
3.13: Equivalence-testing and Minimization of

Deterministic Finite Automata

In this section, we give algorithms for:

• testing whether two DFAs are equivalent; and

• minimizing the alphabet size and number of states of a DFA.

We also show how to use the Forlan implementations of these
algorithms.
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Testing the Equivalence of DFAs

Suppose M and N are DFAs. Our algorithm for checking whether
they are equivalent proceeds as follows.

First, it converts M and N into DFAs with identical alphabets. Let
Σ = alphabetM ∪ alphabetN, and define the DFAs M ′ and N ′

by:

M ′ = determSimplify(M,Σ), and

N ′ = determSimplify(N,Σ).

Since alphabet(L(M)) ⊆ alphabetM ⊆ Σ, we have that
alphabetM ′ = alphabet(L(M)) ∪ Σ = Σ. Similarly,
alphabetN ′ = Σ.

Furthermore, M ′ ≈ M and N ′ ≈ N, so that it will suffice to
determine whether M ′ and N ′ are equivalent.
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Equivalence-testing

For example, if M and N are the DFAs
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then Σ = {0, 1}, M ′ = M and N ′ = N.
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Equivalence-testing

Next, the algorithm generates the least subset X of QM′ × QN′

such that

• (sM′ , sN′) ∈ X ; and

• for all q ∈ QM′ , r ∈ QN′ and a ∈ Σ, if (q, r) ∈ X , then
(δM′(q, a), δN′(r , a)) ∈ X .

With our example DFAs M ′ and N ′, we have that
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• (A,A) ∈ X ;

• since (A,A) ∈ X , we have that (B,B) ∈ X and (A,C) ∈ X ;

• since (B,B) ∈ X , we have that (again) (A,C) ∈ X and
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• since (A,C) ∈ X , we have that
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• for all q ∈ QM′ , r ∈ QN′ and a ∈ Σ, if (q, r) ∈ X , then
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With our example DFAs M ′ and N ′, we have that

• (A,A) ∈ X ;

• since (A,A) ∈ X , we have that (B,B) ∈ X and (A,C) ∈ X ;

• since (B,B) ∈ X , we have that (again) (A,C) ∈ X and
(again) (B,B) ∈ X ; and

• since (A,C) ∈ X , we have that (again) (B,B) ∈ X and
(again) (A,A) ∈ X .
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Equivalence-testing

Back in the general case, we have the following lemmas.

Lemma 3.13.1
For all w ∈ Σ∗, (δM′(sM′ ,w), δN′(sN′ ,w)) ∈ X.

Proof. By left string induction on w . ✷
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Back in the general case, we have the following lemmas.

Lemma 3.13.1
For all w ∈ Σ∗, (δM′(sM′ ,w), δN′(sN′ ,w)) ∈ X.

Proof. By left string induction on w . ✷

Lemma 3.13.2
For all q ∈ QM′ and r ∈ QN′ , if (q, r) ∈ X, then there is a w ∈ Σ∗

such that q = δM′(sM′ ,w) and r = δN′(sN′ ,w).

Proof. By induction on X . ✷
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Equivalence-testing

Finally, the algorithm checks that, for all (q, r) ∈ X ,

If this is true, it says that the machines are equivalent; otherwise it
says they are not equivalent.
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Equivalence-testing

Finally, the algorithm checks that, for all (q, r) ∈ X ,

q ∈ AM′ iff r ∈ AN′ .

If this is true, it says that the machines are equivalent; otherwise it
says they are not equivalent.

If we only want to test whether L(M) ⊆ L(N), we test whether

q ∈ AM′ implies r ∈ AN′ .
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Equivalence-testing

Suppose every pair (q, r) ∈ X consists of two accepting states or
of two non-accepting states. Suppose, toward a contradiction, that
L(M ′) 6= L(N ′). Then there is a string w that is accepted by one
of the machines but is not accepted by the other. Since both
machines have alphabet Σ, we have that w ∈ Σ∗. Thus
Lemma 3.13.1 tells us that (δM′(sM′ ,w), δN′(sN′ ,w)) ∈ X .
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Suppose every pair (q, r) ∈ X consists of two accepting states or
of two non-accepting states. Suppose, toward a contradiction, that
L(M ′) 6= L(N ′). Then there is a string w that is accepted by one
of the machines but is not accepted by the other. Since both
machines have alphabet Σ, we have that w ∈ Σ∗. Thus
Lemma 3.13.1 tells us that (δM′(sM′ ,w), δN′(sN′ ,w)) ∈ X . But
one side of this pair is an accepting state and the other is a
non-accepting one—contradiction. Thus L(M ′) = L(N ′).

