
3.10: Nondeterministic Finite Automata

In this section, we study the second of our more restricted kinds of
finite automata: nondeterministic finite automata.

1 / 22

Definition of NFAs

A nondeterministic finite automaton (NFA) M is a finite
automaton such that

TM ⊆ { q, x → r | q, r ∈ Sym and x ∈ Str and |x | = 1 }.

For example, A, 1→ B is a legal NFA transition, but A,%→ B and
A, 11→ B are not legal.

We write NFA for the set of all nondeterministic finite automata.
Thus NFA (EFA (FA.

2 / 22

Properties of NFAs

The following proposition obviously holds.

Proposition 3.10.1

Suppose M is an NFA.

• For all N ∈ FA, if M iso N, then N is an NFA.

• For all bijections f from QM to some set of symbols,

renameStates(M, f) is an NFA.

• renameStatesCanonicallyM is an NFA.

• simplifyM is an NFA.

3 / 22

Converting EFAs to NFAs

Suppose M is the EFA

Start A B

0

%

1

C

2

%

To convert M into an equivalent NFA, we will have to:

• replace the transitions A,%→ B and B,%→ C with legal
transitions (for example, because of the valid labeled path

A
%

⇒ B
1

⇒ B
%

⇒ C,

we will add the transition A, 1→ C);

• make (at least) A be an accepting state (so that % is
accepted by the NFA).

4 / 22

The Empty-closure of a Set of States

Suppose M is a finite automaton and P ⊆ QM . The empty-closure

of P (emptyCloseM P) is the least subset X of QM such that

• P ⊆ X ;

• for all q, r ∈ QM , if q ∈ X and q,%→ r ∈ TM , then r ∈ X .

For example, if M is our example EFA and P = {A}, then:

• A ∈ X ;

• B ∈ X , since A ∈ X and A,%→ B ∈ TM ;

• C ∈ X , since B ∈ X and B,%→ C ∈ TM .

Thus emptyCloseP = {A,B,C}.

5 / 22

Backwards Empty-closure

Suppose M is a finite automaton and P ⊆ QM . The backwards

empty-closure of P (emptyCloseBackwardsM P) is the least
subset X of QM such that

• P ⊆ X ;

• for all q, r ∈ QM , if r ∈ X and q,%→ r ∈ TM , then q ∈ X .

For example, if M is our example EFA and P = {C}, then:

• C ∈ X ;

• B ∈ X , since C ∈ X and B,%→ C ∈ TM ;

• A ∈ X , since B ∈ X and A,%→ B ∈ TM .

Thus emptyCloseBackwardsP = {A,B,C}.

6 / 22

Properies of Empty-closure and Backwards

Empty-closure

Proposition 3.10.2

Suppose M is a finite automaton. For all P ⊆ QM ,

emptyCloseM P = ∆M(P ,%).

Proposition 3.10.3

Suppose M is a finite automaton. For all P ⊆ QM ,

emptyCloseBackwardsM P = { q ∈ QM | ∆M({q},%) ∩ P 6= ∅ }.

7 / 22

Conversion Algorithm

We define a function/algorithm efaToNFA ∈ EFA→NFA that
converts EFAs into NFAs by saying that efaToNFAM is the NFA
N such that:

• QN = QM ;

• sN = sM ;

• AN = emptyCloseBackwardsAM ;

• TN is the set of all transitions q′, a→ r ′ such that
q′, r ′ ∈ QM , a ∈ Sym, and there are q, r ∈ QM such that:

• q, a→ r ∈ TM ;
• q′ ∈ emptyCloseBackwards {q}; and
• r ′ ∈ emptyClose {r}.

8 / 22

Conversion Algorithm

To compute the set TN , we process each transition q, x → r of M
as follows. If x = %, then we generate no transitions. Otherwise,
our transition is q, a→ r for some symbol a. We then compute the
backwards empty-closure of {q}, and call the result X , and
compute the (forwards) empty-closure of {r}, and call the result
Y . We then add all of the elements of

{ q′, a→ r ′ | q′ ∈ X and r ′ ∈ Y }

to TN .

9 / 22

Conversion Example

Let M be our example EFA

Start A B

0

%

1

C

2

%

and let N = efaToNFAM. Then

• QN = QM = {A,B,C};

• sN = sM = A;

• AN = emptyCloseBackwardsAM =
emptyCloseBackwards {C} = {A,B,C}.

10 / 22

Conversion Example

Now, let’s work out what TN is, by processing each of M’s
transitions.

• From the transitions A,%→ B and B,%→ C, we get no
elements of TN .

