2.2: Using Induction to Prove Language Equalities

In this section, we introduce three string induction principles, ways of showing that every $w \in A^*$ has property P(w), where A is some set of symbols.

Typically, *A* will be an alphabet, i.e., a finite set of symbols. But when we want to prove that all strings have some property, we can let A =**Sym**, so that $A^* =$ **Str**.

Each of these principles corresponds to an instance of well-founded induction.

We also look at how different kinds of induction can be used to show that two languages are equal.

Right String Induction

Theorem 2.2.1 (Principle of Right String Induction) Suppose $A \subseteq Sym$ and P(w) is a property of a string w. If

(basis step)

and

(inductive step)

for all $a \in A$ and $w \in A^*$, if then

then,

for all $w \in A^*$, P(w).

▲ □
 2 / 14

Right String Induction

Theorem 2.2.1 (Principle of Right String Induction) Suppose $A \subseteq Sym$ and P(w) is a property of a string w. If

(basis step)

P(%) and

(inductive step)

for all $a \in A$ and $w \in A^*$, if then

then,

for all $w \in A^*$, P(w).

▲ 🗇 🕨 2 / 14

Right String Induction

Theorem 2.2.1 (Principle of Right String Induction) Suppose $A \subseteq Sym$ and P(w) is a property of a string w. If

(basis step)

P(%) and

(inductive step)

for all $a \in A$ and $w \in A^*$, if (†) P(w), then P(aw),

then,

for all $w \in A^*$, P(w).

We refer to the formula (†) as the *inductive hypothesis*.

▲ □
 2 / 14

Left String Induction

Theorem 2.2.2 (Principle of Left String Induction) Suppose $A \subseteq Sym$ and P(w) is a property of a string w. If

(basis step)

P(%) and

(inductive step)

for all $a \in A$ and $w \in A^*$, if (†) P(w), then

then,

for all $w \in A^*$, P(w).

We refer to the formula (†) as the *inductive hypothesis*.

 3 / 14

Left String Induction

Theorem 2.2.2 (Principle of Left String Induction) Suppose $A \subseteq Sym$ and P(w) is a property of a string w. If

(basis step)

P(%) and

(inductive step)

for all $a \in A$ and $w \in A^*$, if (†) P(w), then P(wa),

then,

for all $w \in A^*$, P(w).

We refer to the formula (†) as the *inductive hypothesis*.

▲ □
 3 / 14

Strong String Induction

```
Theorem 2.2.3 (Principle of Strong String Induction)
Suppose A \subseteq Sym and P(w) is a property of a string w. If
```

```
for all w \in A^*,
if
then P(w),
```

then,

for all $w \in A^*$, P(w).

Strong String Induction

Theorem 2.2.3 (Principle of Strong String Induction) Suppose $A \subseteq Sym$ and P(w) is a property of a string w. If

for all $w \in A^*$, if (†) for all $x \in A^*$, if x is a proper substring of w, then P(x), then P(w),

then,

for all $w \in A^*$, P(w).

We refer to the formula (†) as the *inductive hypothesis*.

Define diff $\in \{0,1\}^* \to \mathbb{Z}$ by: for all $w \in \{0,1\}^*$,

diff w = the number of 1's in w – the number of 0's in w.

Define diff $\in \{0,1\}^* \to \mathbb{Z}$ by: for all $w \in \{0,1\}^*$,

diff w = the number of 1's in w – the number of 0's in w.

Then:

- diff % = 0;
- **diff** 1 = 1;
- **diff** 0 = -1; and
- for all $x, y \in \{0, 1\}^*$, diff(xy) = diff x + diff y.

Define diff $\in \{0,1\}^* \to \mathbb{Z}$ by: for all $w \in \{0,1\}^*$,

diff w = the number of 1's in w – the number of 0's in w.

Then:

- **diff** % = 0;
- **diff** 1 = 1;
- **diff** 0 = -1; and
- for all $x, y \in \{0, 1\}^*$, diff(xy) = diff x + diff y.

Note that, for all $w \in \{0,1\}^*$, diff w = 0 iff

Define diff $\in \{0,1\}^* \to \mathbb{Z}$ by: for all $w \in \{0,1\}^*$,

diff w = the number of 1's in w – the number of 0's in w.

