
3.11: Deterministic Finite Automata

In this section, we study the third of our more restricted kinds of
finite automata: deterministic finite automata.

1 / 50

Definition of DFAs

A deterministic finite automaton (DFA) M is a finite automaton
such that:

• TM ⊆ { q, x → r | q, r ∈ Sym and x ∈ Str and |x | = 1 }; and

• for all q ∈ QM and a ∈ alphabetM, there is a unique r ∈ QM

such that q, a→ r ∈ TM .

We write DFA for the set of all deterministic finite automata.
Thus DFA (NFA (EFA (FA.

2 / 50

Example DFA

Let M be the finite automaton

C
0

1

Start A B

1

0

1

Then L(M) = {w ∈ {0, 1}∗ | 000 is not a substring of w }.

Is M a DFA? No. M is an NFA. But 0 ∈ alphabetM and there is
no transition of the form C, 0→ r .

3 / 50

Example DFA

We can make M into a DFA by adding a dead state D:

DC
00

1

0, 1Start A B

1

0

1

We will never need more than one dead state in a DFA.

4 / 50

Properties of DFAs

The following proposition obviously holds.

Proposition 3.11.1
Suppose M is a DFA.

• For all N ∈ FA, if M iso N, then N is a DFA.

• For all bijections f from QM to some set of symbols,

renameStates(M, f) is a DFA.

• renameStatesCanonicallyM is a DFA.

5 / 50

The δ Function

Proposition 3.11.2
Suppose M is a DFA. For all q ∈ QM and w ∈ (alphabetM)∗,
|∆M({q},w)| = 1.

Proof. An easy left string induction on w . ✷

Because of Proposition 3.11.2, we can define the transition

function δM for M, δM ∈ QM × (alphabetM)∗ → QM , by:

δM(q,w) = the unique r ∈ QM such that r ∈ ∆M({q},w).

Thus, for all q, r ∈ QM and w ∈ (alphabetM)∗,

δM(q,w) = r iff r ∈ ∆M({q},w).

We sometimes abbreviate δM(q,w) to δ(q,w).

6 / 50

Example Uses of δ

For example, if M is the DFA

DC
00

1

0, 1Start A B

1

0

1

then

• δ(A,%) = A;

• δ(A, 0100) = C;

• δ(B, 000100) = D.

7 / 50

Properties of δ

Proposition 3.11.3
Suppose M is a DFA.

(1) For all q ∈ QM , δM(q,%) = q.

(2) For all q ∈ QM and a ∈ alphabetM, δM(q, a) = the unique

r ∈ QM such that q, a→ r ∈ TM .

(3) For all q ∈ QM and x , y ∈ (alphabetM)∗,
δM(q, xy) = δM(δM(q, x), y).

Suppose M is a DFA. By part (2) of the proposition, we have that,
for all q, r ∈ QM and a ∈ alphabetM,

δM(q, a) = r iff q, a→ r ∈ TM .

8 / 50

Checking Acceptance in DFAs

Proposition 3.11.4
Suppose M is a DFA.

L(M) = {w ∈ (alphabetM)∗ | δM(sM ,w) ∈ AM }.

The preceding propositions give us an efficient algorithm for
checking whether a string is accepted by a DFA. For example,
suppose M is the DFA

DC
00

1

0, 1Start A B

1

0

1

To check whether 0100 is accepted by M, we need to determine
whether δ(A, 0100) ∈ {A,B,C}.

9 / 50

Checking Acceptance in DFAs

We have that:

δ(A, 0100) = δ(δ(A, 0), 100)

= δ(B, 100)

= δ(δ(B, 1), 00)

= δ(A, 00)

= δ(δ(A, 0), 0)

= δ(B, 0)

= C

∈ {A,B,C}.

Thus 0100 is accepted by M.

10 / 50

Proving the Correctness of DFAs

Since every DFA is an FA, we could prove the correctness of DFAs
using the techniques that we have already studied.

But it turns out that giving a separate proof that enough is
accepted by a DFA is unnecessary—it will follow from the proof
that everything accepted is wanted.

11 / 50

Properties of Λ and δ

Proposition 3.11.5
Suppose M is a DFA. Then, for all w ∈ (alphabetM)∗ and

q ∈ QM ,

w ∈ ΛM,q iff δM(sM ,w) = q.

We already know that, if M is an FA, then
L(M) =

⋃
{Λq | q ∈ AM }.

Proposition 3.11.6
Suppose M is a DFA.

