
Chapter 3: Regular Languages

In this chapter, we study:

• regular expressions and languages;

• five kinds of finite automata;

• algorithms for processing and converting between regular
expressions and finite automata; and

• applications of regular expressions and finite automata to
hardware design, searching in text files and lexical analysis.
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3.1: Regular Expressions and Languages

In this section, we:

• define several operations on languages;

• say what regular expressions are, what they mean, and what
regular languages are; and

• begin to show how regular expressions can be processed by
Forlan.
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Language Operations

If L1 and L2 are languages, then:

• L1 ∪ L2 is a language;

• L1 ∩ L2 is a language;

• L1 − L2 is a language.

E.g., consider union. If L1 and L2 are languages, then L1 ⊆ Σ∗

1 and
L2 ⊆ Σ∗

2, for some alphabets Σ1 and Σ2. Thus is an
alphabet, and L1 ∪ L2 ⊆ ( )∗.
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Language Concatenation

The concatenation of languages L1 and L2 (L1@L2) is the language

{ x1 @ x2 | x1 ∈ L1 and x2 ∈ L2 }.

For example,

{01, 10} @ {%, 11} =

=
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Language Concatenation

The concatenation of languages L1 and L2 (L1@L2) is the language

{ x1 @ x2 | x1 ∈ L1 and x2 ∈ L2 }.

For example,

{01, 10} @ {%, 11} = {(01)%, (10)%, (01)(11), (10)(11)}

=
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Language Concatenation

The concatenation of languages L1 and L2 (L1@L2) is the language

{ x1 @ x2 | x1 ∈ L1 and x2 ∈ L2 }.

For example,

{01, 10} @ {%, 11} = {(01)%, (10)%, (01)(11), (10)(11)}

= {01, 10, 0111, 1011}.
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Language Concatenation (Cont.)

Concatenation of languages is associative: for all L1, L2, L3 ∈ Lan,

(L1 @ L2) @ L3 = L1 @ (L2 @ L3).
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Language Concatenation (Cont.)

Concatenation of languages is associative: for all L1, L2, L3 ∈ Lan,

(L1 @ L2) @ L3 = L1 @ (L2 @ L3).

And, {%} is the identity for concatenation: for all L ∈ Lan,

{%} @ L = L @ {%} = L.

Furthermore, ∅ is the zero for concatenation: for all L ∈ Lan,

∅ @ L = L @ ∅ = ∅.

We often abbreviate L1 @ L2 to L1L2.
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Raising a Language to a Power

We define the language Ln ∈ Lan formed by raising a language L
to the power n ∈ N by recursion on n:

L0 = , for all L ∈ Lan;

Ln+1 = LLn, for all L ∈ Lan and n ∈ N.

We assign this operation higher precedence than concatenation, so
that LLn means L(Ln) in the above definition.
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Raising a Language to a Power

We define the language Ln ∈ Lan formed by raising a language L
to the power n ∈ N by recursion on n:

L0 = {%}, for all L ∈ Lan;

Ln+1 = LLn, for all L ∈ Lan and n ∈ N.

We assign this operation higher precedence than concatenation, so
that LLn means L(Ln) in the above definition.

E.g., L1 = L0+1 = LL0 = L{%} = L.
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Raising a Language to a Power (Cont.)

Proposition 3.1.1
For all L ∈ Lan and n,m ∈ N, Ln+m = LnLm.

Proof. An easy mathematical induction on n. The language L
and the natural number m can be fixed at the beginning of the
proof. ✷

Thus, if L ∈ Lan and n ∈ N, then

Ln+1 = LLn (definition),

and

Ln+1 = LnL1 = LnL (Proposition 3.1.1).
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Kleene Closure

The Kleene closure (or just closure) of a language L (L∗) is the
language

⋃
{Ln | n ∈ N }.
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Kleene Closure

The Kleene closure (or just closure) of a language L (L∗) is the
language

⋃
{Ln | n ∈ N }.

Thus, for all w ,

w ∈ L∗ iff w ∈ A, for some A ∈ {Ln | n ∈ N }

iff w ∈ Ln for some n ∈ N.

For example,

{a, ba}∗ = {a, ba}0 ∪ {a, ba}1 ∪ {a, ba}2 ∪ · · ·

= {%} ∪ {a, ba} ∪ {aa, aba, baa, baba} ∪ · · ·
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Precedences of Language Operations

We assign our operations on languages relative precedences as
follows:

• Highest: closure ((·)∗) and raising to a power ((·)n);

• Intermediate: concatenation (@, or just juxtapositioning);

• Lowest: union (∪), intersection (∩) and difference (−).