Then:

- **diff** % = 0;
- diff 1 = 1;
- **diff** 0 = -1; and
- for all $x, y \in \{0, 1\}^*$, diff(xy) = diff x + diff y.

Note that, for all $w \in \{0,1\}^*$, **diff** w = 0 iff w has an equal number of 0's and 1's.

Let X be the least subset of $\{0,1\}^*$ such that:

(1) $\% \in X$; (2) for all $x, y \in X, xy \in X$; (3) for all $x \in X, 0x1 \in X$; and (4) for all $x \in X, 1x0 \in X$.

This is an definition.

Let X be the least subset of $\{0,1\}^*$ such that:

- (1) $\% \in X$; (2) for all $x, y \in X, xy \in X$; (3) for all $x \in X$, $0x1 \in X$; and
- (4) for all $x \in X$, $1x0 \in X$.

This is an inductive definition.

Let X be the least subset of $\{0,1\}^*$ such that:

- (1) $\% \in X;$
- (2) for all $x, y \in X$, $xy \in X$;
- (3) for all $x \in X$, $0x1 \in X$; and
- (4) for all $x \in X$, $1x0 \in X$.

This is an inductive definition.

Let $Y = \{ w \in \{0, 1\}^* \mid \text{diff } w = 0 \}.$

Let X be the least subset of $\{0,1\}^*$ such that:

(1)
$$\% \in X$$
;

- (2) for all $x, y \in X$, $xy \in X$;
- (3) for all $x \in X$, $0x1 \in X$; and
- (4) for all $x \in X$, $1x0 \in X$.

This is an inductive definition.

Let $Y = \{ w \in \{0, 1\}^* \mid \text{diff } w = 0 \}.$

Our goal is to prove that X = Y, i.e., that: (the easy direction) every string that can be constructed using X's rules has an equal number of 0's and 1's; and (the hard direction) that every string of 0's and 1's with an equal number of 0's and 1's can be constructed using X's rules.

▲ □ →6 / 14

Principle of Induction on X

Proposition Slides-2.2.1 (Principle of Induction on X) Suppose P(w) is a property of a string w. If (1)P(%), (2)for all $x, y \in X$, if , then P(xy), (3)for all $x \in X$, if , then P(0x1), (4)

for all $x \in X$, if , then P(1x0),

then,

for all $w \in X$, P(w).

Principle of Induction on X

Proposition Slides-2.2.1 (Principle of Induction on X) Suppose P(w) is a property of a string w. If (1) P(%),

(2) for all x, y ∈ X, if (†) P(x) and P(y), then P(xy),
(3) for all x ∈ X, if (†) P(x), then P(0×1),
(4) for all x ∈ X, if (†) P(x), then P(1×0),

then,

for all $w \in X$, P(w).

We refer to (†) as the *inductive hypothesis*.

Lemma 2.2.11 $X \subseteq Y$.

Proof. We use induction on X to show that, for all $w \in X$, $w \in Y$. There are four steps to show.

Lemma 2.2.11 $X \subseteq Y$.

- **Proof.** We use induction on X to show that, for all $w \in X$, $w \in Y$. There are four steps to show.
- (1) We must show $\% \in Y$. Since $\% \in \{0,1\}^*$ and diff % = 0, we have that $\% \in Y$.

Lemma 2.2.11 $X \subseteq Y$.

- **Proof.** We use induction on X to show that, for all $w \in X$, $w \in Y$. There are four steps to show.
- (1) We must show $\% \in Y$. Since $\% \in \{0,1\}^*$ and diff % = 0, we have that $\% \in Y$.
- (2) Suppose $x, y \in X$, and assume the inductive hypothesis: $x, y \in Y$. We must show that $xy \in Y$.

Lemma 2.2.11 $X \subseteq Y$.

- **Proof.** We use induction on X to show that, for all $w \in X$, $w \in Y$. There are four steps to show.
- (1) We must show $\% \in Y$. Since $\% \in \{0,1\}^*$ and diff % = 0, we have that $\% \in Y$.
- (2) Suppose $x, y \in X$, and assume the inductive hypothesis: $x, y \in Y$. We must show that $xy \in Y$. Since $x, y \in Y$, we have that $xy \in \{0, 1\}^*$ and diff(xy) = diff x + diff y = 0 + 0 = 0. Thus $xy \in Y$.

Easy Direction (Cont.)

Proof (cont.).