(1) (alphabetM)∗ =
⋃
{Λq | q ∈ QM }.

(2) For all q, r ∈ QM , if q 6= r , then Λq ∩ Λr = ∅.

12 / 50

Example DFA Correctness Proof

Suppose M is the DFA

DC
00

1

0, 1Start A B

1

0

1

and let X = {w ∈ {0, 1}∗ | 000 is not a substring of w }.

We will show that L(M) = X .

Note that, for all w ∈ {0, 1}∗:

• w ∈ X iff 000 is not a substring of w ; and

• w 6∈ X iff 000 is a substring of w .

13 / 50

Example Correctness Proof

First, we use induction on Λ, to prove that:

(A) for all w ∈ ΛA, w ∈ X and 0 is not a suffix of w ;

(B) for all w ∈ ΛB, w ∈ X and 0, but not 00, is a suffix of w ;

(C) for all w ∈ ΛC, w ∈ X and 00 is a suffix of w ;

(D) for all w ∈ ΛD, w 6∈ X .

There are nine steps (1 + the number of transitions) to show.

• (empty string) We must show that % ∈ X and 0 is not a
suffix of %. This follows since % has no 0’s.

• (A, 0→ B) Suppose w ∈ ΛA, and assume the inductive
hypothesis: w ∈ X and 0 is not a suffix of w . We must show
that w0 ∈ X and 0, but not 00, is a suffix of w0. Because
w ∈ X and 0 is not a suffix of w , we have that w0 ∈ X .
Clearly, 0 is a suffix of w0. And, since 0 is not a suffix of w ,
we have that 00 is not a suffix of w0.

14 / 50

Example Correctness Proof

• (A, 1→ A) Suppose w ∈ ΛA, and assume the inductive
hypothesis: w ∈ X and 0 is not a suffix of w . We must show
that w1 ∈ X and 0 is not a suffix of w1. Since w ∈ X , we
have that w1 ∈ X . And, 0 is not a suffix of w1.

• (B, 0→ C) Suppose w ∈ ΛB, and assume the inductive
hypothesis: w ∈ X and 0, but not 00, is a suffix of w . We
must show that w0 ∈ X and 00 is a suffix of w0. Because
w ∈ X and 00 is not suffix of w , we have that w0 ∈ X . And
since 0 is a suffix of w , it follows that 00 is a suffix of w0.

• (B, 1→ A) Suppose w ∈ ΛB, and assume the inductive
hypothesis: w ∈ X and 0, but not 00, is a suffix of w . We
must show that w1 ∈ X and 0 is not a suffix of w1. Because
w ∈ X , we have that w1 ∈ X . And, 0 is not a suffix of w1.

15 / 50

Example Correctness Proof

• (C, 0→ D) Suppose w ∈ ΛC, and assume the inductive
hypothesis: w ∈ X and 00 is a suffix of w . We must show
that w0 6∈ X . Because 00 is a suffix of w , we have that 000 is
a suffix of w0. Thus w0 6∈ X .

• (C, 1→ A) Suppose w ∈ ΛC, and assume the inductive
hypothesis: w ∈ X and 00 is a suffix of w . We must show
that w1 ∈ X and 0 is not a suffix of w1. Because w ∈ X , we
have that w1 ∈ X . And, 0 is not a suffix of w1.

• (D, 0→ D) Suppose w ∈ ΛD, and assume the inductive
hypothesis: w 6∈ X . We must show that w0 6∈ X . Because
w 6∈ X , we have that w0 6∈ X .

• (D, 1→ D) Suppose w ∈ ΛD, and assume the inductive
hypothesis: w 6∈ X . We must show that w1 6∈ X . Because
w 6∈ X , we have that w1 6∈ X .

16 / 50

Example Correctness Proof

Now, we use the result of our induction on Λ to show that
L(M) = X .

• (L(M) ⊆ X) Suppose w ∈ L(M). Because AM = {A,B,C},
we have that w ∈ L(M) = ΛA ∪ ΛB ∪ ΛC. Thus, by
parts (A)–(C), we have that w ∈ X .

• (X ⊆ L(M)) Suppose w ∈ X . Since X ⊆ {0, 1}∗, we have
that w ∈ {0, 1}∗. Suppose, toward a contradiction, that
w 6∈ L(M). Because w 6∈ L(M) = ΛA ∪ ΛB ∪ ΛC and
w ∈ {0, 1}∗ = (alphabetM)∗ = ΛA ∪ ΛB ∪ ΛC ∪ ΛD, we must
have that w ∈ ΛD. But then part (D) tells us that
w 6∈ X—contradiction. Thus w ∈ L(M).