Suppose we find a pair (q, r) ∈ X such that one of q and r is an
accepting state but the other is not. By Lemma 3.13.2, it will
follow that there is a w ∈ Σ∗ such that q = δM′(sM′ ,w) and
r = δN′(sN′ ,w). Thus w is accepted by one machine but not the
other, so that L(M ′) 6= L(N ′).
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Equivalence-testing

In the case of our example, we have that
X = {(A,A), (B,B), (A,C)}. Since (A,A) and (A,C) are pairs of
accepting states, and (B,B) is a pair of non-accepting states, it
follows that L(M ′) = L(N ′). Hence L(M) = L(N).
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Equivalence-testing

In the case of our example, we have that
X = {(A,A), (B,B), (A,C)}. Since (A,A) and (A,C) are pairs of
accepting states, and (B,B) is a pair of non-accepting states, it
follows that L(M ′) = L(N ′). Hence L(M) = L(N).

By annotating each element (q, r) ∈ X with a string w such that
q = δM′(sM′ ,w) and r = δN′(sN′ ,w), instead of just reporting that
M ′ and N ′ are not equivalent, we can explain why they are not
equivalent,

• giving a string that is accepted by the first machine but not
by the second; and/or

• giving a string that is accepted by the second machine but not
by the first.

We can even arrange for these strings to be of minimum length.
The Forlan implementation of our algorithm always produces
minimum-length counterexamples.
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Equivalence-testing in Forlan

The Forlan module DFA defines the functions:

val relationship : dfa * dfa -> unit

val subset : dfa * dfa -> bool

val equivalent : dfa * dfa -> bool

The function relationship figures out the relationship between
the languages accepted by two DFAs (are they equal, is one a
proper subset of the other, is neither a subset of the other), and
supplies minimum-length counterexamples to justify negative
answers. The function subset tests whether its first argument’s
language is a subset of its second argument’s language. The
function equivalent tests whether two DFAs are equivalent.
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The Forlan module DFA defines the functions:

val relationship : dfa * dfa -> unit

val subset : dfa * dfa -> bool

val equivalent : dfa * dfa -> bool

The function relationship figures out the relationship between
the languages accepted by two DFAs (are they equal, is one a
proper subset of the other, is neither a subset of the other), and
supplies minimum-length counterexamples to justify negative
answers. The function subset tests whether its first argument’s
language is a subset of its second argument’s language. The
function equivalent tests whether two DFAs are equivalent.

Note that subset (when turned into a function of type
reg * reg -> bool—see below) can be used in conjunction with
the local and global simplification functions of Section 3.3.
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Forlan Examples

For example, suppose dfa1 and dfa2 of type dfa are bound to our
example DFAs M and N, respectively:
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We can verify that these machines are equivalent as follows:

- DFA.relationship(dfa1, dfa2);

languages are equal

val it = () : unit
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Forlan Examples

On the other hand, suppose that dfa3 and dfa4 of type dfa are
bound to the DFAs:
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We can find out why these machines are not equivalent as follows:

- DFA.relationship(dfa3, dfa4);

neither language is a subset of the other language:

"11" is in first language but is not in second

language; "110" is in second language but is not in

first language

val it = () : unit
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Forlan Examples

We can find the relationship between the languages generated by
regular expressions reg1 and reg2 by:
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Forlan Examples

We can find the relationship between the languages generated by
regular expressions reg1 and reg2 by:

• converting reg1 and reg2 to DFAs dfa1 and dfa2, and then

• running DFA.relationship(dfa1, dfa2) to find the
relationship between those DFAs.

Of course, we can define an ML/Forlan function that carries out
these actions:

- fun regToDFA reg =

= nfaToDFA(efaToNFA(faToEFA(regToFA reg)));

val regToDFA = fn : reg -> dfa

- fun relationshipReg(reg1, reg2) =

= DFA.relationship

= (regToDFA reg1, regToDFA reg2);

val relationshipReg = fn : reg * reg -> unit
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Minimization of DFAs

Now, we consider an algorithm for minimizing the sizes of the
alphabet and set of states of a DFA M.

The algorithm first minimizes the size of M’s alphabet, and makes
the automaton be deterministically simplified, by letting
M ′ = determSimplify(M, ∅). Thus M ′ ≈ M,
alphabetM ′ = alphabet(L(M)) and |QM′ | ≤ |QM |.