 \square

(3) Suppose $x \in X$, and assume the inductive hypothesis: $x \in Y$. We must show that $0x1 \in Y$. Since $x \in Y$, we have that $0x1 \in \{0,1\}^*$ and diff(0x1) = diff 0 + diff x + diff 1 = -1 + 0 + 1 = 0. Thus $0x1 \in Y$.

Easy Direction (Cont.)

Proof (cont.).

 \square

(3) Suppose $x \in X$, and assume the inductive hypothesis: $x \in Y$. We must show that $0x1 \in Y$. Since $x \in Y$, we have that $0x1 \in \{0,1\}^*$ and diff(0x1) = diff 0 + diff x + diff 1 = -1 + 0 + 1 = 0. Thus $0x1 \in Y$.

(4) Suppose $x \in X$, and assume the inductive hypothesis: $x \in Y$. We must show that $1x0 \in Y$. Since $x \in Y$, we have that $1x0 \in \{0,1\}^*$ and diff(1x0) = diff 1 + diff x + diff 0 = 1 + 0 + -1 = 0. Thus $1x0 \in Y$.

Lemma 2.2.12

 $Y \subseteq X$.

Proof. Since $Y \subseteq \{0,1\}^*$, it will suffice to show that, for all $w \in \{0,1\}^*$,

Lemma 2.2.12

 $Y \subseteq X$.

Proof. Since $Y \subseteq \{0,1\}^*$, it will suffice to show that, for all $w \in \{0,1\}^*$,

if $w \in Y$, then $w \in X$.

We proceed by

Lemma 2.2.12

 $Y \subseteq X$.

Proof. Since $Y \subseteq \{0,1\}^*$, it will suffice to show that, for all $w \in \{0,1\}^*$,

if $w \in Y$, then $w \in X$.

We proceed by strong string induction. Suppose $w \in \{0,1\}^*$, and assume the inductive hypothesis: for all $x \in \{0,1\}^*$, if x is a proper substring of w, then

Lemma 2.2.12

 $Y \subseteq X$.

Proof. Since $Y \subseteq \{0,1\}^*$, it will suffice to show that, for all $w \in \{0,1\}^*$,

if $w \in Y$, then $w \in X$.

We proceed by strong string induction. Suppose $w \in \{0,1\}^*$, and assume the inductive hypothesis: for all $x \in \{0,1\}^*$, if x is a proper substring of w, then

if $x \in Y$, then $x \in X$.

Lemma 2.2.12

 $Y \subseteq X$.

Proof. Since $Y \subseteq \{0,1\}^*$, it will suffice to show that, for all $w \in \{0,1\}^*$,

if $w \in Y$, then $w \in X$.

We proceed by strong string induction. Suppose $w \in \{0,1\}^*$, and assume the inductive hypothesis: for all $x \in \{0,1\}^*$, if x is a proper substring of w, then

if $x \in Y$, then $x \in X$.

We must show that

if $w \in Y$, then $w \in X$.

▲ □
 ▶
 10 / 14

Lemma 2.2.12

 $Y \subseteq X$.

Proof. Since $Y \subseteq \{0,1\}^*$, it will suffice to show that, for all $w \in \{0,1\}^*$,

if $w \in Y$, then $w \in X$.

We proceed by strong string induction. Suppose $w \in \{0,1\}^*$, and assume the inductive hypothesis: for all $x \in \{0,1\}^*$, if x is a proper substring of w, then

if $x \in Y$, then $x \in X$.

We must show that

if $w \in Y$, then $w \in X$.

Suppose $w \in Y$. We must show that $w \in X$.

Lemma 2.2.12

 $Y \subseteq X$.

Proof. Since $Y \subseteq \{0,1\}^*$, it will suffice to show that, for all $w \in \{0,1\}^*$,

if $w \in Y$, then $w \in X$.

We proceed by strong string induction. Suppose $w \in \{0,1\}^*$, and assume the inductive hypothesis: for all $x \in \{0,1\}^*$, if x is a proper substring of w, then

if $x \in Y$, then $x \in X$.

We must show that

```
if w \in Y, then w \in X.
```

Suppose $w \in Y$. We must show that $w \in X$. There are three cases to consider.

 10 / 14

Proof (cont.).

Suppose w = %. Then w = % ∈ X, by Part (1) of the definition of X.