17 / 50

Simplification of DFAs

Let M be our example DFA

DC
00

1

0, 1Start A B

1

0

1

Is M simplified? No, since the state D is dead. But if we get rid of
D, then we won’t have a DFA anymore.
Thus, we will need:

• a notion of when a DFA is simplified that is more liberal than
our standard notion;

• a corresponding simplification procedure for DFAs.

18 / 50

Definition of Deterministically Simplified

We say that a DFA M is deterministically simplified iff

• every element of QM is reachable; and

• at most one element of QM is dead.

For example, the following DFAs, which both accept ∅, are both
deterministically simplified:

(M1) (M2)

Start A

0

Start A

19 / 50

A Simplification Algorithm for DFAs

We define a simplification algorithm for DFAs that takes in

• a DFA M and

• an alphabet Σ

and returns a DFA N such that

• N is deterministically simplified,

• N ≈ M,

• alphabetN = alphabet(L(M)) ∪ Σ, and

• if Σ ⊆ alphabet(L(M)), then |QN | ≤ |QM |.

20 / 50

A Simplification Algorithm

The algorithm begins by letting the FA M ′ be simplifyM, i.e., the
result of running our simplification algorithm for FAs on M. M ′

will have the following properties:

• QM′ ⊆ QM and TM′ ⊆ TM ;

• M ′ is simplified;

• M ′ ≈ M;

• alphabetM ′ = alphabet(L(M ′)) = alphabet(L(M)); and

• for all q ∈ QM′ and a ∈ alphabetM ′, there is at most one
r ∈ QM′ such that q, a→ r ∈ TM′ (this property holds since
M is a DFA and QM′ ⊆ QM and TM′ ⊆ TM).

21 / 50

A Simplification Algorithm

Let Σ′ = alphabetM ′ ∪Σ = alphabet(L(M)) ∪Σ. If M ′ is a DFA
and alphabetM ′ = Σ′, the algorithm returns M ′ as its DFA, N.
Because M ′ is simplified, all states of M ′ are reachable, and either
M ′ has no dead states, or it consists of a single dead state (the
start state). In either case, M ′ is deterministically simplified.
Because QM′ ⊆ QM , we have |QN | ≤ |QM |.

Otherwise, it must turn M ′ into a DFA whose alphabet is Σ′. We
have that

• alphabetM ′ ⊆ Σ′; and

• for all q ∈ QM′ and a ∈ Σ′, there is at most one r ∈ QM′ such
that q, a→ r ∈ TM′ .

Since M ′ is simplified, there are two cases to consider.

22 / 50

A Simplification Algorithm

If M ′ has no accepting states, then sM′ is the only state of M ′ and
M ′ has no transitions. Thus the DFA N returned by the algorithm
is defined by:

• QN = QM′ = {sM′};

• sN = sM′ ;

• AN = AM′ = ∅; and

• TN = { sM′ , a→ sM′ | a ∈ Σ′ }.

In this case, we have that |QN | ≤ |QM |.

23 / 50

A Simplification Algorithm

Alternatively, M ′ has at least one accepting state, so that M ′ has
no dead states. (Consider the case when Σ ⊆ alphabet(L(M)), so
that Σ′ = alphabet(L(M)) = alphabetM ′. Suppose, toward a
contradiction, that QM′ = QM , so that all elements of QM are
useful. Then sM′ = sM and AM′ = AM . And TM′ = TM , since no
transitions of a DFA are redundant. Hence M ′ = M, so that M ′ is
a DFA with alphabet Σ′—a contradiction. Thus QM′ (QM .)

24 / 50

A Simplification Algorithm

Thus the DFA N returned by the algorithm is defined by:

• QN = QM′ ∪ {〈dead〉} (enough brackets are put around
〈dead〉 so that it’s not in QM′);

• sN = sM′ ;

• AN = AM′ ; and

• TN = TM′ ∪ T ′, where T ′ is the set of all transitions
q, a→ 〈dead〉 such that either

• q ∈ QM′ and a ∈ Σ′, but there is no r ∈ QM′ such that
q, a→ r ∈ TM′; or

• q = 〈dead〉 and a ∈ Σ′.

(If Σ ⊆ alphabet(L(M)), then |QN | ≤ |QM |.)