For example, if M is the DFA
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then M ′ = M.
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Unmergable States

Next, the algorithm generates the least subset X of QM′ × QM′

such that:

(1) AM′ × (QM′ − AM′) ⊆ X ;

(2) (QM′ − AM′)× AM′ ⊆ X ; and

(3) for all q, q′, r , r ′ ∈ QM′ and a ∈ alphabetM ′, if (q, r) ∈ X ,
(q′, a, q) ∈ TM′ and (r ′, a, r) ∈ TM′ , then (q′, r ′) ∈ X .

We read “(q, r) ∈ X” as “q and r cannot be merged”.
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Unmergable States Example

In the case of our example M ′, (1) tells us to add the pairs (E,A),
(E,B), (E,C), (E,D), (F,A), (F,B), (F,C) and (F,D) to X .

And, (2) tells us to add the pairs (A,E), (B,E), (C,E), (D,E),
(A,F), (B,F), (C,F) and (D,F) to X .

Now we use rule (3) to compute the rest of X ’s elements. To begin
with, we must handle each pair that has already been added to X .

• Since there are no transitions leading into A, no pairs can be
added using (E,A), (A,E), (F,A) and (A,F).

• Since there are no 0-transitions leading into E, and there are
no 1-transitions leading into B, no pairs can be added using
(E,B) and (B,E).
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Unmergable States Example

• Since (E,C), (C,E) ∈ X and (B, 1,E), (D, 1,E), (F, 1,E) and
(A, 1,C) are the 1-transitions leading into E and C, we add

to X ;

Since there are no 0-transitions into E,
nothing can be added to X using (E,C) and (C,E) and
0-transitions.

• Since (E,D), (D,E) ∈ X and (B, 1,E), (D, 1,E), (F, 1,E) and
(C, 1,D) are the 1-transitions leading into E and D, we add

to X ;

Since there are no 0-transitions into E,
nothing can be added to X using (E,D) and (D,E) and
0-transitions.
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Unmergable States Example

• Since (F,B), (B,F) ∈ X and (E, 0,F), (F, 0,F), (A, 0,B), and
(D, 0,B) are the 0-transitions leading into F and B, we would
have to add the following pairs to X , if they were not already
present: (E,A), (A,E), (E,D), (D,E), (F,A), (A,F), (F,D),
(D,F). Since there are no 1-transitions leading into B, no
pairs can be added using (F,B) and (B,F) and 1-transitions.

• Since (F,C), (C,F) ∈ X and (E, 1,F) and (A, 1,C) are the
1-transitions leading into F and C, we would have to add
(E,A) and (A,E) to X if these pairs weren’t already present.
Since there are no 0-transitions leading into C, no pairs can be
added using (F,C) and (C,F) and 0-transitions.
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Unmergable States Example

• Since (F,D), (D,F) ∈ X and (E, 0,F), (F, 0,F), (B, 0,D) and
(C, 0,D) are the 0-transitions leading into F and D, we would
add (E,B), (B,E), (E,C), (C,E), (F,B), (B,F), (F,C), and
(C,F) to X , if these pairs weren’t already present. Since
(F,D), (D,F) ∈ X and (E, 1,F) and (C, 1,D) are the
1-transitions leading into F and D, we would add (E,C) and
(C,E) to X , if these pairs weren’t already in X .
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Unmergable States Example

We’ve now handled all of the elements of X that were added using
rules (1) and (2). We must now handle the pairs that were
subsequently added: (A,B), (B,A), (A,D), (D,A), (B,C), (C,B),
(C,D), (D,C).

• Since there are no transitions leading into A, no pairs can be
added using (A,B), (B,A), (A,D) and (D,A).

• Since there are no 1-transitions leading into B, and there are
no 0-transitions leading into C, no pairs can be added using
(B,C) and (C,B).

• Since (C,D), (D,C) ∈ X and (A, 1,C) and (C, 1,D) are the
1-transitions leading into C and D, we add the pairs

. Since there are no 0-transitions leading into
C, no pairs can be added to X using (C,D) and (D,C) and
0-transitions.
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We’ve now handled all of the elements of X that were added using
rules (1) and (2). We must now handle the pairs that were
subsequently added: (A,B), (B,A), (A,D), (D,A), (B,C), (C,B),
(C,D), (D,C).

• Since there are no transitions leading into A, no pairs can be
added using (A,B), (B,A), (A,D) and (D,A).

