3.10: Nondeterministic Finite Automata

In this section, we study the second of our more restricted kinds of finite automata: nondeterministic finite automata.

Definition of NFAs

A nondeterministic finite automaton (NFA) M is a finite automaton such that

 $T_M \subseteq \{ q, x \rightarrow r \mid q, r \in$ Sym and $x \in$ Str and $|x| = 1 \}$.

For example, A, 1 \rightarrow B is a legal NFA transition, but A, % \rightarrow B and A, 11 \rightarrow B are not legal.

We write NFA for the set of all nondeterministic finite automata. Thus NFA \subsetneq EFA \subsetneq FA.

Properties of NFAs

The following proposition obviously holds.

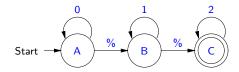
Proposition 3.10.1

Suppose M is an NFA.

- For all $N \in FA$, if M iso N, then N is an NFA.
- For all bijections f from Q_M to some set of symbols, renameStates(M, f) is an NFA.
- renameStatesCanonically *M* is an NFA.
- simplify *M* is an NFA.

Converting EFAs to NFAs

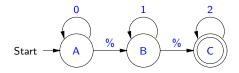
Suppose M is the EFA



To convert M into an equivalent NFA, we will have to:

Converting EFAs to NFAs

Suppose M is the EFA



To convert M into an equivalent NFA, we will have to:

A

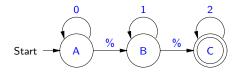
 replace the transitions A, % → B and B, % → C with legal transitions (for example, because of the valid labeled path

$$A \stackrel{\%}{\Rightarrow} B \stackrel{1}{\Rightarrow} B \stackrel{\%}{\Rightarrow} C,$$

we will add the transition $A, 1 \rightarrow C$);

Converting EFAs to NFAs

Suppose M is the EFA



To convert M into an equivalent NFA, we will have to:

 replace the transitions A, % → B and B, % → C with legal transitions (for example, because of the valid labeled path

$$A \stackrel{\%}{\Rightarrow} B \stackrel{1}{\Rightarrow} B \stackrel{\%}{\Rightarrow} C$$

we will add the transition $A, 1 \rightarrow C$);

 make (at least) A be an accepting state (so that % is accepted by the NFA).

4 / 22

Suppose *M* is a finite automaton and $P \subseteq Q_M$. The *empty-closure* of *P* (**emptyClose**_{*M*} *P*) is the least subset *X* of Q_M such that

- $P \subseteq X$;
- for all $q, r \in Q_M$, if $q \in X$ and $q, \% \rightarrow r \in T_M$, then $r \in X$.

Suppose *M* is a finite automaton and $P \subseteq Q_M$. The *empty-closure* of *P* (**emptyClose**_{*M*} *P*) is the least subset *X* of Q_M such that

- $P \subseteq X$;
- for all $q, r \in Q_M$, if $q \in X$ and $q, \% \rightarrow r \in T_M$, then $r \in X$.

For example, if M is our example EFA and $P = \{A\}$, then:

Suppose *M* is a finite automaton and $P \subseteq Q_M$. The *empty-closure* of *P* (**emptyClose**_{*M*} *P*) is the least subset *X* of Q_M such that

- $P \subseteq X$;
- for all $q, r \in Q_M$, if $q \in X$ and $q, \% \rightarrow r \in T_M$, then $r \in X$.

For example, if M is our example EFA and $P = \{A\}$, then:

• A ∈ *X*;

Suppose *M* is a finite automaton and $P \subseteq Q_M$. The *empty-closure* of *P* (**emptyClose**_{*M*} *P*) is the least subset *X* of Q_M such that

- $P \subseteq X$;
- for all $q, r \in Q_M$, if $q \in X$ and $q, \% \rightarrow r \in T_M$, then $r \in X$.

For example, if M is our example EFA and $P = \{A\}$, then:

- A ∈ *X*;
- $B \in X$, since $A \in X$ and $A, \% \rightarrow B \in T_M$;

Suppose *M* is a finite automaton and $P \subseteq Q_M$. The *empty-closure* of *P* (**emptyClose**_{*M*} *P*) is the least subset *X* of Q_M such that

- $P \subseteq X$;
- for all $q, r \in Q_M$, if $q \in X$ and $q, \% \rightarrow r \in T_M$, then $r \in X$.

For example, if M is our example EFA and $P = \{A\}$, then:

- A ∈ *X*;
- $B \in X$, since $A \in X$ and $A, \mathscr{H} \to B \in T_M$;
- $C \in X$, since $B \in X$ and $B, \mathscr{H} \to C \in T_M$.