25 / 50

Definition of determSimplify Function

We define a function determSimplify ∈ DFA× Alp→DFA by:
determSimplify(M,Σ) is the result of running the above
algorithm on M and Σ.

Theorem 3.11.8
For all M ∈ DFA and Σ ∈ Alp:

• determSimplify(M,Σ) is deterministically simplified;

• determSimplify(M,Σ) ≈ M;

• alphabet(determSimplify(M,Σ)) = alphabet(L(M)) ∪Σ;
and

• if Σ ⊆ alphabet(L(M)), then |QdetermSimplify(M,Σ)| ≤ |QM |.

26 / 50

Example DFA Simplification

For example, suppose M is the DFA

DC
00

1

0, 1Start A B

1

0

1

Then determSimplify(M, {2}) is the DFA

C
0

1

〈dead〉

0, 1, 2

2 0, 22

Start A B

1

0

1

27 / 50

Converting NFAs to DFAs

Suppose M is the NFA

C
1

0

Start A B

1

1

How can we convert M into a DFA?

Our approach will be to convert M into a DFA N whose states
represent the elements of the set

{∆M({A},w) | w ∈ {0, 1}∗ }.

For example, one the states of N will be 〈A,B〉, which represents
{A,B} = ∆M({A}, 1). This is the state that our DFA will be in
after processing 1 from the start state.

28 / 50

A Proposition About ∆ for NFAs

Proposition 3.11.10
Suppose M is an NFA.

(1) For all P ⊆ QM , ∆M(P ,%) = P.

(2) For all P ⊆ QM and a ∈ alphabetM,

∆M(P , a) = { r ∈ QM | p, a→ r ∈ TM , for some p ∈ P }.

(3) For all P ⊆ QM and x , y ∈ (alphabetM)∗,
∆M(P , xy) = ∆M(∆M(P , x), y).

29 / 50

Representing Finite Sets of Symbols as Symbols

Given a finite set of symbols P , we write P for the symbol

〈a1, . . . , an〉,

where a1, . . . , an are all of the elements of P , in order according to
our ordering on Sym, and without repetition. For example,
{B,A} = 〈A,B〉 and ∅ = 〈〉.

It is easy to see that, if P and R are finite sets of symbols, then
P = R iff P = R .

30 / 50

Our NFA to DFA Conversion Algorithm

We convert an NFA M into a DFA N as follows. First, we generate
the least subset X of P QM such that:

• {sM} ∈ X ;

• for all P ∈ X and a ∈ alphabetM, ∆M(P , a) ∈ X .

Thus |X | ≤ 2|QM |.

Then we define the DFA N as follows:

• QN = {P | P ∈ X };

• sN = {sM} = 〈sM〉;

• AN = {P | P ∈ X and P ∩ AM 6= ∅ };

• TN = { (P , a,∆M(P , a)) | P ∈ X and a ∈ alphabetM }.

Then N is a DFA with alphabet alphabetM and, for all P ∈ X

and a ∈ alphabetM, δN(P , a) = ∆M(P , a).

31 / 50

Conversion Example

Suppose M is the NFA

C
1

0

Start A B

1

1

Let’s work out what the DFA N is.

• To begin with, {A} ∈ X , so that 〈A〉 ∈ QN . And 〈A〉 is the
start state of N. It is not an accepting state, since A 6∈ AM .

• Since {A} ∈ X , and ∆({A}, 0) = ∅, we add ∅ to X , 〈〉 to QN

and 〈A〉, 0→ 〈〉 to TN .

Since {A} ∈ X , and ∆({A}, 1) = {A,B}, we add {A,B} to
X , 〈A,B〉 to QN and 〈A〉, 1→ 〈A,B〉 to TN .

32 / 50

Conversion Example

• Since ∅ ∈ X , ∆(∅, 0) = ∅ and ∅ ∈ X , we don’t have to add
anything to X or QN , but we add 〈〉, 0→ 〈〉 to TN .

Since ∅ ∈ X , ∆(∅, 1) = ∅ and ∅ ∈ X , we don’t have to add
anything to X or QN , but we add 〈〉, 1→ 〈〉 to TN .

• Since {A,B} ∈ X , ∆({A,B}, 0) = ∅ and ∅ ∈ X , we don’t have
to add anything to X or QN , but we add 〈A,B〉, 0→〈〉 to TN .

