
3.7: Simplification of Finite Automata

In this section, we: say what it means for a finite automaton to be
simplified; study an algorithm for simplifying finite automata; and
see how finite automata can be simplified in Forlan.

Suppose M is the finite automaton

D E

0

0

1

%
Start A B C

%

20

What is odd about M?

First, there are no valid labeled paths from the start state to D and
E, and so these states are redundant.

Second, there are no valid labeled paths from C to an accepting
state, and so it is also redundant.

1 / 18

Useful States

Suppose M is a finite automaton. We say that a state q ∈ QM is:

• reachable in M iff there is a labeled path lp such that lp is
valid for M, the start state of lp is sM , and the end state of lp
is q;

• live in M iff there is a labeled path lp such that lp is valid for
M, the start state of lp is q, and the end state of lp is in AM ;

• dead in M iff q is not live in M; and

• useful in M iff q is both reachable and live in M.

2 / 18

Useful States Example

Let M be our example finite automaton:

D E

0

0

1

%
Start A B C

%

20

The reachable states of M are: A, B and C. The live states of M
are: A, B, D and E. And, the useful states of M are: A and B.

3 / 18

Generating Reachable, Live and Useful States

There is a simple algorithm for generating the set of reachable
states of a finite automaton M. We generate the least subset X of
QM such that:

• sM ∈ X ; and
• for all q, r ∈ QM and x ∈ Str, if q ∈ X and (q, x , r) ∈ TM ,

then r ∈ X .

Similarly, there is a simple algorithm for generating the set of live
states of a finite automaton M. We generate the least subset Y of
QM such that:

• AM ⊆ Y ; and
• for all q, r ∈ QM and x ∈ Str, if r ∈ Y and (q, x , r) ∈ TM ,

then q ∈ Y .

Thus, we can generate the set of useful states of an FA by
generating the set of reachable states, generating the set of live
states, and intersecting those sets of states.

4 / 18

Redundant Transitions

Now, suppose N is the FA

1

Start A

0

%, 0, 1
B

What is odd about this machine?

Here, the transitions (A, 0,B) and (A, 1,B) are redundant.

Given an FA M and a finite subset U of { (q, x , r) | q, r ∈ QM and
x ∈ Str }, we write M/U for the FA that is identical to M except
that its set of transitions is U.

If M is an FA and (p, x , q) ∈ TM , we say that:

• (p, x , q) is redundant in M iff q ∈ ∆N({p}, x), where
N = M/(TM − {(p, x , q)}); and

• (p, x , q) is irredundant in M iff (p, x , q) is not redundant in M.
5 / 18

Definition of Simplification

We say that a finite automaton M is simplified iff either

• every state of M is useful, and every transition of M is
irredundant; or

• |QM | = 1 and AM = TM = ∅.

Thus the FA

Start A

is simplified, even though its start state is not live, and is thus not
useful.

Proposition 3.7.1

If M is a simplified finite automaton, then

alphabet(L(M)) = alphabetM.

6 / 18

Algorithm for Removing Redundant Transitions

Given an FA M, p, q ∈ QM and x ∈ Str, we say that (p, x , q) is
implicit in M iff q ∈ ∆M({p}, x).

Given an FA M, we define a function
remRedunM ∈ P TM × P TM →P TM by well-founded recursion
on the size of its second argument.

For U,V ⊆ TM , remRedun(U,V) proceeds as follows:

• If V = ∅, then it returns U.

• Otherwise, let v be the greatest element of { (q, x , r) ∈ V |
there are no q′, r ′ ∈ Sym and y ∈ Str such that
(q′, y , r ′) ∈ V and |y | > |x | }, and V ′ = V − {v}. If v is
implicit in M/(U ∪ V ′), then remRedun returns the result of
evaluating remRedun(U,V ′). Otherwise, it returns the result
of evaluating remRedun(U ∪ {v},V ′).

7 / 18

Algorithm for Removing Redundant Transitions

In general, there are multiple—incompatible—ways of removing
redundant transitions from an FA. remRedun is defined so as to
favor removing transitions whose labels are longer; and among
transitions whose labels have equal length, to favor removing
transitions that are larger in our total ordering on transitions.

8 / 18

Simplification Algorithm

We define a function simplify ∈ FA→ FA by: simplifyM is the
finite automaton N produced by the following process.

• First, the useful states are M are determined.

• If sM is not useful in M, the N is defined by:
• QN = {sM};
• sN = sM ;
• AN = ∅; and
• TN = ∅.

• And, if sM is useful in M, then N is remRedunN′(∅,TN′),
where N ′ is defined by

• QN′ = { q ∈ QM | q is useful in M };
• sN′ = sM ;
• AN′ = AM ∩ QN′ = { q ∈ AM | q ∈ QN′ }; and
• TN′ = { (q, x , r) ∈ TM | q, r ∈ QN′ }.

9 / 18

More on Simplification Algorithm

Proposition 3.7.3

Suppose M is a finite automaton. Then:

(1) simplifyM is simplified;

(2) simplifyM ≈ M;

(3) QsimplifyM ⊆ QM and TsimplifyM ⊆ TM ; and

(4) alphabet(simplifyM) = alphabet(L(M)) ⊆ alphabetM.

10 / 18

Simplification Examples

If M is the finite automaton

D E

0

0

1

%
Start A B C

%

20

then simplifyM is the finite automaton

1

Start A B
%

0

11 / 18

Simplification Examples

If N is the finite automaton

1

Start A

0

%, 0, 1
B

then simplifyN is the finite automaton

1

Start A

0

%
B

12 / 18

Testing Whether L(M) = ∅

Our simplification algorithm gives us an algorithm for testing
whether the language accepted by an FA M is empty. We first
simplify M, calling the result N. We then test whether AN = ∅. If
the answer is “yes”, clearly L(M) = L(N) = ∅. And if the answer is
“no”, then sN is useful, and so N (and thus M) accepts at least
one string.

13 / 18

Simplification in Forlan

The Forlan module FA includes the following functions relating to
the simplification of finite automata:

val simplify : fa -> fa

val simplified : fa -> bool

14 / 18

Simplication Examples in Forlan

In the following, suppose fa1 is the finite automaton

D E

0

0

1

%
Start A B C

%

20

fa2 is the finite automaton

1

Start A

0

%, 0, 1
B

15 / 18

Simplication Examples in Forlan

and fa3 is the finita automaton

%

B

C

%

%

% %

%

AStart

16 / 18

Simplication Examples in Forlan

Here are some example uses of simplify and simplified:

- FA.simplified fa1;

val it = false : bool

- val fa1’ = FA.simplify fa1;

val fa1’ = - : fa

- FA.output("", fa1’);

{states} A, B {start state} A {accepting states} B

{transitions} A, % -> B; A, 0 -> A; B, 1 -> B

val it = () : unit

- FA.simplified fa1’;

val it = true : bool

- val fa2’ = FA.simplify fa2;

val fa2’ = - : fa

- FA.output("", fa2’);

{states} A, B {start state} A {accepting states} B

{transitions} A, % -> B; A, 0 -> A; B, 1 -> B

val it = () : unit

17 / 18

Simplication Examples in Forlan

- val fa3’ = FA.simplify fa3;

val fa3’ = - : fa

- FA.output("", fa3’);

{states} A, B, C {start state} A {accepting states} A

{transitions} A, % -> B | C; B, % -> A; C, % -> A

val it = () : unit

Thus the simplification of fa3 resulted in the removal of the
%-transitions between B and C.

18 / 18

