3.7: Simplification of Finite Automata

In this section, we: say what it means for a finite automaton to be
simplified; study an algorithm for simplifying finite automata; and
see how finite automata can be simplified in Forlan.

Suppose M is the finite automaton

0
=0
0
What is odd about M?

First, there are no valid labeled paths from the start state to D and
E, and so these states are redundant.

Second, there are no valid labeled paths from C to an accepting
state, and so it is also redundant.

1/18

Useful States

Suppose M is a finite automaton. We say that a state g € Qu is:

® reachable in M iff there is a labeled path Ip such that Ip is
valid for M, the start state of Ip is sp;, and the end state of /p
is q;

® Jive in M iff there is a labeled path Ip such that /p is valid for
M, the start state of Ip is g, and the end state of Ip is in Apy;

® dead in M iff g is not live in M; and

e useful in M iff g is both reachable and live in M.

2/18

Useful States Example

Let M be our example finite automaton:

0 1 2
[m o 0
0

The reachable states of M are: A, B and C. The live states of M
are: A, B, D and E. And, the useful states of M are: A and B.

3/18

Generating Reachable, Live and Useful States

There is a simple algorithm for generating the set of reachable
states of a finite automaton M. We generate the least subset X of
Qu such that:
® sy € X;and
e forall g,r € Qu and x € Str, if g € X and (q,x,r) € Ty,
then r € X.

Similarly, there is a simple algorithm for generating the set of live
states of a finite automaton M. We generate the least subset Y of
Q@ such that:
e Ay C VY and
e forall g,r € Qu and x € Str, if r € Y and (g, x,r) € T,
thenge Y.
Thus, we can generate the set of useful states of an FA by

generating the set of reachable states, generating the set of live
states, and intersecting those sets of states.

4/18

Redundant Transitions

Now, suppose N is the FA

0 1

Start

What is odd about this machine?
Here, the transitions (A,0,B) and (A, 1, B) are redundant.

Given an FA M and a finite subset U of {(q,x,r) | g,r € Qum and
x € Str }, we write M/U for the FA that is identical to M except
that its set of transitions is U.
If M is an FA and (p, x, q) € Ty, we say that:
® (p,x,q) is redundant in M iff g € An({p}, x), where
N=M/(Tu —{(p,x,q)}); and

® (p,x,q) is irredundant in M iff (p, x, q) is not redundant in M.

5/18

Definition of Simplification

We say that a finite automaton M is simplified iff either

® cvery state of M is useful, and every transition of M is
irredundant; or

L |QM|:1andAM:TM:@.

Thus the FA
Start @

is simplified, even though its start state is not live, and is thus not
useful.

Proposition 3.7.1
If M is a simplified finite automaton, then
alphabet(L(M)) = alphabet M.

6/18

Algorithm for Removing Redundant Transitions

Given an FA M, p,q € Qu and x € Str, we say that (p, x, q) is
implicit in M iff g € Ay ({p}, x).

Given an FA M, we define a function

remReduny, € P Ty, x P Tpy — P Ty by well-founded recursion
on the size of its second argument.

For U,V C Ty, remRedun(U, V) proceeds as follows:
e If V =10, then it returns U.

e Otherwise, let v be the greatest element of { (g, x,r) € V|
there are no q¢’,r' € Sym and y € Str such that
(¢',y,r')e Vand|y| > |x|}, and V! =V — {v}. If vis
implicit in M/(U U V'), then remRedun returns the result of
evaluating remRedun(U, V’). Otherwise, it returns the result
of evaluating remRedun(U U {v}, V').

7/18

Algorithm for Removing Redundant Transitions

In general, there are multiple—incompatible—ways of removing
redundant transitions from an FA. remRedun is defined so as to
favor removing transitions whose labels are longer; and among
transitions whose labels have equal length, to favor removing
transitions that are larger in our total ordering on transitions.

8/18

Simplification Algorithm
We define a function simplify € FA — FA by: simplify M is the
finite automaton N produced by the following process.

® First, the useful states are M are determined.
® |f sps is not useful in M, the N is defined by:

* Qv ={sm};
® Sy = Sum;
® Ay =0; and
° Ty = 0.

e And, if sy is useful in M, then N is remReduny/ (0, Tp:),
where N’ is defined by
* Qv ={q9€ Qum| qis useful in M};

SNY = Sum;
Av =AvN Qv ={q€Au|qge Qun}; and
T ={(q,x,r) € Tm | q,r € Qu }.

9/18

More on Simplification Algorithm

Proposition 3.7.3
Suppose M is a finite automaton. Then:

(1) simplify M is simplified;

(2) simplify M ~ M;

(3) Qsimplitym € Qum and Tgimpliym © T, and

(4) alphabet(simplify M) = alphabet(L(M)) C alphabet M.

10/18

Simplification Examples

If M is the finite automaton

% %
Start a 2 2 a Q—
0

0

11/18

Simplification Examples

If N is the finite automaton

0

%,0,1
Start a 2 e

then simplify N is the finite automaton

@D-

0

%
Start

@D-

12/18

Testing Whether L(M) = ()

Our simplification algorithm gives us an algorithm for testing
whether the language accepted by an FA M is empty. We first
simplify M, calling the result N. We then test whether Ay = (). If
the answer is “yes”, clearly L(M) = L(N) = (). And if the answer is
“no”, then sy is useful, and so N (and thus M) accepts at least
one string.

13/18

Stmplification in Forlan

The Forlan module FA includes the following functions relating to
the simplification of finite automata:

val simplify : fa -> fa
val simplified : fa -> bool

14/18

Simplication Examples in Forlan

In the following, suppose fal is the finite automaton

0 1 2

% % 0
0

fa2 is the finite automaton

0 1

%,0,1 m
Start a 2

15/18

Simplication Examples in Forlan

and fa3 is the finita automaton

16/18

Simplication Examples in Forlan

Here are some example uses of simplify and simplified:
- FA.simplified fal;
val it = false : bool
- val fal’ = FA.simplify fail;
val fal’ = - : fa
- FA.output("", fal’);
{states} A, B {start state} A {accepting states} B
{transitions} A, J, -> B; A, 0 -> A; B, 1 -> B
val it = () : unit
- FA.simplified fal’;
val it = true : bool
- val fa2’ = FA.simplify fa2;
val fa2’ = - : fa
- FA.output("", fa2’);
{states} A, B {start state} A {accepting states} B
{transitions} A, J, -> B; A, 0 -> A; B, 1 -> B
val it = () : unit

17/18

Simplication Examples in Forlan

- val fa3’ = FA.simplify fa3;

val fa3’ = - : fa

- FA.output("", fa3’);

{states} A, B, C {start state} A {accepting states} A

{transitions} A, J, ->B | C; B, 7 -> A; C, J, -> A

val it = () : unit
Thus the simplification of fa3 resulted in the removal of the
%-transitions between B and C.

18/18

