
3.2: Equivalence and Correctness of
Regular Expressions

In this section, we:

• say what it means for regular expressions to be equivalent;

• show a series of results about regular expression equivalence;

• show how regular expressions can be synthesized and proved
correct.
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Equivalence of Regular Expressions

We say that regular expressions α and β are equivalent iff
L(α) = L(β).

We define a relation ≈ on Reg by: α ≈ β iff α and β are
equivalent.

For example, L((00)∗ +%) = L((00)∗), and thus
(00)∗ +% ≈ (00)∗.

One approach to showing that α ≈ β is to show that L(α) ⊆ L(β)
and L(β) ⊆ L(α). The following proposition is useful for showing
language inclusions, not just ones involving regular languages.
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Language Inclusions

Proposition 3.2.1
(1) For all A1,A2,B1,B2 ∈ Lan, if A1 ⊆ B1 and A2 ⊆ B2, then

A1 ∪ A2 ⊆ B1 ∪ B2.

(2) For all A1,A2,B1,B2 ∈ Lan, if A1 ⊆ B1 and A2 ⊆ B2, then

A1 ∩ A2 ⊆ B1 ∩ B2.

(3) For all A1,A2,B1,B2 ∈ Lan, if A1 ⊆ B1 and B2 ⊆ A2, then

A1 − A2 ⊆ B1 − B2.

(4) For all A1,A2,B1,B2 ∈ Lan, if A1 ⊆ B1 and A2 ⊆ B2, then

A1A2 ⊆ B1B2.

(5) For all A,B ∈ Lan and n ∈ N, if A ⊆ B, then An ⊆ Bn.

(6) For all A,B ∈ Lan, if A ⊆ B, then A∗ ⊆ B∗.

3 / 30



Language Inclusions

Proposition 3.2.1
(1) For all A1,A2,B1,B2 ∈ Lan, if A1 ⊆ B1 and A2 ⊆ B2, then

A1 ∪ A2 ⊆ B1 ∪ B2.

(2) For all A1,A2,B1,B2 ∈ Lan, if A1 ⊆ B1 and A2 ⊆ B2, then

A1 ∩ A2 ⊆ B1 ∩ B2.

(3) For all A1,A2,B1,B2 ∈ Lan, if A1 ⊆ B1 and B2 ⊆ A2, then

A1 − A2 ⊆ B1 − B2.

(4) For all A1,A2,B1,B2 ∈ Lan, if A1 ⊆ B1 and A2 ⊆ B2, then

A1A2 ⊆ B1B2.

(5) For all A,B ∈ Lan and n ∈ N, if A ⊆ B, then An ⊆ Bn.

(6) For all A,B ∈ Lan, if A ⊆ B, then A∗ ⊆ B∗.

4 / 30



Language Inclusions (Cont.)

Proof. (1) and (2) are straightforward. We show (3) as an
example, below. (4) is easy. (5) is proved by mathematical
induction, using (4). (6) is proved using (5).

For (3), suppose that A1,A2,B1,B2 ∈ Lan, A1 ⊆ B1 and B2 ⊆ A2.
To show that A1 − A2 ⊆ B1 − B2, suppose w ∈ A1 − A2. We must
show that w ∈ B1 − B2. It will suffice to show that w ∈ B1 and
w 6∈ B2.

Since w ∈ A1 − A2, we have that w ∈ A1 and w 6∈ A2. Since
A1 ⊆ B1, it follows that w ∈ B1. Thus, it remains to show that
w 6∈ B2.

Suppose, toward a contradiction, that w ∈ B2. Since B2 ⊆ A2, it
follows that w ∈ A2—contradiction. Thus we have that w 6∈ B2.
✷
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Basic Equivalences

Proposition 3.2.2
(1) ≈ is reflexive on Reg, symmetric and transitive.

(2) For all α, β ∈ Reg, if α ≈ β, then α∗ ≈ β∗.

(3) For all α1, α2, β1, β2 ∈ Reg, if α1 ≈ β1 and α2 ≈ β2, then

α1α2 ≈ β1β2.

(4) For all α1, α2, β1, β2 ∈ Reg, if α1 ≈ β1 and α2 ≈ β2, then

α1 + α2 ≈ β1 + β2.

Proof. Follows from the properties of =. As an example, we
show Part (4).
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Basic Equivalences (Cont.)

Proof (cont.). Suppose α1, α2, β1, β2 ∈ Reg, and assume that
α1 ≈ β1 and α2 ≈ β2. Then L(α1) = L(β1) and L(α2) = L(β2), so
that

L(α1 + α2) = L(α1) ∪ L(α2) = L(β1) ∪ L(β2)

= L(β1 + β2).

Thus α1 + α2 ≈ β1 + β2. ✷
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Basic Equivalences (Cont.)