Since {A,B} ∈ X , ∆({A,B}, 1) = {A,B} ∪ {C} = {A,B,C},
we add {A,B,C} to X , 〈A,B,C〉 to QN , and
〈A,B〉, 1→ 〈A,B,C〉 to TN . Since {A,B,C} contains (the
only) one of M’s accepting states, we add 〈A,B,C〉 to AN .

33 / 50

Conversion Example

• Since {A,B,C} ∈ X and
∆({A,B,C}, 0) = ∅ ∪ ∅ ∪ {C} = {C}, we add {C} to X , 〈C〉
to QN and 〈A,B,C〉, 0→ 〈C〉 to TN . Since {C} contains one
of M’s accepting states, we add 〈C〉 to AN .

Since {A,B,C} ∈ X ,
∆({A,B,C}, 1) = {A,B} ∪ {C} ∪ ∅ = {A,B,C} and
{A,B,C} ∈ X , we don’t have to add anything to X or QN ,
but we add 〈A,B,C〉, 1→ 〈A,B,C〉 to TN .

• Since {C} ∈ X , ∆({C}, 0) = {C} and {C} ∈ X , we don’t have
to add anything to X or QN , but we add 〈C〉, 0→ 〈C〉 to TN .

Since {C} ∈ X , ∆({C}, 1) = ∅ and ∅ ∈ X , we don’t have to
add anything to X or QN , but we add 〈C〉, 1→ 〈〉 to TN .

34 / 50

Conversion Example

Since there are no more elements to add to X , we are done. Thus,
the DFA N is

1

1

0

0

0, 1

0 10

〈A,
B,C〉 〈C〉

〈〉

Start
1

〈A,B〉〈A〉

35 / 50

Correctness of Conversion Algorithm

Lemma 3.11.11
For all w ∈ (alphabetM)∗:

• ∆M({sM},w) ∈ X; and

• δN(sN ,w) = ∆M({sM},w).

Proof. By left string induction.

(Basis Step) We have that ∆M({sM},%) = {sM} ∈ X and
δN(sN ,%) = sN = {sM} = ∆M({sM},%).

36 / 50

Correctness

Proof (cont.). (Inductive Step) Suppose a ∈ alphabetM and
w ∈ (alphabetM)∗. Assume the inductive hypothesis:
∆M({sM},w) ∈ X and δN(sN ,w) = ∆M({sM},w).

Since ∆M({sM},w) ∈ X and a ∈ alphabetM, we have that
∆M({sM},wa) = ∆M(∆M({sM},w), a) ∈ X . Thus

δN(sN ,wa) = δN(δN(sN ,w), a)

= δN(∆M({sM},w), a) (ind. hyp.)

= ∆M(∆M({sM},w), a)

= ∆M({sM},wa).

✷

37 / 50

Correctness

Lemma 3.11.12
L(N) = L(M).

Proof. (L(M) ⊆ L(N)) Suppose w ∈ L(M), so that
w ∈ (alphabetM)∗ = (alphabetN)∗ and
∆M({sM},w) ∩ AM 6= ∅. By Lemma 3.11.11, we have that
∆M({sM},w) ∈ X and δN(sN ,w) = ∆M({sM},w). Since
∆M({sM},w) ∈ X and ∆M({sM},w) ∩ AM 6= ∅, it follows that
δN(sN ,w) = ∆M({sM},w) ∈ AN . Thus w ∈ L(N).

(L(N) ⊆ L(M)) Suppose w ∈ L(N), so that
w ∈ (alphabetN)∗ = (alphabetM)∗ and δN(sN ,w) ∈ AN . By
Lemma 3.11.11, we have that δN(sN ,w) = ∆M({sM},w). Thus
∆M({sM},w) ∈ AN , so that ∆M({sM},w) ∩ AM 6= ∅. Thus
w ∈ L(M). ✷

38 / 50

Conversion Function

We define a function nfaToDFA ∈ NFA→DFA by: nfaToDFAM

is the result of running the preceding algorithm with input M.

Theorem 3.11.13
For all M ∈ NFA:

• nfaToDFAM ≈ M; and

• alphabet(nfaToDFAM) = alphabetM.

39 / 50

Processing DFAs in Forlan

The Forlan module DFA defines an abstract type dfa (in the
top-level environment) of deterministic finite automata, along with
various functions for processing DFAs.