Thus **emptyClose** $P = \{A, B, C\}$.

Suppose *M* is a finite automaton and $P \subseteq Q_M$. The *backwards empty-closure* of *P* (**emptyCloseBackwards**_{*M*} *P*) is the least subset *X* of Q_M such that

- $P \subseteq X$;
- for all $q, r \in Q_M$, if $r \in X$ and $q, \mathscr{V} \to r \in T_M$, then $q \in X$.

Suppose *M* is a finite automaton and $P \subseteq Q_M$. The *backwards empty-closure* of *P* (**emptyCloseBackwards**_{*M*} *P*) is the least subset *X* of Q_M such that

- $P \subseteq X$;
- for all $q, r \in Q_M$, if $r \in X$ and $q, \mathscr{W} \to r \in T_M$, then $q \in X$.

For example, if *M* is our example EFA and $P = \{C\}$, then:

Suppose *M* is a finite automaton and $P \subseteq Q_M$. The *backwards empty-closure* of *P* (**emptyCloseBackwards**_{*M*} *P*) is the least subset *X* of Q_M such that

- $P \subseteq X$;
- for all $q, r \in Q_M$, if $r \in X$ and $q, \mathscr{V} \to r \in T_M$, then $q \in X$.

For example, if *M* is our example EFA and $P = \{C\}$, then:

```
• C ∈ X;
```

Suppose *M* is a finite automaton and $P \subseteq Q_M$. The *backwards empty-closure* of *P* (**emptyCloseBackwards**_{*M*} *P*) is the least subset *X* of Q_M such that

- $P \subseteq X$;
- for all $q, r \in Q_M$, if $r \in X$ and $q, \mathscr{W} \to r \in T_M$, then $q \in X$.

For example, if *M* is our example EFA and $P = \{C\}$, then:

- C ∈ *X*;
- $B \in X$, since $C \in X$ and $B, \mathscr{H} \to C \in T_M$;

Suppose *M* is a finite automaton and $P \subseteq Q_M$. The *backwards empty-closure* of *P* (**emptyCloseBackwards**_{*M*} *P*) is the least subset *X* of Q_M such that

- $P \subseteq X$;
- for all $q, r \in Q_M$, if $r \in X$ and $q, \mathscr{W} \to r \in T_M$, then $q \in X$.

For example, if *M* is our example EFA and $P = \{C\}$, then:

- C ∈ *X*;
- $B \in X$, since $C \in X$ and $B, \mathscr{H} \to C \in T_M$;
- $A \in X$, since $B \in X$ and $A, \mathscr{V} \to B \in T_M$.

Thus emptyCloseBackwards $P = \{A, B, C\}$.

Proposition 3.10.2

Suppose *M* is a finite automaton. For all $P \subseteq Q_M$, emptyClose_{*M*} $P = \Delta_M(P,)$.

Proposition 3.10.2

Suppose *M* is a finite automaton. For all $P \subseteq Q_M$, emptyClose_{*M*} $P = \Delta_M(P, \%)$.

Proposition 3.10.2

Suppose *M* is a finite automaton. For all $P \subseteq Q_M$, emptyClose_{*M*} $P = \Delta_M(P, \%)$.

Proposition 3.10.3 Suppose *M* is a finite automaton. For all $P \subseteq Q_M$, emptyCloseBackwards_{*M*} $P = \{ q \in Q_M \mid \Delta_M(\{q\}, \%) \cap$

Proposition 3.10.2

Suppose *M* is a finite automaton. For all $P \subseteq Q_M$, emptyClose_{*M*} $P = \Delta_M(P, \%)$.

Proposition 3.10.3 Suppose *M* is a finite automaton. For all $P \subseteq Q_M$, emptyCloseBackwards_{*M*} $P = \{ q \in Q_M \mid \Delta_M(\{q\}, \%) \cap P \neq \emptyset \}$.

- $Q_N = Q_M;$
- $s_N = s_M;$
- *A_N* =
- T_N is the set of all transitions $q', a \rightarrow r'$ such that $q', r' \in Q_M$, $a \in Sym$, and there are $q, r \in Q_M$ such that:
 - $q, a \rightarrow r \in T_M;$
 - *q*′ ∈
 - *r*′ ∈

- $Q_N = Q_M;$
- $s_N = s_M;$
- $A_N =$ **emptyCloseBackwards** A_M ;
- T_N is the set of all transitions $q', a \rightarrow r'$ such that $q', r' \in Q_M$, $a \in Sym$, and there are $q, r \in Q_M$ such that:
 - $q, a \rightarrow r \in T_M;$
 - q′ ∈
 - *r*′ ∈