Proposition 3.2.3
Suppose α, β, β′ ∈ Reg, β ≈ β′, pat ∈ Path is valid for α, and β

is the subtree of α at position pat. Let α′ be the result of

replacing the subtree at position pat in α by β′. Then α ≈ α′.

Proof. By induction on α. ✷
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Equivalences for Union

Proposition 3.2.4
(1) For all α, β ∈ Reg, α+ β ≈ β + α.

(2) For all α, β, γ ∈ Reg, (α+ β) + γ ≈ α+ (β + γ).

(3) For all α ∈ Reg, $ + α ≈ α.

(4) For all α ∈ Reg, α+ α ≈ α.

(5) If L(α) ⊆ L(β), then α+ β ≈ β.

Proof.

(1) Follows from the commutativity of ∪.

(2) Follows from the associativity of ∪.

(3) Follows since ∅ is the identity for ∪.

(4) Follows since ∪ is idempotent: A ∪ A = A, for all sets A.

(5) Follows since, if L1 ⊆ L2, then L1 ∪ L2 = L2.

✷
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Equivalences for Concatenation

Proposition 3.2.5
(1) For all α, β, γ ∈ Reg, (αβ)γ ≈ α(βγ).

(2) For all α ∈ Reg, %α ≈ α ≈ α%.

(3) For all α ∈ Reg, $α ≈ $ ≈ α$.

Proof.

(1) Follows from the associativity of language concatenation.

(2) Follows since {%} is the identity for language concatenation.

(3) Follows since ∅ is the zero for language concatenation.

✷
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Distributivity of Concatenation Over Union

Proposition 3.2.6
(1) For all L1, L2, L3 ∈ Lan, L1(L2 ∪ L3) = L1L2 ∪ L1L3.

(2) For all L1, L2, L3 ∈ Lan, (L1 ∪ L2)L3 = L1L3 ∪ L2L3.

Proof. We show the proof of Part (1); the proof of the other part
is similar. Suppose L1, L2, L3 ∈ Lan. It will suffice to show that

L1(L2 ∪ L3) ⊆ L1L2 ∪ L1L3 ⊆ L1(L2 ∪ L3).
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Distributivity (Cont.)

Proof (cont.). To see that L1(L2 ∪ L3) ⊆ L1L2 ∪ L1L3, suppose
w ∈ L1(L2 ∪ L3). We must show that w ∈ L1L2 ∪ L1L3. By our
assumption, w = xy for some x ∈ L1 and y ∈ L2 ∪ L3. There are
two cases to consider.

• Suppose y ∈ L2. Then w = xy ∈ L1L2 ⊆ L1L2 ∪ L1L3.

• Suppose y ∈ L3. Then w = xy ∈ L1L3 ⊆ L1L2 ∪ L1L3.
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Distributivity (Cont.)

Proof (cont.). To see that L1L2 ∪ L1L3 ⊆ L1(L2 ∪ L3), suppose
w ∈ L1L2 ∪ L1L3. We must show that w ∈ L1(L2 ∪ L3). There are
two cases to consider.

• Suppose w ∈ L1L2. Then w = xy for some x ∈ L1 and
y ∈ L2. Thus y ∈ L2 ∪ L3, so that w = xy ∈ L1(L2 ∪ L3).

• Suppose w ∈ L1L3. Then w = xy for some x ∈ L1 and
y ∈ L3. Thus y ∈ L2 ∪ L3, so that w = xy ∈ L1(L2 ∪ L3).

✷
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Distributivity (Cont.)

Proposition 3.2.7
(1) For all α, β, γ ∈ Reg, α(β + γ) ≈ αβ + αγ.

(2) For all α, β, γ ∈ Reg, (α+ β)γ ≈ αγ + βγ.

Proof. Follows from Proposition 3.2.6. Consider, e.g., the proof
of Part (1). By Proposition 3.2.6(1), we have that

L(α(β + γ)) = L(α)L(β + γ)

= L(α)(L(β) ∪ L(γ))

= L(α)L(β) ∪ L(α)L(γ)

= L(αβ) ∪ L(αγ)

= L(αβ + αγ)

Thus α(β + γ) ≈ αβ + αγ. ✷
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Inclusions for Kleene Closure

Proposition 3.2.8
• For all L ∈ Lan, LL∗ ⊆ L∗.

• For all L ∈ Lan, L∗L ⊆ L∗.

Proof. E.g., to see that LL∗ ⊆ L∗, suppose w ∈ LL∗. Then
w = xy for some x ∈ L and y ∈ L∗. Hence y ∈ Ln for some n ∈ N.
Thus w = xy ∈ LLn = Ln+1 ⊆ L∗. ✷
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Equivalences for Kleene Closure

Proposition 3.2.9
(1) ∅∗ = {%}.