• Since there are no 1-transitions leading into B, and there are
no 0-transitions leading into C, no pairs can be added using
(B,C) and (C,B).

• Since (C,D), (D,C) ∈ X and (A, 1,C) and (C, 1,D) are the
1-transitions leading into C and D, we add the pairs (A,C)
and (C,A) to X . Since there are no 0-transitions leading into
C, no pairs can be added to X using (C,D) and (D,C) and
0-transitions.
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Unmergable States Example

Now, we must handle the pairs that were added in the last phase:
(A,C) and (C,A).

• Since there are no transitions leading into A, no pairs can be
added using (A,C) and (C,A).

Since we have handled all the pairs we added to X , we are now
done. Here are the 26 elements of X : (A,B), (A,C), (A,D),
(A,E), (A,F), (B,A), (B,C), (B,E), (B,F), (C,A), (C,B), (C,D),
(C,E), (C,F), (D,A), (D,C), (D,E), (D,F), (E,A), (E,B), (E,C),
(E,D), (F,A), (F,B), (F,C), (F,D).
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Unmergable States Lemmas

Back in the general case, we have the following lemmas.

Lemma 3.13.3
For all (q, r) ∈ X, there is a w ∈ (alphabetM ′)∗, such that

exactly one of δM′(q,w) and δM′(r ,w) is in
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Mergable States

The algorithm now lets the relation Y = (QM′ × QM′)− X . We
read “(q, r) ∈ Y ” as “q and r can be merged”.

Back with our example, we have that Y is

{(A,A), (B,B), (C,C), (D,D), (E,E), (F,F)}

∪

{(B,D), (D,B), (F,E), (E,F)}.
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Mergeable States Lemmas

Lemma 3.13.5
(1) For all q, r ∈ QM′ , (q, r) ∈ Y iff, for all w ∈ (alphabetM ′)∗,

δM′(q,w) ∈ AM′ iff δM′(r ,w) ∈ AM′ .

(2) For all q, r ∈ QM′ , if (q, r) ∈ Y , then q ∈ AM′ iff r ∈ AM′ .

(3) For all q, r ∈ QM′ and a ∈ alphabetM ′, if (q, r) ∈ Y , then

(δM′(q, a), δM′(r , a)) ∈ Y .

Proof.

(1) Follows using Lemmas 3.13.3 and 3.13.4.

(2) Follows by Part (1), when w = %.

(3) Follows by Part (1).

✷
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Mergable States Lemmas

The following lemma says that Y is an equivalence relation on

QM′ .

Lemma 3.13.6
Y is reflexive on QM′ , symmetric and transitive.

Proof. Follows from Lemma 3.13.5(1). ✷
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Equivalence Classes

In order to define the DFA N that is the result of our minimization
algorithm, we need a bit more notation.

As in Section 3.11, we write P for the result of coding a finite set
of symbols P as a symbol. E.g., {B,A} = 〈A,B〉.
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As in Section 3.11, we write P for the result of coding a finite set
of symbols P as a symbol. E.g., {B,A} = 〈A,B〉.

If q ∈ QM′ , we write [q] for { p ∈ QM′ | (p, q) ∈ Y }, which is
called the equivalence class of q. Using Lemma 3.13.6, it is easy to
show that, q ∈ [q], for all q ∈ QM′ , and [q] = [r ] iff (q, r) ∈ Y , for
all q, r ∈ QM′ .

If P is a nonempty, finite set of symbols, then we write min P for
the least element of P , according to our standard ordering on
symbols.
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Definition of Minimized DFA

Next, the algorithm lets Z = { [q] | q ∈ QM′ }, which is finite since
QM′ is finite.

In the case of our example, Z is .
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Definition of Minimized DFA

Next, the algorithm lets Z = { [q] | q ∈ QM′ }, which is finite since
QM′ is finite.

In the case of our example, Z is {{A}, {B,D}, {C}, {E,F}}.

The algorithm then defines the DFA N as follows:

• QN = {P | P ∈ Z };

• sN = [sM′ ];

• AN = {P | P ∈ Z and min P ∈ AM′ }; and

• TN =
{ (P , a, ) | P ∈ Z and a ∈ alphabetM ′ }.

26 / 42



Definition of Minimized DFA

Next, the algorithm lets Z = { [q] | q ∈ QM′ }, which is finite since
QM′ is finite.

In the case of our example, Z is {{A}, {B,D}, {C}, {E,F}}.