For example, if n ∈ N and A,B ,C ∈ Lan, then A∗BCn ∪ B
abbreviates
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Precedences of Language Operations

We assign our operations on languages relative precedences as
follows:

• Highest: closure ((·)∗) and raising to a power ((·)n);

• Intermediate: concatenation (@, or just juxtapositioning);

• Lowest: union (∪), intersection (∩) and difference (−).

For example, if n ∈ N and A,B ,C ∈ Lan, then A∗BCn ∪ B
abbreviates ((A∗)B(Cn)) ∪ B .

Can ((A ∪ B)C )∗ be abbreviated? No—removing either pair of
parentheses will change its meaning.
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More Operations on Sets of Strings in Forlan

In Section 2.3, we introduced the Forlan module StrSet, which
defines various functions for processing finite sets of strings, i.e.,
finite languages.

This module also defines the functions

val concat : str set * str set -> str set

val power : str set * int -> str set

which implement our concatenation and exponentiation operations
on finite languages.
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More Operations in Forlan (Cont.)

Here are some examples of how these functions can be used:
- val xs = StrSet.fromString "ab, cd";

val xs = - : str set

- val ys = StrSet.fromString "uv, wx";

val ys = - : str set

- StrSet.output("", StrSet.concat(xs, ys));

abuv, abwx, cduv, cdwx

val it = () : unit

- StrSet.output("", StrSet.power(xs, 0));

%

val it = () : unit

- StrSet.output("", StrSet.power(xs, 1));

ab, cd

val it = () : unit

- StrSet.output("", StrSet.power(xs, 3));

ababab, ababcd, abcdab, abcdcd, cdabab, cdabcd,

cdcdab, cdcdcd

val it = () : unit
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Regular Expressions

Let the set RegLab of regular expression labels be

Sym ∪ {%, $, ∗,@,+}.

Let the set Reg of regular expressions be the least subset of
TreeRegLab such that:
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Regular Expressions

Let the set RegLab of regular expression labels be

Sym ∪ {%, $, ∗,@,+}.

Let the set Reg of regular expressions be the least subset of
TreeRegLab such that:

• (empty string) % ∈ Reg;

• (empty set) $ ∈ Reg;

• (symbol) for all a ∈ Sym, a ∈ Reg;

• (closure) for all α ∈ Reg, ∗(α) ∈ Reg;

• (concatenation) for all α, β ∈ Reg, @(α, β) ∈ Reg;

• (union) for all α, β ∈ Reg, +(α, β) ∈ Reg.
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Example Regular Expression

For example,

+(@(∗(0),@(1, ∗(0))),%),

i.e.,

+

@ %

∗

0

@

1 ∗

0

is a regular expression.
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Induction on Regular Expressions

Theorem 3.1.7 (Principle of Induction on Regular Expressions)
Suppose P(α) is a property of a regular expression α.
If

• P(%),

• P($),

• for all a ∈ Sym, P(a),

• for all α ∈ Reg, if then P(∗(α)),

• for all α, β ∈ Reg, if then P(@(α, β)),

• for all α, β ∈ Reg, if then P(+(α, β)),

then

for all α ∈ Reg, P(α).
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Induction on Regular Expressions

Theorem 3.1.7 (Principle of Induction on Regular Expressions)
Suppose P(α) is a property of a regular expression α.
If

• P(%),

• P($),

• for all a ∈ Sym, P(a),

• for all α ∈ Reg, if (†) P(α), then P(∗(α)),

• for all α, β ∈ Reg, if (†) P(α) and P(β), then P(@(α, β)),

• for all α, β ∈ Reg, if (†) P(α) and P(β), then P(+(α, β)),

then

for all α ∈ Reg, P(α).

We refer to (†) as the inductive hypothesis.
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Abbreviating Regular Expressions

To increase readability, we use infix and postfix notation,
abbreviating:

• ∗(α) to α∗ or α∗;

• @(α, β) to α @ β;

• +(α, β) to α+ β.

We assign the operators (·)∗, @ and + the following precedences
and associativities:

• Highest: (·)∗;

• Intermediate: @ (right associative);

• Lowest: + (right associative).
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Abbreviating Regular Expressions (Cont.)

We parenthesize regular expressions when we need to override the
default precedences and associativities, and for reasons of clarity.

We often abbreviate α @ β to αβ.

For example, we can abbreviate the regular expression
+(@(∗(0),@(1, ∗(0))),%) to
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Abbreviating Regular Expressions (Cont.)

We parenthesize regular expressions when we need to override the
default precedences and associativities, and for reasons of clarity.

We often abbreviate α @ β to αβ.

For example, we can abbreviate the regular expression
+(@(∗(0),@(1, ∗(0))),%) to 0∗ @ 1 @ 0∗ +% or 0∗10∗ +%.