(2) {%}∗ = {%}.

(3) For all L ∈ Lan, L∗L = LL∗.

(4) For all L ∈ Lan, L∗L∗ = L∗.

(5) For all L ∈ Lan, (L∗)∗ = L∗.

(6) For all L1L2 ∈ Lan, (L1L2)
∗L1 = L1(L2L1)

∗.

Proof. The six parts can be proven in order using
Proposition 3.2.1. All parts but (2), (5) and (6) can be proved
without using induction.

As an example, we show the proof of Part (5). To show that
(L∗)∗ = L∗, it will suffice to show that (L∗)∗ ⊆ L∗ ⊆ (L∗)∗.
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Equivalences for Kleene Closure (Cont.)

Proof (cont.). To see that (L∗)∗ ⊆ L∗, we use mathematical
induction to show that, for all n ∈ N, (L∗)n ⊆ L∗.

• (Basis Step) We have that (L∗)0 = {%} = L0 ⊆ L∗.

• (Inductive Step) Suppose n ∈ N, and assume the inductive
hypothesis: (L∗)n ⊆ L∗. We must show that (L∗)n+1 ⊆ L∗.
By the inductive hypothesis, Proposition 3.2.1(4) and
Part (4), we have that (L∗)n+1 = L∗(L∗)n ⊆ L∗L∗ = L∗.

Now, we use the result of the induction to prove that (L∗)∗ ⊆ L∗.
Suppose w ∈ (L∗)∗. We must show that w ∈ L∗. Since w ∈ (L∗)∗,
we have that w ∈ (L∗)n for some n ∈ N. Thus, by the result of the
induction, w ∈ (L∗)n ⊆ L∗.

For the other inclusion, we have that L∗ = (L∗)1 ⊆ (L∗)∗. ✷
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Equivalences for Kleene Closure (Cont.)

Proposition 3.2.11
(1) $∗ ≈ %.

(2) %∗ ≈ %.

(3) For all α ∈ Reg, α∗α ≈ αα∗.

(4) For all α ∈ Reg, α∗α∗ ≈ α∗.

(5) For all α ∈ Reg, (α∗)∗ ≈ α∗.

(6) For all α, β ∈ Reg, (αβ)∗α ≈ α(βα)∗.

Proof. Follows from Proposition 3.2.9. Consider, e.g., the proof
of Part (5). By Proposition 3.2.9(5), we have that

L((α∗)∗) = L(α∗)∗ = (L(α)∗)∗ = L(α)∗ = L(α∗).

Thus (α∗)∗ ≈ α∗. ✷
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Proving the Correctness of Regular Expressions

We look at the harder of two regular expression synthesis and proof
of correctness examples.

Define

A = {001, 011, 101, 111}, and

B = {w ∈ {0, 1}∗ | for all x , y ∈ {0, 1}∗, if w = x0y ,

then there is a z ∈ A such that z is a prefix of y }.

So B consists of those strings of 0’s and 1’s in which every
occurrence of 0 is immediately followed by an element of A.

We will find a regular expression that generates B , and prove it
correct.
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Synthesis

E.g.:

• % is in B ;

• 00111 is in B ;

• 0000111 is not in B ; and

• 011 is not in B .

Note that, for all x , y ∈ B , xy ∈ B , i.e., BB ⊆ B .

Furthermore, for all strings x , y , if xy ∈ B , then y is in B .
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Synthesis (Cont.)

How should we go about finding a regular expression α such that
L(α) = B?
Because

• % ∈ B ,

• for all x , y ∈ B , xy ∈ B ,

• for all strings x , y , if xy ∈ B then y ∈ B ,

our regular expression can have the form β∗, where β generates all
the strings that are basic in the sense that they are nonempty
elements of B with no non-empty proper prefixes that are in B .
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Synthesis (Cont.)

Clearly, 1 is basic, so there are no more basic strings that begin
with 1.

But what about the basic strings beginning with 0?

No sequence of 0’s is basic, and 0000x is never basic.

000111 is the only basic string beginning with 000.

00111 is the only basic string beginning with 001.

But what about the basic strings beginning with 01?

We have 0111, 010111, 01010111, 0101010111, etc.

Fortunately, there is a simple pattern here: we have all strings of
the form 0(10)n111 for n ∈ N.
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Synthesis (Cont.)

By the above considerations, it seems that we can let our regular
expression be

(1 + 0(10)∗111 + 00111 + 000111)∗.

But, using some of the equivalences we learned about above, we
can turn this regular expression into

(1 + 0(0 + 00 + (10)∗)111)∗,

which we take as our α. Now, we prove that L(α) = B .
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Correctness Proof

Let

X = {0} ∪ {00} ∪ {10}∗ and Y = {1} ∪ {0}X{111}.

