
3.6: Checking Acceptance and Finding Accepting Paths

In this section we study algorithms for:

• checking whether a string is accepted by a finite automaton;
and

• finding a labeled path that explains why a string is accepted
by a finite automaton.
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Processing a String from a Set of States

Suppose M is a finite automaton. We define a function
∆M ∈ P QM × Str→P QM by: ∆M(P ,w) is the set of all r ∈ QM

such that there is an lp ∈ LP such that

• w is the label of lp;

• lp is valid for M;

• the start state of lp is in P ; and

• r is the end state of lp.
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such that there is an lp ∈ LP such that

• w is the label of lp;

• lp is valid for M;

• the start state of lp is in P ; and

• r is the end state of lp.

When the FA M is clear from the context, we sometimes
abbreviate ∆M to ∆.
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∆ Function Examples

Suppose M is the finite automaton

0, 2

11

0, 2
Start A B C

0, 2

1111

Then, ∆M({A}, 12111111) =
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∆ Function Examples

Suppose M is the finite automaton

0, 2

11

0, 2
Start A B C

0, 2

1111

Then, ∆M({A}, 12111111) = {B,C}, since

A
1

⇒ A
2

⇒ B
11

⇒ B
11

⇒ B
11

⇒ B and A
1

⇒ A
2

⇒ C
111

⇒ C
111

⇒ C

are all of the labeled paths that are labeled by 12111111, valid for
M and whose start states are A.
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An Algorithm for Calculating ∆(P,w)

Suppose M is a finite automaton, P ⊆ QM and w ∈ Str. We can
calculate ∆M(P ,w) as follows.

Let S be the set of all suffixes of w . Given y ∈ S , we write pre y
for the unique x such that w = xy .

First, we generate the least subset X of QM × S such that:
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Calculating ∆(P,w)

Suppose M is the finite automaton

0, 2

11

0, 2
Start A B C

0, 2

1111

Here are the elements of X , when P = {A} and w = 2111:
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Calculating ∆(P,w)

Suppose M is the finite automaton

0, 2

11

0, 2
Start A B C

0, 2

1111

Here are the elements of X , when P = {A} and w = 2111:

• (A, 2111);

• (B, 111), because of the transition A, 2→ B;

• (C, 111), because of the transition A, 2→ C;

• (B, 1), because of the transition B, 11→ B;

• (C,%), because of the transition C, 111→ C.
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Calculating ∆(P,w)
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(1) Suppose p ∈ P (so that (p,w) ∈ X ). Then p ∈ ∆M(P ,%).
But prew = %, so that p ∈ ∆M(P ,prew).

(2) Suppose q, r ∈ QM , x , y ∈ Str, (q, xy) ∈ X and
(q, x , r) ∈ TM . Assume the inductive hypothesis:
q ∈ ∆M(P ,pre(xy)).

showing that r ∈ ∆M(P ,pre y).
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(1) Suppose p ∈ P (so that (p,w) ∈ X ). Then p ∈ ∆M(P ,%).
But prew = %, so that p ∈ ∆M(P ,prew).

(2) Suppose q, r ∈ QM , x , y ∈ Str, (q, xy) ∈ X and
(q, x , r) ∈ TM . Assume the inductive hypothesis:
q ∈ ∆M(P ,pre(xy)). Thus there is an lp ∈ LP such that
pre(xy) is the label of lp, lp is valid for M, the start state of lp
is in P , and q is the end state of lp. Let lp′ ∈ LP be the result
of adding the step q, x ⇒ r at the end of lp. Thus pre y is
the label of lp′, lp′ is valid for M, the start state of lp′ is in P ,
and r is the end state of lp′, showing that r ∈ ∆M(P ,pre y).
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Calculating ∆(P,w)

Proof (cont.). For the ‘if” (right-to-left) direction, we have that
there is a labeled path

q1
x1

⇒ q2
x2

⇒ · · · qn
xn

⇒ qn+1,

that is valid for M and where pre y = x1x2 · · · xn, q1 ∈ P and
qn+1 = q. Since q1 ∈ P and w = (pre y)y = x1x2 · · · xny , we have
that (q1, x1x2 · · · xny) = (q1,w) ∈ X , by (1). But
(q1, x1, q2) ∈ TM , and thus (q2, x2 · · · xny) ∈ X , by (2).
Continuing on in this way (we could do this by mathematical
induction), we finally get that (q, y) = (qn+1, y) ∈ X . ✷
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Calculating ∆(P,w)

Lemma 3.6.2
For all q ∈ QM , (q,%) ∈ X iff q ∈ ∆M(P ,w).