Can ((0 + 1)2)∗ be further abbreviated? No—removing either pair
of parentheses would result in a different regular expression.
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The Meaning of Regular Expressions

The language generated by a regular expression α (L(α)) is defined
by structural recursion:

L(%) = {%};

L($) = ∅;

L(a) = {a}, for all a ∈ Sym;

L(∗(α)) = L(α)∗, for all α ∈ Reg;

L(@(α, β)) = L(α) @ L(β), for all α, β ∈ Reg;

L(+(α, β)) = L(α) ∪ L(β), for all α, β ∈ Reg.
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The Meaning of Regular Expressions

The language generated by a regular expression α (L(α)) is defined
by structural recursion:

L(%) = {%};

L($) = ∅;

L(a) = {a}, for all a ∈ Sym;

L(∗(α)) = L(α)∗, for all α ∈ Reg;

L(@(α, β)) = L(α) @ L(β), for all α, β ∈ Reg;

L(+(α, β)) = L(α) ∪ L(β), for all α, β ∈ Reg.

We say that w is generated by α iff w ∈ L(α).
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Meaning Example

For example,

L(0∗10∗ +%) =

=

=

=

=

=

=
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Meaning Example

For example,

L(0∗10∗ +%) = L(+(@(∗(0),@(1, ∗(0))),%))

= L(@(∗(0),@(1, ∗(0)))) ∪ L(%)

= L(∗(0))L(@(1, ∗(0))) ∪ {%}

= L(0)∗L(1)L(∗(0)) ∪ {%}

= {0}∗{1}L(0)∗ ∪ {%}

= {0}∗{1}{0}∗ ∪ {%}

= { 0n10m | n,m ∈ N } ∪ {%}.
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Meaning Example

For example,

L(0∗10∗ +%) = L(+(@(∗(0),@(1, ∗(0))),%))

= L(@(∗(0),@(1, ∗(0)))) ∪ L(%)

= L(∗(0))L(@(1, ∗(0))) ∪ {%}

= L(0)∗L(1)L(∗(0)) ∪ {%}

= {0}∗{1}L(0)∗ ∪ {%}

= {0}∗{1}{0}∗ ∪ {%}

= { 0n10m | n,m ∈ N } ∪ {%}.

E.g., 0001000, 10, 001 and % are generated by 0∗10∗ +%.
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Raising a Regular Expression to a Power

We define the regular expression αn formed by raising a regular
expression α to the power n ∈ N by recursion on n:

α0 = %, for all α ∈ Reg;

α1 = α, for all α ∈ Reg;

αn+1 = ααn, for all α ∈ Reg and n ∈ N− {0}.
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We assign this operation the same precedence as closure, so that
ααn means α(αn) in the above definition.

For example, (0 + 1)3 = (0 + 1)(0 + 1)(0 + 1).
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Raising a Regular Expression to a Power

We define the regular expression αn formed by raising a regular
expression α to the power n ∈ N by recursion on n:

α0 = %, for all α ∈ Reg;

α1 = α, for all α ∈ Reg;

αn+1 = ααn, for all α ∈ Reg and n ∈ N− {0}.

We assign this operation the same precedence as closure, so that
ααn means α(αn) in the above definition.

For example, (0 + 1)3 = (0 + 1)(0 + 1)(0 + 1).

Proposition 3.1.8
For all α ∈ Reg and n ∈ N, L(αn) = L(α)n.

Proof. By mathematical induction on n, case-splitting in the
inductive step. ✷

For example, L((0 + 1)3) = L(0 + 1)3 = {0, 1}3.
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The Alphabet of a Regular Expression

We define alphabet ∈ Reg→ Alp by structural recursion:

alphabet% = ∅;

alphabet $ = ∅;

alphabet a = {a} for all a ∈ Sym;

alphabet(∗(α)) = alphabetα, for all α ∈ Reg;

alphabet(@(α, β)) = alphabetα alphabetβ, for all α, β ∈ Reg;

alphabet(+(α, β)) = alphabetα alphabetβ, for all α, β ∈ Reg.

We say that alphabetα is the alphabet of a regular expression α.

For example, alphabet(0∗10∗ +%) =
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The Alphabet of a Regular Expression

We define alphabet ∈ Reg→ Alp by structural recursion:

alphabet% = ∅;

alphabet $ = ∅;

alphabet a = {a} for all a ∈ Sym;

alphabet(∗(α)) = alphabetα, for all α ∈ Reg;

alphabet(@(α, β)) = alphabetα ∪ alphabetβ, for all α, β ∈ Reg;

alphabet(+(α, β)) = alphabetα ∪ alphabetβ, for all α, β ∈ Reg.

We say that alphabetα is the alphabet of a regular expression α.