Then, we have that

X = L(0 + 00 + (10)∗),

Y = L(1 + 0(0 + 00 + (10)∗)111), and

Y ∗ = L((1 + 0(0 + 00 + (10)∗)111)∗) = L(α).

Thus, it will suffice to show that Y ∗ = B . We will show that
Y ∗ ⊆ B ⊆ Y ∗.
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Correctness Proof (Cont.)

Lemma 3.2.17
For all n ∈ N, {0}{10}n{111} ⊆ B.

Proof. We proceed by mathematical induction.

• (Basis Step) We have that 0111 ∈ B . Hence
{0}{10}0{111} = {0}{%}{111} = {0}{111} = {0111} ⊆ B .

• Inductive Step) Suppose n ∈ N, and assume the inductive
hypothesis: {0}{10}n{111} ⊆ B . We must show that
{0}{10}n+1{111} ⊆ B. Since

{0}{10}n+1{111} = {0}{10}{10}n{111}

= {01}{0}{10}n{111}

⊆ {01}B (inductive hypothesis),

it will suffice to show that {01}B ⊆ B . But this is false!
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Correctness Proof (Cont.)

Let

C = {w ∈ B | 01 is a prefix of w }.

Lemma 3.2.17
For all n ∈ N, {0}{10}n{111} ⊆ C.

Proof. . . . It will suffice to show that {01}C ⊆ C . Suppose
w ∈ {01}C . We must show that w ∈ C . We have that w = 01x
for some x ∈ C . Thus w begins with 01. It remains to show that
w ∈ B . Since x ∈ C , we have that x begins with 01. Thus the first
occurrence of 0 in w = 01x is followed by 101 ∈ A. Furthermore,
any other occurrence of 0 in w = 01x is within x , and so is
followed by an element of A because x ∈ C ⊆ B . Thus w ∈ B . ✷
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Correctness Proof (Cont.)

Lemma 3.2.18
Y ⊆ B.

Proof. Uses Lemma 3.2.17. ✷

Lemma 3.2.19
Y ∗ ⊆ B.

Proof. It will suffice to show that, for all n ∈ N, Y n ⊆ B , and we
proceed by mathematical induction.

• (Basis Step) Since % ∈ B , we have that Y 0 = {%} ⊆ B .

• (Inductive Step) Suppose n ∈ N, and assume the inductive
hypothesis: Y n ⊆ B . Then Y n+1 = YY n ⊆ BB ⊆ B , by
Lemma 3.2.18 and the inductive hypothesis.

✷

27 / 30



Correctness Proof (Cont.)

Lemma 3.2.20
B ⊆ Y ∗.

Proof. Since B ⊆ {0, 1}∗, it will suffice to show that, for all
w ∈ {0, 1}∗,

if w ∈ B , then w ∈ Y ∗.

We proceed by strong string induction. Suppose w ∈ {0, 1}∗, and
assume the inductive hypothesis: for all x ∈ {0, 1}∗, if x is a
proper substring of w , then

if x ∈ B , then x ∈ Y ∗.

We must show that

if w ∈ B , then w ∈ Y ∗.

Suppose w ∈ B . We must show that w ∈ Y ∗. There are three
main cases to consider. (See the book for more details.)
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Correctness Proof (Cont.)

Proof (cont.).

• Suppose w = %. Then w ∈ Y 0 ⊆ Y ∗.

• Suppose w = 0x for some x .
• Suppose x = 0y for some y , so w = 00y .

• Suppose y = 0z for some z , so w = 000z . Thus, there is a t

such that w = 000111t = ((0)(00)(111))t ∈ YY ∗ ⊆ Y ∗, by
the inductive hypothesis.

• Suppose y = 1z for some z , so w = 001z . Thus there is a v

such that w = 00111v = ((0)(0)(111))v ∈ YY ∗ ⊆ Y ∗, by the
inductive hypothesis.
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Correctness Proof (Cont.)

Proof (cont.).
Suppose w = 0x for some x . (Cont.)

• Suppose x = 1y for some y , so w = 01y .
• Suppose y = 0z for some z , so that w = 010z . Let u be

longest prefix of z in {10}∗, and v be such that z = uv . Thus
w = 010uv , and 010u ends with 010. Thus, there is an r such
that w = 010u111r = ((0)(10u)(111))r ∈ YY ∗ ⊆ Y ∗, by the
inductive hypothesis.

• Suppose y = 1z for some z , so that w = 011z . Thus, there is
a u such that w = 0111u = ((0)(%)(111))u ∈ YY ∗ ⊆ Y ∗, by
the inductive hypothesis.

• Suppose w = 1x for some x . Then, w = 1x ∈ YY ∗ ⊆ Y ∗, by
the inductive hypothesis.

✷
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