3.5: Isomorphism of Finite Automata

Let M and N be the finite automata

and Start

(M) (V)

How are M and N related? Although they are not equal, they do
have the same ‘structure”, in that M can be turned into N by
replacing A, B and C by A, C and B, respectively. When FAs have
the same structure, we will say they are “isomorphic”.

1/12



Definition of Isomorphism
An isomorphism h from an FA M to an FA N is a bijection from
Qum to Qp such that
® hsy = sy,
e {hqg|qeAm} = Apn; and
e {(hq),x—(hr)| g, x—re Ty}=Ty.

We define a relation iso on FA by: Miso N iff there is an
isomorphism from M to N. We say that M and N are isomorphic
iff Miso N.

Consider our example FAs M and N, and let h be the function

{(A,A), (B, C),(C,B)}.

Then h is an isomorphism from M to N. Hence Miso N.

2/12



Properties of Isomorphism

Clearly, if M and N are isomorphic, then they have the same
alphabet.

Proposition 3.5.1
The relation iso is reflexive on FA, symmetric and transitive.

3/12



Properties of Isomorphism

Proposition 3.5.2

Suppose M and N are isomorphic FAs. Then L(M) C L(N).

Proof. Let h be an isomorphism from M to N. Suppose
w € L(M). Then, there is a labeled path

X1 X2 Xn

Ip=q1= q2= - qn = qny1,

such that w = x3x2 - - - x,,, Ip is valid for M, g1 = sy and
gn+1 € Ay Let

, X1 X2 Xn
Ip=hg1=hg= - hgn= hqgns1.

Then the label of Ip’ is w, Ip’ is valid for N, hq; = hsp = sy and

hqnt1 € An, showing that w € L(N). O

4/12



Properties of Isomorphism

Proposition 3.5.3
Suppose M and N are isomorphic FAs. Then M ~ N.

Proof. Since Miso N, we have that Niso M, by
Proposition 3.5.1. Thus, by Proposition 3.5.2, we have that
L(M) C L(N) C L(M). Hence L(M) = L(N), ie, M~ N. O

5/12



Renaming States

The function renameStates takes in a pair (M, ), where M € FA
and f is a bijection from Qp to some set of symbols, and returns
the FA produced from M by renaming M's states using the
bijection f.

Proposition 3.5.4
Suppose M is an FA and f is a bijection from Qy to some set of
symbols. Then renameStates(M, f) iso M.

The following function is a special case of renameStates. The
function renameStatesCanonically € FA — FA renames the
states of an FA M to:

e A B, etc., when the automaton has no more than 26 states
(the smallest state of M will be renamed to A, the next
smallest one to B, etc.); or

e (1), (2), etc., otherwise.

6/12



An Algorithm for Finding Isomorphisms

The book presents and proves the correctness of a relatively simple
algorithm for finding an isomorphism from one FA to another, if
one exists, and for indicating that there are no such isomorphisms,
otherwise.

7/12



Isomorphism Finding/Checking in Forlan

The Forlan module FA also defines the functions

val isomorphism : fa * fa * sym_rel -> bool
val findIsomorphism : fa * fa -> sym_rel

val isomorphic : fa * fa -> bool

val renameStates : fa * sym_rel -> fa

val renameStatesCanonically : fa -> fa

8/12



Forlan Examples

Suppose that fal and fa2 have been bound to our example finite
automata M and N, respectively. Then, here are some example
uses of the above functions:

- val rel = FA.findIsomorphism(fal, fa2);
val rel = - : sym_rel

- SymRel.output("", rel);

(A, 4), (B, C), (C, B)

val it = () : unit

- FA.isomorphism(fal, fa2, rel);

val it = true : bool

- FA.isomorphic(fal, fa2);

val it = true : bool

9/12



Forlan Examples

- val rel’ = FA.findIsomorphism(fal, fal);
val rel’ = - : sym_rel

- SymRel.output("", rel’);

(A, A, (B, B), (C, C)

val it = () : unit

- FA.isomorphism(fal, fal, rel’);

val it = true : bool

- FA.isomorphism(fal, fa2, rel’);

val it = false : bool

10/12



Forlan Examples

- val rel’’ = SymRel.input "";

@ (A, 2), (B, 1), (C, O)

o .

val rel’’ = - : sym_rel

- val fa3 = FA.renameStates(fal, rel’’);
val fa3 = - : fa

- FA.output("", fa3);

{states} 0, 1, 2 {start state} 2

{accepting states} 0, 1, 2

{transitions} 0, 1 -> 1; 2, 0 -=>1 | 2; 2, 1 -> 0
val it = () : unit

11/12



Forlan Examples

- val fa4 = FA.renameStatesCanonically fa3;
val fa4 = - : fa

- FA.output("", fa4);

{states} A, B, C {start state} C
{accepting states} A, B, C

{transitions} A, 1 ->B; C, 0 ->B | C; C, 1 -> A
val it = () : unit

- FA.equal(fa4, fal);

val it = false : bool

- FA.isomorphic(fa4, fal);

val it = true : bool

12/12



