N.
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