For example, alphabet(0∗10∗ +%) = {0, 1}.
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The Alphabet of a Regular Expression (Cont.)

Proposition 3.1.11
For all α ∈ Reg, alphabet(L(α)) ⊆ alphabetα.

Proof. An easy induction on α. ✷
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The Alphabet of a Regular Expression (Cont.)

Proposition 3.1.11
For all α ∈ Reg, alphabet(L(α)) ⊆ alphabetα.

Proof. An easy induction on α. ✷

For example, since L(1$) = {1}∅ = ∅, we have that

alphabet(L(0∗ + 1$)) = alphabet({0}∗)

= {0}

⊆ {0, 1}

= alphabet(0∗ + 1$).
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Regular Languages

A language L is regular iff L = L(α) for some α ∈ Reg.

22 / 29



Regular Languages

A language L is regular iff L = L(α) for some α ∈ Reg.

We define

RegLan = {L(α) | α ∈ Reg }

= {L ∈ Lan | L is regular }.
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Regular Languages

A language L is regular iff L = L(α) for some α ∈ Reg.

We define

RegLan = {L(α) | α ∈ Reg }

= {L ∈ Lan | L is regular }.

Since every regular expression can be uniquely described by a finite
sequence of ASCII characters, we have that Reg is countably
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Since every regular expression can be uniquely described by a finite
sequence of ASCII characters, we have that Reg is countably
infinite. Since {00}, {01}, {02}, . . . , are all regular languages, we
have that RegLan is infinite. But, since Reg is countably infinite,
it follows that RegLan is also countably infinite.

Since Lan is uncountable, it follows that RegLan ( Lan, i.e.,
there are non-regular languages.
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Processing Regular Expressions in Forlan

The Forlan module Reg defines an abstract type reg (in the
top-level environment) of regular expressions, as well as various
functions and constants for processing regular expressions,
including:

val input : string -> reg

val output : string * reg -> unit

val size : reg -> int

val height : reg -> int

val emptyStr : reg

val emptySet : reg

val fromSym : sym -> reg

val closure : reg -> reg

val concat : reg * reg -> reg

val union : reg * reg -> reg
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Processing Regular Expressions in Forlan (Cont.)

val equal : reg * reg -> bool

val fromStr : str -> reg

val power : reg * int -> reg

val alphabet : reg -> sym set
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Forlan Syntax for Regular Expressions

The Forlan syntax for regular expressions is the infix/postfix one
introduced above, where α @ β is always written as αβ, and we use
parentheses to override default precedences/associativities, or
simply for clarity.
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Forlan Syntax for Regular Expressions

The Forlan syntax for regular expressions is the infix/postfix one
introduced above, where α @ β is always written as αβ, and we use
parentheses to override default precedences/associativities, or
simply for clarity.

For example, 0*10* + % and (0*(1(0*))) + % are the same
regular expression. And, ((0*)1)0* + % is a different regular
expression, but one with the same meaning. Furthermore, 0*1(0*
+ %) is not only different from the two preceding regular
expressions, but it has a different meaning.
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Example Regular Expression Processing

Here are some example uses of the functions of Reg:

- val reg = Reg.input "";

@ 0*10* + %

@ .

val reg = - : reg

- Reg.size reg;

val it = 9 : int

- val reg’ = Reg.fromStr(Str.power(Str.input "", 3));

@ 01

@ .

val reg’ = - : reg

- Reg.output("", reg’);

010101

val it = () : unit

- Reg.size reg’;

val it = 11 : int

26 / 29



Examples (Cont.)

- val reg’’ = Reg.concat(Reg.closure reg, reg’);

val reg’’ = - : reg

- Reg.output("", reg’’);

(0*10* + %)*010101

val it = () : unit

- SymSet.output("", Reg.alphabet reg’’);

0, 1

val it = () : unit

- val reg’’’ = Reg.power(reg, 3);

val reg’’’ = - : reg

- Reg.output("", reg’’’);

(0*10* + %)(0*10* + %)(0*10* + %)

val it = () : unit

- Reg.size reg’’’;

val it = 29 : int
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Examples (Cont.)

- Reg.output("", Reg.fromString "(0*(1(0*))) + %");

0*10* + %

val it = () : unit

- Reg.output("", Reg.fromString "(0*1)0* + %");

(0*1)0* + %

val it = () : unit

- Reg.output("", Reg.fromString "0*1(0* + %)");

0*1(0* + %)

val it = () : unit

- Reg.equal(Reg.fromString "0*10* + %",

= Reg.fromString "(0*1)0* + %");

val it = false : bool
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Graphical Editor for Regular Expression Trees

The Java program JForlan, can be used to view and edit regular
expression trees. It can be invoked directly, or run via Forlan. See
the Forlan website for more information.
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