
3.8: Proving the Correctness of Finite Automata

In this section, we consider techniques for proving the correctness
of finite automata, i.e., for proving that finite automata accept the
languages we want them to.

1 / 20



Properties of ∆

Proposition 3.8.1
Suppose M is a finite automaton.

(1) For all q ∈ QM , q ∈ ∆M({q},%).

(2) For all q, r ∈ QM and w ∈ Str, if q,w → r ∈ TM , then
r ∈ ∆M({q},w).

(3) For all p, q, r ∈ QM and x , y ∈ Str, if q ∈ ∆M({p}, x) and
r ∈ ∆M({q}, y), then r ∈ ∆M({p}, xy).
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Definition of Λ

Suppose M is a finite automaton and q ∈ QM . Then we define

ΛM,q = {w ∈ Str | q ∈ ∆M({sM},w) }.

Clearly, ΛM,q ⊆ (alphabetM)∗, for all FAs M and q ∈ QM .

If it’s clear which FA we are talking about, we sometimes
abbreviate ΛM,q to Λq.
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Λ Example

Let our example FA, M, be

0

0

1

Start A B

1

Then:

• 01101 ∈ ΛA, because of the labeled path

A
0

⇒ B
1

⇒ B
1

⇒ B
0

⇒ A
1

⇒ A,

• 01100 ∈ ΛB, because of the labeled path

A
0

⇒ B
1

⇒ B
1

⇒ B
0

⇒ A
0

⇒ B.
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Properties of Λ

Proposition 3.8.2
For all FA M,

L(M) =
⋃

{ΛM,q | q ∈ AM },

i.e., for all w, w ∈ L(M) iff w ∈ ΛM,q for some q ∈ AM .

Proposition 3.8.3
Suppose M is a finite automaton.

(1) % ∈ ΛM,sM .

(2) For all q, r ∈ QM and w , x ∈ Str. If w ∈ ΛM,q and
q, x → r ∈ TM , then wx ∈ ΛM,r .
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Example Finite Automaton

Our main example will be the FA, M:

0

0

1

Start A B

1

Let

X = {w ∈ {0, 1}∗ | w has an even number of 0’s },

Y = {w ∈ {0, 1}∗ | w has an odd number of 0’s }.

We want to prove that L(M) = X .

Because AM = {A}, Proposition 3.8.2 tells us that L(M) = ΛM,A.
Thus it will suffice to show that ΛM,A = X .

But our approach will also involve showing ΛM,B = Y . We would
cope with more states analogously, having one language per state.
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Proving that Enough is Accepted

First we study techniques for showing that everything we want an
automaton to accept is really accepted.

Since X ,Y ⊆ {0, 1}∗, to prove that X ⊆ ΛM,A and Y ⊆ ΛM,B, it
will suffice to use strong string induction to show that, for all
w ∈ {0, 1}∗:

(A) if w ∈ X , then w ∈ ΛM,A; and

(B) if w ∈ Y , then w ∈ ΛM,B.
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Enough is Accepted in Example

We proceed by strong string induction. Suppose w ∈ {0, 1}∗, and
assume the inductive hypothesis: for all x ∈ {0, 1}∗, if x is a
proper substring of w , then:

(A) if x ∈ X , then x ∈ ΛA; and

(B) if x ∈ Y , then x ∈ ΛB.

We must prove that:

(A) if w ∈ X , then w ∈ ΛA; and

(B) if w ∈ Y , then w ∈ ΛB.
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Enough is Accepted in Example

(A) Suppose w ∈ X , so that w has an even number of 0’s. We
must show that w ∈ ΛA. There are three cases to consider.

• Suppose w = %. By Proposition 3.8.3(1), we have that
w = % ∈ ΛA.

• Suppose w = x0, for some x ∈ {0, 1}∗. Thus x has an odd
number of 0’s, so that x ∈ Y . Because x is a proper substring
of w , Part (B) of the inductive hypothesis tells us that x ∈ ΛB.
Furthermore, B, 0→ A ∈ T , so that w = x0 ∈ ΛA, by
Proposition 3.8.3(2).

• Suppose w = x1, for some x ∈ {0, 1}∗. Thus x has an even
number of 0’s, so that x ∈ X . Because x is a proper substring
of w , Part (A) of the inductive hypothesis tells us that x ∈ ΛA.
Furthermore, A, 1→ A ∈ T , so that w = x1 ∈ ΛA, by
Proposition 3.8.3(2).

(B) This case is symmetric to (A), and is in the book.
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%-Transitions and Enough is Accepted

Let N be the finite automaton

%

11

Start A B

0

Here we hope that ΛN,A = {0}∗ and L(N) = ΛN,B = {0}∗{11}∗,
but if we try to prove that

{0}∗ ⊆ ΛN,A,

{0}∗{11}∗ ⊆ ΛN,B

using our standard technique, there is a complication related to the
%-transition.

We use strong string induction to show that, for all w ∈ {0, 1}∗:

(A) if w ∈ {0}∗, then w ∈ ΛA;

(B) if w ∈ {0}∗{11}∗, then w ∈ ΛB.
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%-Transitions and Enough is Accepted

In Part (B), we assume that w ∈ {0}∗{11}∗, so that w = 0n(11)m

for some n,m ∈ N. We must show that w ∈ ΛB. We consider two
cases: m = 0 and m ≥ 1. The second of these is straightforward,
so let’s focus on the first. Then w = 0n ∈ {0}∗. We want to use
Part (A) of the inductive hypothesis to conclude that 0n ∈ ΛA, but
there is a problem: 0n is not a proper substring of 0n = w .
So, we must consider two subcases, when n = 0 and n ≥ 1. In the
first subcase, because % ∈ ΛA and A,%→ B ∈ T , we have that
w = % = %% ∈ ΛB.