The algorithm then defines the DFA N as follows:

• QN = {P | P ∈ Z };

• sN = [sM′ ];

• AN = {P | P ∈ Z and min P ∈ AM′ }; and

• TN =
{ (P , a, [δM′(min P , a)]) | P ∈ Z and a ∈ alphabetM ′ }.
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Definition of Minimized DFA

Next, the algorithm lets Z = { [q] | q ∈ QM′ }, which is finite since
QM′ is finite.

In the case of our example, Z is {{A}, {B,D}, {C}, {E,F}}.

The algorithm then defines the DFA N as follows:

• QN = {P | P ∈ Z };

• sN = [sM′ ];

• AN = {P | P ∈ Z and min P ∈ AM′ }; and

• TN =
{ (P , a, [δM′(min P , a)]) | P ∈ Z and a ∈ alphabetM ′ }.

Then N is a DFA with alphabet alphabetM ′ = alphabet(L(M)),
|QN | ≤ |QM′ | ≤ |QM |, and, for all P ∈ Z and a ∈ alphabetM ′,
δN(P , a) = [δM′(min P , a)].

26 / 42



Example Minimization

In the case of our example, we have that

• QN = {〈A〉, 〈B,D〉, 〈C〉, 〈E,F〉};

• sN = 〈A〉; and

• AN = {〈E,F〉}.

We compute the elements of TN as follows.

• Since {A} ∈ Z and [δM′(A, 0)] =
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Example Minimization

In the case of our example, we have that

• QN = {〈A〉, 〈B,D〉, 〈C〉, 〈E,F〉};

• sN = 〈A〉; and

• AN = {〈E,F〉}.

We compute the elements of TN as follows.

• Since {A} ∈ Z and [δM′(A, 0)] = [B] = {B,D}, we have that
(〈A〉, 0, 〈B,D〉) ∈ TN .
Since {A} ∈ Z and [δM′(A, 1)] = [C] = {C}, we have that
(〈A〉, 1, 〈C〉) ∈ TN .
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Example Minimization

• Since {C} ∈ Z and [δM′(C, 0)] = [D] = {B,D}, we have that
(〈C〉, 0, 〈B,D〉) ∈ TN .
Since {C} ∈ Z and [δM′(C, 1)] = [D] = {B,D}, we have that
(〈C〉, 1, 〈B,D〉) ∈ TN .
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Example Minimization

• Since {C} ∈ Z and [δM′(C, 0)] = [D] = {B,D}, we have that
(〈C〉, 0, 〈B,D〉) ∈ TN .
Since {C} ∈ Z and [δM′(C, 1)] = [D] = {B,D}, we have that
(〈C〉, 1, 〈B,D〉) ∈ TN .

• Since {B,D} ∈ Z and [δM′(B, 0)] = [D] = {B,D}, we have
that (〈B,D〉, 0, 〈B,D〉) ∈ TN .
Since {B,D} ∈ Z and [δM′(B, 1)] = [E] = {E,F}, we have
that (〈B,D〉, 1, 〈E,F〉) ∈ TN .

• Since {E,F} ∈ Z and [δM′(E, 0)] = [F] = {E,F}, we have that
(〈E,F〉, 0, 〈E,F〉) ∈ TN .
Since {E,F} ∈ Z and [δM′(E, 1)] = [F] = {E,F}, we have that
(〈E,F〉, 1, 〈E,F〉) ∈ TN .
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Example Minimization

Thus our DFA N is:

〈B,D〉
0 1

1

〈C〉

〈E, F〉 0, 1

0, 1

0

Start 〈A〉
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Correctness of Minimization

Back in the general case, we have the following lemmas.

Lemma 3.13.7
(1) For all q ∈ QM′ , [q] ∈ AN iff q ∈ AM′ .

(2) For all q ∈ QM′ and a ∈ alphabetM ′, δN([q], a) = [δM′(q, a)].

(3) For all q ∈ QM′ and w ∈ (alphabetM ′)∗,
δN([q],w) = [δM′(q,w)].

(4) For all w ∈ (alphabetM ′)∗, δN(sN ,w) = [δM′(sM′ ,w)].

Proof. (1) and (2) follow easily by Lemma 3.13.5(2)–(3).
Part (3) follows from Part (2) by left string induction.
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(1) For all q ∈ QM′ , [q] ∈ AN iff q ∈ AM′ .

(2) For all q ∈ QM′ and a ∈ alphabetM ′, δN([q], a) = [δM′(q, a)].