Proof (cont.).

• Suppose w = 0t for some $t \in \{0, 1\}^*$. Since $w \in Y$, we have that -1 + diff t = diff 0 + diff t = diff(0t) = diff w = 0, and thus that diff t = 1.

Proof (cont.).

• Suppose w = 0t for some $t \in \{0, 1\}^*$. Since $w \in Y$, we have that -1 + diff t = diff 0 + diff t = diff(0t) = diff w = 0, and thus that diff t = 1.

Let *u* be the shortest prefix of *t* such that diff $u \ge 1$.

Proof (cont.).

• Suppose w = 0t for some $t \in \{0, 1\}^*$. Since $w \in Y$, we have that -1 + diff t = diff 0 + diff t = diff(0t) = diff w = 0, and thus that diff t = 1.

Let u be the shortest prefix of t such that diff $u \ge 1$. (Since t is a prefix of itself and diff $t = 1 \ge 1$, it follows that u is well-defined.)

Proof (cont.).

• Suppose w = 0t for some $t \in \{0, 1\}^*$. Since $w \in Y$, we have that -1 + diff t = diff 0 + diff t = diff(0t) = diff w = 0, and thus that diff t = 1.

Let *u* be the shortest prefix of *t* such that **diff** $u \ge 1$. (Since *t* is a prefix of itself and **diff** $t = 1 \ge 1$, it follows that *u* is well-defined.) Let $z \in \{0,1\}^*$ be such that t = uz. Clearly, $u \ne \%$, and thus u =

Proof (cont.).

• Suppose w = 0t for some $t \in \{0, 1\}^*$. Since $w \in Y$, we have that -1 + diff t = diff 0 + diff t = diff(0t) = diff w = 0, and thus that diff t = 1.

Let *u* be the shortest prefix of *t* such that diff $u \ge 1$. (Since *t* is a prefix of itself and diff $t = 1 \ge 1$, it follows that *u* is well-defined.) Let $z \in \{0,1\}^*$ be such that t = uz. Clearly, $u \ne \%$, and thus u = yb for some $y \in \{0,1\}^*$ and $b \in \{0,1\}$. Hence t = uz = ybz. Since *y* is a shorter prefix of *t* than *u*,

Proof (cont.).

• Suppose w = 0t for some $t \in \{0, 1\}^*$. Since $w \in Y$, we have that -1 + diff t = diff 0 + diff t = diff(0t) = diff w = 0, and thus that diff t = 1.

Let *u* be the shortest prefix of *t* such that diff $u \ge 1$. (Since *t* is a prefix of itself and diff $t = 1 \ge 1$, it follows that *u* is well-defined.) Let $z \in \{0, 1\}^*$ be such that t = uz. Clearly, $u \ne \%$, and thus u = yb for some $y \in \{0, 1\}^*$ and $b \in \{0, 1\}$. Hence t = uz = ybz. Since *y* is a shorter prefix of *t* than *u*, we have that diff $y \le 0$.

Proof (cont.).

• Suppose w = 0t for some $t \in \{0, 1\}^*$. Since $w \in Y$, we have that -1 + diff t = diff 0 + diff t = diff(0t) = diff w = 0, and thus that diff t = 1.

Let *u* be the shortest prefix of *t* such that diff $u \ge 1$. (Since *t* is a prefix of itself and diff $t = 1 \ge 1$, it follows that *u* is well-defined.) Let $z \in \{0,1\}^*$ be such that t = uz. Clearly, $u \ne \%$, and thus u = yb for some $y \in \{0,1\}^*$ and $b \in \{0,1\}$. Hence t = uz = ybz. Since *y* is a shorter prefix of *t* than *u*, we have that diff $y \le 0$. Suppose, toward a contradiction, that b = 0. Then diff $y + -1 = diff y + diff 0 = diff y + diff b = diff(yb) = diff <math>u \ge 1$, so that diff $y \ge 2$. But diff $y \le 0$ —contradiction. Hence b = 1.

Proof (cont.).

• (Continuation of second case.) Summarizing, we have that u = yb = y1, t = uz = y1z and w = 0t = 0y1z.

Proof (cont.).

• (Continuation of second case.) Summarizing, we have that u = yb = y1, t = uz = y1z and w = 0t = 0y1z. Since diff $y + 1 = diff y + diff 1 = diff(y1) = diff u \ge 1$, it follows that diff $y \ge 0$. But diff $y \le 0$, and thus diff y = 0. Thus $y \in Y$.