• Consider the transition A, 0→ A. Since
emptyCloseBackwards {A} = {A} and
emptyClose {A} = {A,B,C}, we add A, 0→ A, A, 0→ B and
A, 0→ C to TN .

• Consider the transition B, 1→ B. Since
emptyCloseBackwards {B} = {A,B} and
emptyClose {B} = {B,C}, we add A, 1→ B, A, 1→ C,
B, 1→ B and B, 1→ C to TN .

11 / 22

Conversion Example

• Consider the transition C, 2→ C. Since
emptyCloseBackwards {C} = {A,B,C} and
emptyClose {C} = {C}, we add A, 2→ C, B, 2→ C and
C, 2→ C to TN .

Thus our NFA N is

0, 1, 2

Start A B

0

0, 1

1

C

2

1, 2

12 / 22

Specification of Conversion Function

Theorem 3.10.7

For all M ∈ EFA:

• efaToNFAM ≈ M; and

• alphabet(efaToNFAM) = alphabetM.

13 / 22

Empty-closure in Forlan

The Forlan module FA defines the following functions for
computing forwards and backwards empty-closures:

val emptyClose : fa -> sym set -> sym set

val emptyCloseBackwards : fa -> sym set -> sym set

14 / 22

Empty-closure in Forlan

For example, if fa is bound to the finite automaton

Start A B

0

%

1

C

2

%

then we can compute the empty-closure of {A} as follows:

- SymSet.output

= ("",

= FA.emptyClose fa (SymSet.input ""));

@ A

@ .

A, B, C

val it = () : unit

15 / 22

Processing NFAs in Forlan

The Forlan module NFA defines an abstract type nfa (in the
top-level environment) of nondeterministic finite automata, along
with various functions for processing NFAs.

Values of type nfa are implemented as values of type fa, and the
module NFA provides the following injection and projection
functions:

val injToFA : nfa -> fa

val injToEFA : nfa -> efa

val projFromFA : fa -> nfa

val projFromEFA : efa -> nfa

The functions injToFA, injToEFA, projFromFA and
projFromEFA are available in the top-level environment as
injNFAToFA, injNFAToEFA, projFAToNFA and projEFAToNFA,
respectively.

16 / 22

Processing NFAs in Forlan

The module NFA also defines the functions:

val input : string -> nfa

val fromEFA : efa -> nfa

The function input is used to input an NFA, and the function
fromEFA corresponds to our conversion function efaToNFA, and
is available in the top-level environment with that name:

val efaToNFA : efa -> nfa

17 / 22

Processing NFAs in Forlan

Most of the functions for processing FAs that were introduced in
previous sections are inherited by NFA:

val output : string * nfa -> unit

val numStates : nfa -> int

val numTransitions : nfa -> int

val alphabet : nfa -> sym set

val equal : nfa * nfa -> bool

val checkLP : nfa -> lp -> unit

val validLP : nfa -> lp -> bool

val isomorphism : nfa * nfa * sym_rel -> bool

val findIsomorphism : nfa * nfa -> sym_rel

val isomorphic : nfa * nfa -> bool

val renameStates : nfa * sym_rel -> nfa

val renameStatesCanonically : nfa -> nfa

18 / 22

Processing NFAs in Forlan

More inherited functions:

val processStr : nfa -> sym set * str -> sym set

val accepted : nfa -> str -> bool

val findLP : nfa -> sym set * str * sym set -> lp

val findAcceptingLP : nfa -> str -> lp

val simplified : nfa -> bool

val simplify : nfa -> nfa

Finally, the functions for computing forwards and backwards
empty-closures are inherited by the EFA module

val emptyClose : efa -> sym set -> sym set

val emptyCloseBackwards : efa -> sym set -> sym set

19 / 22

Forlan Examples

Suppose that efa is the efa

Start A B

0

%

1

C

2

%

Here are some example uses of a few of the above functions:

- projEFAToNFA efa;

invalid label in transition: "%"

uncaught exception Error

- val nfa = efaToNFA efa;

val nfa = - : nfa

20 / 22

Forlan Examples

- NFA.output("", nfa);

{states} A, B, C {start state} A

{accepting states} A, B, C

{transitions}

A, 0 -> A | B | C; A, 1 -> B | C; A, 2 -> C;

B, 1 -> B | C; B, 2 -> C; C, 2 -> C

val it = () : unit

21 / 22

Forlan Examples

- LP.output

= ("", EFA.findAcceptingLP efa (Str.input ""));

@ 012

@ .

A, 0 => A, % => B, 1 => B, % => C, 2 => C

val it = () : unit

- LP.output

= ("", NFA.findAcceptingLP nfa (Str.input ""));

@ 012

@ .

A, 0 => A, 1 => B, 2 => C

val it = () : unit

22 / 22