(3) For all q ∈ QM′ and w ∈ (alphabetM ′)∗,
δN([q],w) = [δM′(q,w)].

(4) For all w ∈ (alphabetM ′)∗, δN(sN ,w) = [δM′(sM′ ,w)].

Proof. (1) and (2) follow easily by Lemma 3.13.5(2)–(3).
Part (3) follows from Part (2) by left string induction. For
Part (4), suppose w ∈ (alphabetM ′)∗. By Part (3), we have

δN(sN ,w) = δN([sM′ ],w) = [δM′(sM′ ,w)].

✷

30 / 42



Correctness of Minimization

Lemma 3.13.8
L(N) = L(M ′).

Proof. Suppose w ∈ L(N). Then
w ∈ (alphabetN)∗ = (alphabetM ′)∗ and δN(sN ,w) ∈ AN . By
Lemma 3.13.7(4), we have that

[δM′(sM′ ,w)] = δN(sN ,w) ∈ AN ,

so that δM′(sM′ ,w) ∈ AM′ , by Lemma 3.13.7(1). Thus w ∈ L(M ′).

✷
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L(N) = L(M ′).

Proof. Suppose w ∈ L(N). Then
w ∈ (alphabetN)∗ = (alphabetM ′)∗ and δN(sN ,w) ∈ AN . By
Lemma 3.13.7(4), we have that

[δM′(sM′ ,w)] = δN(sN ,w) ∈ AN ,

so that δM′(sM′ ,w) ∈ AM′ , by Lemma 3.13.7(1). Thus w ∈ L(M ′).

Suppose w ∈ L(M ′). Then w ∈ (alphabetM ′)∗ = (alphabetN)∗

and δM′(sM′ ,w) ∈ AM′ . By Lemma 3.13.7(1) and (4), we have
that

δN(sN ,w) = [δM′(sM′ ,w)] ∈ AN .

Hence w ∈ L(N). ✷
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Correctness of Minimization

Lemma 3.13.9
N is deterministically simplified.

Proof. To see that all elements of QN are reachable, suppose
q ∈ QM′ . Because M ′ is deterministically simplified, there is a
w ∈ (alphabetM ′)∗ such that q = δM′(sM′ ,w). Thus
δN(sN ,w) = [δM′(sM′ ,w)] = [q].
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Correctness of Minimization

Lemma 3.13.9
N is deterministically simplified.

Proof. To see that all elements of QN are reachable, suppose
q ∈ QM′ . Because M ′ is deterministically simplified, there is a
w ∈ (alphabetM ′)∗ such that q = δM′(sM′ ,w). Thus
δN(sN ,w) = [δM′(sM′ ,w)] = [q].

Next, we show that, for all q ∈ QM′ , if q is live, then [q] is live.
Suppose q ∈ QM′ is live, so there is a w ∈ (alphabetM ′)∗ such
that δM′(q,w) ∈ AM′ . Thus δN([q],w) = [δM′(q,w)] ∈ AN ,
showing that [q] is live.
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Correctness of Minimization

Lemma 3.13.9
N is deterministically simplified.

Proof. To see that all elements of QN are reachable, suppose
q ∈ QM′ . Because M ′ is deterministically simplified, there is a
w ∈ (alphabetM ′)∗ such that q = δM′(sM′ ,w). Thus
δN(sN ,w) = [δM′(sM′ ,w)] = [q].

Next, we show that, for all q ∈ QM′ , if q is live, then [q] is live.
Suppose q ∈ QM′ is live, so there is a w ∈ (alphabetM ′)∗ such
that δM′(q,w) ∈ AM′ . Thus δN([q],w) = [δM′(q,w)] ∈ AN ,
showing that [q] is live.

Thus, we have that, for all q ∈ QM′ , if [q] is dead, then q is dead.
But, M ′ has at most one dead state, and thus we have that N has
at most one dead state. ✷
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Correctness of Minimization

Lemma 3.13.10
Suppose N ′ is a DFA such that N ′ ≈ M ′,

alphabetN ′ = alphabetM ′ and |QN′ | ≤ |QN |. Then N ′ is

isomorphic to N.
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Correctness of Minimization

Lemma 3.13.10
Suppose N ′ is a DFA such that N ′ ≈ M ′,

alphabetN ′ = alphabetM ′ and |QN′ | ≤ |QN |. Then N ′ is

isomorphic to N.

Proof. We have that L(N ′) = L(M ′) = L(N). And the states of
M ′ and N are all reachable.