Proof. Suppose (q,%) ∈ X . Lemma 3.6.1 tells us that
q ∈ ∆M(P ,pre%). But pre% = w , and thus q ∈ ∆M(P ,w).

Suppose q ∈ ∆M(P ,w). Since w = pre%, we have that
q ∈ ∆M(P ,pre%). Lemma 3.6.1 tells us that (q,%) ∈ X . ✷
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Calculating ∆(P,w)

Lemma 3.6.2
For all q ∈ QM , (q,%) ∈ X iff q ∈ ∆M(P ,w).

Proof. Suppose (q,%) ∈ X . Lemma 3.6.1 tells us that
q ∈ ∆M(P ,pre%). But pre% = w , and thus q ∈ ∆M(P ,w).

Suppose q ∈ ∆M(P ,w). Since w = pre%, we have that
q ∈ ∆M(P ,pre%). Lemma 3.6.1 tells us that (q,%) ∈ X . ✷

By Lemma 3.6.2, we have that

∆M(P ,w) = { q ∈ QM | (q,%) ∈ X }.

Thus, we return the set of all states q that are paired with % in X .
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Checking String Acceptance and Finding Accepting

Paths

Proposition 3.6.3
Suppose M is a finite automaton. Then

L(M) = {w ∈ Str | ∆M({sM},w) AM }.
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Checking String Acceptance and Finding Accepting

Paths

Proposition 3.6.3
Suppose M is a finite automaton. Then

L(M) = {w ∈ Str | ∆M({sM},w) ∩ AM 6= ∅ }.
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Finding Accepting Paths

Given a finite automaton M, subsets P ,R of QM and a string w ,
how do we search for a labeled path that is labeled by w , valid for
M, starts from an element of P , and ends with an element of R?
What we need to do is associate with each pair

(q, y)

of the set X that we generate when computing ∆M(P ,w) a
labeled path lp such that lp is labeled by
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(q, y)

of the set X that we generate when computing ∆M(P ,w) a
labeled path lp such that lp is labeled by pre y , lp is valid for M,
the start state of lp is an element of P , and the end state of lp is q.

With a bit of care, we can ensure that these labeled paths are as
short as possible.

As we generate the elements of X , we look for a pair of the form
(q,%), where q ∈ R . Our answer will then be the labeled path
associated with this pair.
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Checking Acceptance in Forlan

The Forlan module FA also contains the following functions for
processing strings, checking string acceptance, and finding labeled
paths:

val processStr : fa -> sym set * str -> sym set

val accepted : fa -> str -> bool

val findLP : fa -> sym set * str * sym set -> lp

val findAcceptingLP : fa -> str -> lp
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Forlan Examples

Suppose fa is the finite automaton

0, 2

11

0, 2
Start A B C

0, 2

1111

We begin by applying our four functions to fa, and giving names
to the resulting functions:

- val processStr = FA.processStr fa;

val processStr = fn : sym set * str -> sym set

- val accepted = FA.accepted fa;

val accepted = fn : str -> bool
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Forlan Examples

Continuing:

- val findLP = FA.findLP fa;

val findLP = fn : sym set * str * sym set -> lp

- val findAcceptingLP = FA.findAcceptingLP fa;

val findAcceptingLP = fn : str -> lp

Next, we’ll define a set of states and a string to use later:

- val bs = SymSet.input "";

@ A, B, C

@ .

val bs = - : sym set

- val x = Str.input "";

@ 11

@ .

val x = [-,-] : str
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Forlan Examples

Here are some example uses of our functions:

- SymSet.output("", processStr(bs, x));

A, B

val it = () : unit

- accepted(Str.input "");

@ 12111111

@ .

val it = true : bool

- accepted(Str.input "");

@ 1211

@ .

val it = false : bool
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Forlan Examples

More examples:

- LP.output("", findLP(bs, x, bs));

B, 11 => B

val it = () : unit

- LP.output("", findAcceptingLP(Str.input ""));

@ 12111111

@ .

A, 1 => A, 2 => C, 111 => C, 111 => C

val it = () : unit

- LP.output("", findAcceptingLP(Str.input ""));

@ 222

@ .

no such labeled path exists

uncaught exception Error
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