Proof (cont.).

• (Continuation of second case.) Summarizing, we have that u = yb = y1, t = uz = y1z and w = 0t = 0y1z. Since diff y + 1 = diff y + diff 1 = diff(y1) = diff $u \ge 1$, it follows that diff $y \ge 0$. But diff $y \le 0$, and thus diff y = 0. Thus $y \in Y$. Since 1 + diff z = 0 + 1 + diff z =diff y + diff 1 + diff z = diff(y1z) = diff t = 1, it follows that diff z = 0. Thus $z \in Y$.

Proof (cont.).

 (Continuation of second case.) Summarizing, we have that u = yb = y1, t = uz = y1z and w = 0t = 0y1z. Since diff y + 1 = diff y + diff 1 = diff(y1) = diff u > 1, it follows that diff y > 0. But diff y < 0, and thus diff y = 0. Thus $y \in Y$. Since 1 + diff z = 0 + 1 + diff z =diff y + diff 1 + diff z = diff(y1z) = diff t = 1, it follows that diff z = 0. Thus $z \in Y$. Because y and z are proper substrings of w, and $y, z \in Y$, the inductive hypothesis tells us that $y, z \in X$. Thus, by Part (3) of the definition of X, we have that $0y1 \in X$.

Proof (cont.).

 (Continuation of second case.) Summarizing, we have that u = yb = y1, t = uz = y1z and w = 0t = 0y1z. Since diff y + 1 = diff y + diff 1 = diff(y1) = diff u > 1, it follows that diff y > 0. But diff y < 0, and thus diff y = 0. Thus $y \in Y$. Since 1 + diff z = 0 + 1 + diff z =diff y + diff 1 + diff z = diff(y1z) = diff t = 1, it follows that diff z = 0. Thus $z \in Y$. Because y and z are proper substrings of w, and $y, z \in Y$, the inductive hypothesis tells us that $y, z \in X$. Thus, by Part (3) of the definition of X, we have that $0y1 \in X$. Hence, Part (2)

of the definition of X tells us that $w = 0y1z = (0y1)z \in X$.

▲ □ →
 13 / 14

Proof (cont.).

• (Continuation of second case.) Summarizing, we have that u = yb = y1, t = uz = y1z and w = 0t = 0y1z. Since diff y + 1 = diff y + diff 1 = diff(y1) = diff $u \ge 1$, it follows that diff $y \ge 0$. But diff $y \le 0$, and thus diff y = 0. Thus $y \in Y$. Since 1 + diff z = 0 + 1 + diff z =diff y + diff 1 + diff z = diff(y1z) = diff t = 1, it follows that diff z = 0. Thus $z \in Y$. Because y and z are proper substrings of w, and $y, z \in Y$, the inductive hypothesis tells us that $y, z \in X$. Thus, by Part (3)

of the definition of X we have that $0y1 \in X$. Hence, Part (2) of the definition of X tells us that $w = 0y1z = (0y1)z \in X$.

• Suppose w = 1t for some $t \in \{0, 1\}^*$.

Proof (cont.).

• (Continuation of second case.) Summarizing, we have that u = yb = y1, t = uz = y1z and w = 0t = 0y1z. Since diff $y + 1 = diff y + diff 1 = diff(y1) = diff u \ge 1$, it follows that diff $y \ge 0$. But diff $y \le 0$, and thus diff y = 0. Thus $y \in Y$. Since 1 + diff z = 0 + 1 + diff z =diff y + diff 1 + diff z = diff(y1z) = diff t = 1, it follows that diff z = 0. Thus $z \in Y$. Because us and zero recommender whethings of us and us $z \in X$ the

Because y and z are proper substrings of w, and $y, z \in Y$, the inductive hypothesis tells us that $y, z \in X$. Thus, by Part (3) of the definition of X, we have that $0y1 \in X$. Hence, Part (2) of the definition of X tells us that $w = 0y1z = (0y1)z \in X$.

Suppose w = 1t for some t ∈ {0,1}*. This is symmetric to the preceding case.

Language Equality

Proposition 2.2.13 X = Y.

Proof. Follows immediately from Lemmas 2.2.11 and 2.2.12. \Box