Let the relation h between QN′ and QN be

{ (δN′(sN′ ,w), δN(sN ,w)) | w ∈ (alphabetM ′)∗ }.

Since every state of N is reachable, it follows that range h = QN .
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Correctness of Minimization

Proof (cont.). To see that h is a function, suppose
x , y ∈ (alphabetM ′)∗ and δN′(sN′ , x) = δN′(sN′ , y). We must
show that δN(sN , x) = δN(sN , y).
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show that δN(sN , x) = δN(sN , y). Since δN(sN , x) = [δM′(sM′ , x)]
and δN(sN , y) = [δM′(sM′ , y)], it will suffice to show that
(δM′(sM′ , x), δM′(sM′ , y)) ∈ Y . By Lemma 3.13.5(1), it will suffice
to show that,
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Correctness of Minimization

Proof (cont.). To see that h is a function, suppose
x , y ∈ (alphabetM ′)∗ and δN′(sN′ , x) = δN′(sN′ , y). We must
show that δN(sN , x) = δN(sN , y). Since δN(sN , x) = [δM′(sM′ , x)]
and δN(sN , y) = [δM′(sM′ , y)], it will suffice to show that
(δM′(sM′ , x), δM′(sM′ , y)) ∈ Y . By Lemma 3.13.5(1), it will suffice
to show that, δM′(δM′(sM′ , x), z) ∈ AM′ iff
δM′(δM′(sM′ , y), z) ∈ AM′ , for all z ∈ (alphabetM ′)∗. Suppose
z ∈ (alphabetM ′)∗. We must show that
δM′(δM′(sM′ , x), z) ∈ AM′ iff δM′(δM′(sM′ , y), z) ∈ AM′
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Correctness of Minimization

Proof (cont.). We will show the “only if” direction, the other
direction being similar. Suppose δM′(δM′(sM′ , x), z) ∈ AM′ . We
must show that δM′(δM′(sM′ , y), z) ∈ AM′ .
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Correctness of Minimization

Proof (cont.). We will show the “only if” direction, the other
direction being similar. Suppose δM′(δM′(sM′ , x), z) ∈ AM′ . We
must show that δM′(δM′(sM′ , y), z) ∈ AM′ . Because
δM′(sM′ , xz) = δM′(δM′(sM′ , x), z) ∈ AM′ , we have that
xz ∈ L(M ′) = L(N ′).
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Correctness of Minimization

Proof (cont.). We will show the “only if” direction, the other
direction being similar. Suppose δM′(δM′(sM′ , x), z) ∈ AM′ . We
must show that δM′(δM′(sM′ , y), z) ∈ AM′ . Because
δM′(sM′ , xz) = δM′(δM′(sM′ , x), z) ∈ AM′ , we have that
xz ∈ L(M ′) = L(N ′). Since xz ∈ L(N ′) and
δN′(sN′ , x) = δN′(sN′ , y), we have that

δN′(sN′ , yz) = δN′(δN′(sN′ , y), z) = δN′(δN′(sN′ , x), z)

= δN′(sN′ , xz) ∈ AN′ ,

so that yz ∈ L(N ′) = L(M ′).
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Correctness of Minimization

Proof (cont.). We will show the “only if” direction, the other
direction being similar. Suppose δM′(δM′(sM′ , x), z) ∈ AM′ . We
must show that δM′(δM′(sM′ , y), z) ∈ AM′ . Because
δM′(sM′ , xz) = δM′(δM′(sM′ , x), z) ∈ AM′ , we have that
xz ∈ L(M ′) = L(N ′). Since xz ∈ L(N ′) and
δN′(sN′ , x) = δN′(sN′ , y), we have that

δN′(sN′ , yz) = δN′(δN′(sN′ , y), z) = δN′(δN′(sN′ , x), z)

= δN′(sN′ , xz) ∈ AN′ ,

so that yz ∈ L(N ′) = L(M ′). Hence
δM′(δM′(sM′ , y), z) = δM′(sM′ , yz) ∈ AM′ .
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Correctness of Minimization

Proof (cont.). Because h is a function and range h = QN ,
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Correctness of Minimization

Proof (cont.). Because h is a function and range h = QN , we
have that |QN | ≤ |domain h| ≤ |QN′ |. But |QN′ | ≤ |QN |, and thus
|QN′ | = |QN |. Because QN′ and QN are finite, it follows that
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Correctness of Minimization

Proof (cont.). Because h is a function and range h = QN , we
have that |QN | ≤ |domain h| ≤ |QN′ |. But |QN′ | ≤ |QN |, and thus
|QN′ | = |QN |. Because QN′ and QN are finite, it follows that
domain h = QN′ and h is injective, so that h is a bijection from
QN′ to QN .