In the second subcase, we have that w = 0n−10. By Part (A) of
the inductive hypothesis, we have that 0n−1 ∈ ΛA. Thus, because
A, 0→ A ∈ T and A,%→ B ∈ T , we can conclude
w = 0n = 0n−10% ∈ ΛB.
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%-Transitions and Enough is Accepted

Because there are no transitions from B back to A, we could first
prove that, for all w ∈ {0, 1}∗,

(A) if w ∈ {0}∗, then w ∈ ΛA,

and then use (A) to prove that for all w ∈ {0, 1}∗,

(B) if w ∈ {0}∗{11}∗, then w ∈ ΛB.

This works whenever one part of a machine has transitions to
another part, but there are no transitions from that second part
back to the first part, i.e., when the two parts are not mutually
recursive.

In the case of N, we could use mathematical induction instead of
strong string induction:

(A) for all n ∈ N, 0n ∈ ΛA, and

(B) for all n,m ∈ N, 0n(11)m ∈ ΛB (do induction on m, fixing n).
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Proving that Everything Accepted is Wanted

It’s tempting to try to prove that everything accepted by a finite
automaton is wanted using strong string induction, with
implications like

(A) if w ∈ ΛA, then w ∈ X .

Unfortunately, this doesn’t work when a finite automaton contains
%-transitions.

Instead, we do such proofs using a new induction principle that we
call induction on Λ.
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Principle of Induction on Λ

Theorem 3.8.4 (Principle of Induction on Λ)
Suppose M is a finite automaton, and Pq(w) is a property of a
w ∈ ΛM,q, for all q ∈ QM .
If

• PsM (%) and

• for all q, r ∈ QM , x ∈ Str and w ∈ ΛM,q,
if q, x → r ∈ TM and (†) Pq(w), then Pr (wx),

then

for all q ∈ QM , for all w ∈ ΛM,q,Pq(w).

We refer to (†) as the inductive hypothesis.
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Principle of Induction on Λ

Proof. It suffices to show that, for all lp ∈ LP, for all q ∈ QM , if
lp is valid for M, startState lp = sM and endState lp = q, then
Pq(label lp). We prove this by well-founded induction on the
length of lp. ✷
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Everything Accepted is Wanted in Example

In the case of our example FA, M, we can let PA(w) and PB(w)
be w ∈ X and w ∈ Y , respectively, where, as before,

X = {w ∈ {0, 1}∗ | w has an even number of 0’s },

Y = {w ∈ {0, 1}∗ | w has an odd number of 0’s }.
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Everything Accepted is Wanted in Example

Then the principle of induction on Λ tells us that

(A) for all w ∈ ΛA, w ∈ X , and

(B) for all w ∈ ΛB, w ∈ Y ,

follows from showing

• (empty string) % ∈ X ;

• (A, 0→ B) for all w ∈ ΛA, if (†) w ∈ X , then w0 ∈ Y ;

• (A, 1→ A) for all w ∈ ΛA, if (†) w ∈ X , then w1 ∈ X ;

• (B, 0→ A) for all w ∈ ΛB, if (†) w ∈ Y , then w0 ∈ X ;

• (B, 1→ B) for all w ∈ ΛB, if (†) w ∈ Y , then w1 ∈ Y .

We refer to (†) as the inductive hypothesis.
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Everything Accepted is Wanted in Example

There are five steps to show.

• (empty string) Because % ∈ {0, 1}∗ and % has no 0’s, we
have that % ∈ X .

• (A, 0→ B) Suppose w ∈ ΛA, and assume the inductive
hypothesis: w ∈ X . Hence w ∈ {0, 1}∗ and w has an even
number of 0’s. Thus w0 ∈ {0, 1}∗ and w0 has an odd number
of 0’s, so that w0 ∈ Y .

• (A, 1→ A) Suppose w ∈ ΛA, and assume the inductive
hypothesis: w ∈ X . Then w1 ∈ X .

• (B, 0→ A) Suppose w ∈ ΛB, and assume the inductive
hypothesis: w ∈ Y . Then w0 ∈ X .

• (B, 1→ B) Suppose w ∈ ΛB, and assume the inductive
hypothesis: w ∈ Y . Then w1 ∈ Y .
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Everything Accepted is Wanted in Example

Because of

(A) for all w ∈ ΛA, w ∈ X , and

(B) for all w ∈ ΛB, w ∈ Y ,

we have that ΛA ⊆ X and ΛB ⊆ Y . Because X ⊆ ΛA and Y ⊆ ΛB,
we can conclude that L(M) = ΛA = X and ΛB = Y .
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Everything Accepted is Wanted in

Second Example

Consider our second example, N, again:

%

11

Start A B

0

We can use induction on Λ to prove that

(A) for all w ∈ ΛA, w ∈ {0}∗; and

(B) for all w ∈ ΛB, w ∈ {0}∗{11}∗.

Thus ΛA ⊆ {0}∗ and ΛB ⊆ {0}∗{11}∗. Because {0}∗ ⊆ ΛA and
{0}∗{11}∗ ⊆ ΛB, we can conclude that ΛA = {0}∗ and
L(N) = ΛB = {0}∗{11}∗.
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