- $Q_N = Q_M;$
- $s_N = s_M;$
- $A_N =$ **emptyCloseBackwards** A_M ;
- T_N is the set of all transitions $q', a \rightarrow r'$ such that $q', r' \in Q_M$, $a \in Sym$, and there are $q, r \in Q_M$ such that:
 - $q, a \rightarrow r \in T_M;$
 - $q' \in emptyCloseBackwards \{q\}$; and
 - *r*′ ∈

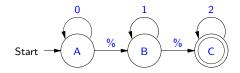
- $Q_N = Q_M;$
- $s_N = s_M;$
- $A_N =$ **emptyCloseBackwards** A_M ;
- T_N is the set of all transitions $q', a \rightarrow r'$ such that $q', r' \in Q_M$, $a \in Sym$, and there are $q, r \in Q_M$ such that:
 - $q, a \rightarrow r \in T_M;$
 - $q' \in emptyCloseBackwards \{q\}$; and
 - $r' \in \operatorname{emptyClose} \{r\}.$

To compute the set T_N , we process each transition $q, x \to r$ of M as follows. If x = %, then we generate no transitions. Otherwise, our transition is $q, a \to r$ for some symbol a. We then compute the backwards empty-closure of $\{q\}$, and call the result X, and compute the (forwards) empty-closure of $\{r\}$, and call the result Y. We then add all of the elements of

$$\{ q', a \rightarrow r' \mid q' \in X \text{ and } r' \in Y \}$$

to T_N.

Let M be our example EFA



and let N = efaToNFA M. Then

- $Q_N = Q_M = \{A, B, C\};$
- $s_N = s_M = A;$
- A_N = emptyCloseBackwards A_M = emptyCloseBackwards {C} = {A, B, C}.

Now, let's work out what T_N is, by processing each of M's transitions.

• From the transitions $A, \% \to B$ and $B, \% \to C$, we get no elements of T_N .

- From the transitions $A, \mathscr{H} \to B$ and $B, \mathscr{H} \to C$, we get no elements of T_N .
- Consider the transition A, $0 \rightarrow A$. Since **emptyCloseBackwards** {A} = {A} and **emptyClose** {A} = {A, B, C}, we add to T_N .

- From the transitions $A, \mathscr{H} \to B$ and $B, \mathscr{H} \to C$, we get no elements of T_N .
- Consider the transition A, $0 \rightarrow A$. Since **emptyCloseBackwards** {A} = {A} and **emptyClose** {A} = {A, B, C}, we add A, $0 \rightarrow A$, A, $0 \rightarrow B$ and A, $0 \rightarrow C$ to T_N .

- From the transitions $A, \mathscr{H} \to B$ and $B, \mathscr{H} \to C$, we get no elements of T_N .
- Consider the transition A, $0 \rightarrow A$. Since **emptyCloseBackwards** {A} = {A} and **emptyClose** {A} = {A, B, C}, we add A, $0 \rightarrow A$, A, $0 \rightarrow B$ and A, $0 \rightarrow C$ to T_N .
- Consider the transition $B, 1 \rightarrow B$. Since **emptyCloseBackwards** $\{B\} = \{A, B\}$ and **emptyClose** $\{B\} = \{B, C\}$, we add to T_N .

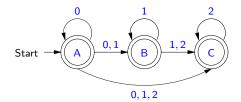
- From the transitions $A, \mathscr{H} \to B$ and $B, \mathscr{H} \to C$, we get no elements of T_N .
- Consider the transition A, $0 \rightarrow A$. Since **emptyCloseBackwards** {A} = {A} and **emptyClose** {A} = {A, B, C}, we add A, $0 \rightarrow A$, A, $0 \rightarrow B$ and A, $0 \rightarrow C$ to T_N .
- Consider the transition B, 1 → B. Since emptyCloseBackwards {B} = {A, B} and emptyClose {B} = {B, C}, we add A, 1 → B, A, 1 → C, B, 1 → B and B, 1 → C to T_N.

• Consider the transition $C, 2 \rightarrow C$. Since **emptyCloseBackwards** $\{C\} = \{A, B, C\}$ and **emptyClose** $\{C\} = \{C\}$, we add to T_N .

• Consider the transition C, 2 \rightarrow C. Since **emptyCloseBackwards** {C} = {A, B, C} and **emptyClose** {C} = {C}, we add A, 2 \rightarrow C, B, 2 \rightarrow C and C, 2 \rightarrow C to T_N .