36 / 42



Correctness of Minimization

Proof (cont.). Because h is a function and range h = QN , we
have that |QN | ≤ |domain h| ≤ |QN′ |. But |QN′ | ≤ |QN |, and thus
|QN′ | = |QN |. Because QN′ and QN are finite, it follows that
domain h = QN′ and h is injective, so that h is a bijection from
QN′ to QN . Thus, every state of N ′ is reachable, and, for all
w ∈ (alphabetM ′)∗ = (alphabetN)∗ = (alphabetN ′)∗,
h(δN′(sN′ ,w)) = δN(sN ,w).
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Correctness of Minimization

Proof (cont.). Because h is a function and range h = QN , we
have that |QN | ≤ |domain h| ≤ |QN′ |. But |QN′ | ≤ |QN |, and thus
|QN′ | = |QN |. Because QN′ and QN are finite, it follows that
domain h = QN′ and h is injective, so that h is a bijection from
QN′ to QN . Thus, every state of N ′ is reachable, and, for all
w ∈ (alphabetM ′)∗ = (alphabetN)∗ = (alphabetN ′)∗,
h(δN′(sN′ ,w)) = δN(sN ,w). The remainder of the proof that h is
an isomorphism from N ′ to N is fairly straightforward. ✷
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Minimization Function and Specification

We define a function minimize ∈ DFA→DFA by: minimizeM is
the result of running the above algorithm on input M.

Putting the above results together, we have the following theorem:

Theorem 3.13.12
For all M ∈ DFA:

• minimizeM ≈ M;

• alphabet(minimizeM) = alphabet(L(M));

• |QminimizeM | ≤ |QM |;

• minimizeM is deterministically simplified; and

• for all N ∈ DFA, if N ≈ M, alphabetN = alphabet(L(M))
and |QN | ≤ |QminimizeM |, then N is isomorphic to

minimizeM.
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Minimization Specification

Thus

〈B,D〉
0 1

1

〈C〉

〈E, F〉 0, 1

0, 1

0

Start 〈A〉

is, up to isomorphism, the only four-or-fewer state DFA with
alphabet {0, 1} that is equivalent to M.
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Minimization in Forlan

The Forlan module DFA includes the function

val minimize : dfa -> dfa

for minimizing DFAs.

For example, if dfa of type dfa is bound to our example DFA

B
0

0FE

D

0 0

1

1

0, 1

1

0, 1

1

C

Start A

then we can minimize the alphabet size and number of states of
dfa as follows.
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Minimization in Forlan

- val dfa’ = DFA.minimize dfa;

val dfa’ = - : dfa

- DFA.output("", dfa’);

{states} <A>, <C>, <B,D>, <E,F> {start state} <A>

{accepting states} <E,F>

{transitions}

<A>, 0 -> <B,D>; <A>, 1 -> <C>; <C>, 0 -> <B,D>;

<C>, 1 -> <B,D>; <B,D>, 0 -> <B,D>; <B,D>, 1 -> <E,F>;

<E,F>, 0 -> <E,F>; <E,F>, 1 -> <E,F>

val it = () : unit
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Revisiting NFA-to-DFA Conversion Example

Finally, let’s revisit an example from Section 3.11. Suppose nfa is
the 4-state NFA

2

C
0, 1

2

D

2

0, 1
B

0, 1

1
Start A

As we saw, our NFA-to-DFA conversion algorithm converts nfa to
a DFA dfa with 16 states:

- val dfa = nfaToDFA nfa;

val dfa = - : dfa

- DFA.numStates dfa;

val it = 16 : int

We can now use Forlan to verify that there is no DFA with fewer
than 16 states that accepts the same language as nfa:
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Revisiting NFA-to-DFA Conversion Example

- val dfa’ = DFA.minimize dfa;

val dfa’ = - : dfa

- DFA.isomorphic(dfa’, dfa);

val it = true : bool

- DFA.numStates dfa’;

val it = 16 : int

Thus we have an example where the smallest DFA accepting a
language requires exponentially more states than the smallest NFA
accepting that language. (This is true even though we haven’t
proven that an NFA must have at least 4 states to accept the same
language as nfa.)
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