Values of type dfa are implemented as values of type fa, and the
module DFA provides the following injection and projection
functions

val injToFA : dfa -> fa

val injToEFA : dfa -> efa

val injToNFA : dfa -> nfa

val projFromFA : fa -> dfa

val projFromEFA : efa -> dfa

val projFromNFA : nfa -> dfa

These functions are available in the top-level environment with the
names injDFAToFA, injDFAToEFA, injDFAToNFA, projFAToDFA,
projEFAToDFA and projNFAToDFA.

40 / 50

Processing DFAs in Forlan

The module DFA also defines the functions:

val input : string -> dfa

val determProcStr : dfa -> sym * str -> sym

val determAccepted : dfa -> str -> bool

val determSimplified : dfa -> bool

val determSimplify : dfa * sym set -> dfa

val fromNFA : nfa -> dfa

The last of these functions is available in the top-level environment
as:

val nfaToDFA : nfa -> dfa

41 / 50

Processing DFAs in Forlan

Most of the functions for processing FAs that were introduced in
previous sections are inherited by DFA:

val output : string * dfa -> unit

val numStates : dfa -> int

val numTransitions : dfa -> int

val alphabet : dfa -> sym set

val equal : dfa * dfa -> bool

val checkLP : dfa -> lp -> unit

val validLP : dfa -> lp -> bool

val isomorphism : dfa * dfa * sym_rel -> bool

val findIsomorphism : dfa * dfa -> sym_rel

val isomorphic : dfa * dfa -> bool

val renameStates : dfa * sym_rel -> dfa

val renameStatesCanonically : dfa -> dfa

42 / 50

Processing DFAs in Forlan

More inherited functions:

val processStr : dfa -> sym set * str -> sym set

val accepted : dfa -> str -> bool

val findLP : dfa -> sym set * str * sym set -> lp

val findAcceptingLP : dfa -> str -> lp

43 / 50

Forlan Examples

Suppose dfa is the dfa

DC
00

1

0, 1Start A B

1

0

1

We can turn dfa into an equivalent deterministically simplified
DFA whose alphabet is the union of the alphabet of the language
of dfa and {2}, i.e., whose alphabet is {0, 1, 2}, as follows.

- val dfa’ = DFA.determSimplify(dfa, SymSet.input "");

@ 2

@ .

val dfa’ = - : dfa

44 / 50

Forlan Examples

- DFA.output("", dfa’);

{states} A, B, C, <dead> {start state} A

{accepting states} A, B, C

{transitions}

A, 0 -> B; A, 1 -> A; A, 2 -> <dead>; B, 0 -> C;

B, 1 -> A; B, 2 -> <dead>; C, 0 -> <dead>; C, 1 -> A;

C, 2 -> <dead>; <dead>, 0 -> <dead>;

<dead>, 1 -> <dead>; <dead>, 2 -> <dead>

val it = () : unit

45 / 50

Forlan Examples

Thus dfa’ is

C
0

1

〈dead〉

0, 1, 2

2 0, 22

Start A B

1

0

1

46 / 50

Forlan Examples

Suppose that nfa is the nfa

C
1

0

Start A B

1

1

We can convert nfa to a DFA as follows:

- val dfa = nfaToDFA nfa;

val dfa = - : dfa

47 / 50

Forlan Examples

- DFA.output("", dfa);

{states} <>, <A>, <C>, <A,B>, <A,B,C>

{start state} <A> {accepting states} <C>, <A,B,C>

{transitions}

<>, 0 -> <>; <>, 1 -> <>; <A>, 0 -> <>;

<A>, 1 -> <A,B>; <C>, 0 -> <C>; <C>, 1 -> <>;

<A,B>, 0 -> <>; <A,B>, 1 -> <A,B,C>;

<A,B,C>, 0 -> <C>; <A,B,C>, 1 -> <A,B,C>

val it = () : unit

48 / 50

Forlan Examples

Thus dfa is

1

1

0

0

0, 1

0 10

〈A,
B,C〉 〈C〉

〈〉

Start
1

〈A,B〉〈A〉

49 / 50

Forlan Examples

Finally, we see an example in which an NFA with 4 states is
converted to a DFA with 24 = 16 states.

Suppose nfa’ is the NFA

2

C
0, 1

2

D

2

0, 1
B

0, 1

1
Start A

We can convert nfa’ into a DFA, as follows:

- val dfa’ = nfaToDFA nfa’;

val dfa’ = - : dfa

- DFA.numStates dfa’;

val it = 16 : int

In Section 3.13, we will use Forlan to show that there is no DFA
with fewer than 16 states that accepts the language accepted by
nfa’ and dfa’.

50 / 50