• Consider the transition C, 2 \rightarrow C. Since **emptyCloseBackwards** {C} = {A, B, C} and **emptyClose** {C} = {C}, we add A, 2 \rightarrow C, B, 2 \rightarrow C and C, 2 \rightarrow C to T_N .

Thus our NFA N is



Specification of Conversion Function

Theorem 3.10.7 For all $M \in EFA$:

- efaToNFA $M \approx M$; and
- alphabet(efaToNFA M) = alphabet M.

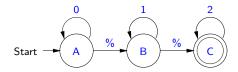
Empty-closure in Forlan

The Forlan module FA defines the following functions for computing forwards and backwards empty-closures:

val emptyClose : fa -> sym set -> sym set val emptyCloseBackwards : fa -> sym set -> sym set

Empty-closure in Forlan

For example, if fa is bound to the finite automaton



then we can compute the empty-closure of $\{A\}$ as follows:

```
- SymSet.output
= ("",
= FA.emptyClose fa (SymSet.input ""));
@ A
@ .
A, B, C
val it = () : unit
```

The Forlan module NFA defines an abstract type nfa (in the top-level environment) of nondeterministic finite automata, along with various functions for processing NFAs.

Values of type **nfa** are implemented as values of type **fa**, and the module NFA provides the following injection and projection functions:

val	injToFA	:	nfa -> fa
val	injToEFA	:	nfa -> efa
val	projFromFA	:	fa -> nfa
val	projFromEFA	:	efa -> nfa

The functions injToFA, injToEFA, projFromFA and projFromEFA are available in the top-level environment as injNFAToFA, injNFAToEFA, projFAToNFA and projEFAToNFA, respectively.

The module NFA also defines the functions:

val input : string -> nfa
val fromEFA : efa -> nfa

The function input is used to input an NFA, and the function fromEFA corresponds to our conversion function efaToNFA, and is available in the top-level environment with that name:

```
val efaToNFA : efa -> nfa
```

Most of the functions for processing FAs that were introduced in previous sections are inherited by NFA:

val output	: string * nfa -> unit
val numStates	: nfa -> int
val numTransitions	: nfa -> int
val alphabet	: nfa -> sym set
val equal	: nfa * nfa -> bool
val checkLP	: nfa -> lp -> unit
val validLP	: nfa -> lp -> bool
val isomorphism	: nfa * nfa * sym_rel -> bool
val findIsomorphism	: nfa * nfa -> sym_rel
val isomorphic	: nfa * nfa -> bool
val renameStates	: nfa * sym_rel -> nfa
val renameStatesCanonically	: nfa -> nfa

More inherited functions:

val processStr	: nfa -> sym set * str -> sym set
val accepted	: nfa -> str -> bool
val findLP	: nfa -> sym set * str * sym set -> lp
val findAcceptingLP	? : nfa -> str -> lp
val simplified	: nfa -> bool
val simplify	: nfa -> nfa

More inherited functions:

val processStr	: nfa -> sym set * str -> sym set
val accepted	: nfa -> str -> bool
val findLP	: nfa -> sym set * str * sym set -> lp
val findAcceptingLP	: nfa -> str -> lp
val simplified	: nfa -> bool
val simplify	: nfa -> nfa

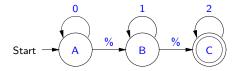
Finally, the functions for computing forwards and backwards empty-closures are inherited by the EFA module

val emptyClose : efa -> sym set -> sym set val emptyCloseBackwards : efa -> sym set -> sym set

> ▲ ⑦ ▶ 19 / 22

Forlan Examples

Suppose that efa is the efa



Here are some example uses of a few of the above functions:

```
- projEFAToNFA efa;
invalid label in transition: "%"
```

```
uncaught exception Error
- val nfa = efaToNFA efa;
val nfa = - : nfa
```

Forlan Examples

- NFA.output("", nfa);
{states} A, B, C {start state} A
{accepting states} A, B, C
{transitions}
A, 0 -> A | B | C; A, 1 -> B | C; A, 2 -> C;
B, 1 -> B | C; B, 2 -> C; C, 2 -> C
val it = () : unit

Forlan Examples

```
- LP.output
= ("", EFA.findAcceptingLP efa (Str.input ""));
@ 012
@.
A, 0 \Rightarrow A, \% \Rightarrow B, 1 \Rightarrow B, \% \Rightarrow C, 2 \Rightarrow C
val it = () : unit
- LP.output
= ("", NFA.findAcceptingLP nfa (Str.input ""));
@ 012
0.
A, 0 \Rightarrow A, 1 \Rightarrow B, 2 \Rightarrow C
val it = () : unit
```