
3.9: Empty-string Finite Automata

In this and the following two sections, we will study three
progressively more restricted kinds of finite automata:

• empty-string finite automata (EFAs);

• nondeterministic finite automata (NFAs); and

• deterministic finite automata (DFAs).

Every DFA will be an NFA; every NFA will be an EFA; and every
EFA will be an FA. Thus, L(M) will be well-defined, if M is a DFA,
NFA or EFA.

1 / 16

Introduction

The more restricted kinds of automata will be easier to process on
the computer than the more general kinds; they will also have nicer
reasoning principles than the more general kinds.

2 / 16

Introduction

The more restricted kinds of automata will be easier to process on
the computer than the more general kinds; they will also have nicer
reasoning principles than the more general kinds.

We will give algorithms for converting the more general kinds of
automata into the more restricted kinds. Thus even the
deterministic finite automata will accept the same set of languages
as the finite automata.

2 / 16

Introduction

The more restricted kinds of automata will be easier to process on
the computer than the more general kinds; they will also have nicer
reasoning principles than the more general kinds.

We will give algorithms for converting the more general kinds of
automata into the more restricted kinds. Thus even the
deterministic finite automata will accept the same set of languages
as the finite automata.

On the other hand, it will sometimes be easier to find one of the
more general kinds of automata that accepts a given language
rather than one of the more restricted kinds accepting the
language.

2 / 16

Introduction

The more restricted kinds of automata will be easier to process on
the computer than the more general kinds; they will also have nicer
reasoning principles than the more general kinds.

We will give algorithms for converting the more general kinds of
automata into the more restricted kinds. Thus even the
deterministic finite automata will accept the same set of languages
as the finite automata.

On the other hand, it will sometimes be easier to find one of the
more general kinds of automata that accepts a given language
rather than one of the more restricted kinds accepting the
language.

And, there are languages where the smallest DFA accepting the
language is exponentially bigger than the smallest FA accepting the
language.

2 / 16

Definition of EFAs

An empty-string finite automaton (EFA) M is a finite automaton
such that

TM ⊆ { q, x → r | q, r ∈ Sym and x ∈ Str and |x | ≤ 1 }.

For example, A,%→ B and A, 1→ B are legal EFA transitions, but
A, 11→ B is not legal.

We write EFA for the set of all empty-string finite automata. Thus
EFA (FA.

3 / 16

Properties of EFAs

The following proposition obviously holds.

Proposition 3.9.1

Suppose M is an EFA.

• For all N ∈ FA, if M iso N, then N is an EFA.

• For all bijections f from QM to some set of symbols,

renameStates(M, f) is an EFA.

• renameStatesCanonicallyM is an EFA.

• simplifyM is an EFA.

4 / 16

Converting FAs to EFAs

If we want to convert an FA into an equivalent EFA, we can
proceed as follows. Every state of the FA will be a state of the
EFA, the start and accepting states are unchanged, and every
transition of the FA that is a legal EFA transition will be a
transition of the EFA.

5 / 16

Converting FAs to EFAs

If we want to convert an FA into an equivalent EFA, we can
proceed as follows. Every state of the FA will be a state of the
EFA, the start and accepting states are unchanged, and every
transition of the FA that is a legal EFA transition will be a
transition of the EFA.

If our FA has a transition

p, b1b2 · · · bn → r ,

where n ≥ 2 and the bi are symbols, then we replace this transition
with

5 / 16

Converting FAs to EFAs

If we want to convert an FA into an equivalent EFA, we can
proceed as follows. Every state of the FA will be a state of the
EFA, the start and accepting states are unchanged, and every
transition of the FA that is a legal EFA transition will be a
transition of the EFA.

If our FA has a transition

p, b1b2 · · · bn → r ,

where n ≥ 2 and the bi are symbols, then we replace this transition
with the n transitions

p
b1

→ q1, q1
b2

→ q2, . . . , qn−1

bn

→ r ,

where q1, . . . , qn−1 are n − 1 new, states.

5 / 16

Converting FAs to EFAs

If we want to convert an FA into an equivalent EFA, we can
proceed as follows. Every state of the FA will be a state of the
EFA, the start and accepting states are unchanged, and every
transition of the FA that is a legal EFA transition will be a
transition of the EFA.

If our FA has a transition

p, b1b2 · · · bn → r ,

where n ≥ 2 and the bi are symbols, then we replace this transition
with the n transitions

p
b1

→ q1, q1
b2

→ q2, . . . , qn−1

bn

→ r ,

where q1, . . . , qn−1 are n − 1 new, non-accepting, states.

5 / 16

Example FA to EFA Conversion

For example, we can convert the FA

345

Start A B
12

0

into the EFA

6 / 16

Example FA to EFA Conversion

For example, we can convert the FA

345

Start A B
12

0

into the EFA

3

45

21

Start A B

0

C

D

E

6 / 16

An FA to EFA Conversion Algorithm

How should be go about choosing the new states?

7 / 16

An FA to EFA Conversion Algorithm

How should be go about choosing the new states?

The symbols we choose can’t be states of the original machine,
and we can’t choose the same symbol twice.

7 / 16

A Conversion Algorithm

First, we rename each old state q to 〈1, q〉. Then we can replace a
transition

p
b1b2···bn

→ r ,

where n ≥ 2 and the bi are symbols, with the transitions

〈1, p〉
b1

→ 〈2, 〈p, b1, b2 · · · bn, r〉〉,

〈2, 〈p, b1, b2 · · · bn, r〉〉
b2

→ 〈2, 〈p, b1b2, b3 · · · bn, r〉〉,

. . . ,

〈2, 〈p, b1b2 · · · bn−1, bn, r〉〉
bn

→, 〈1, r〉.

8 / 16

A Conversion Algorithm

We define a function faToEFA ∈ FA→ EFA that converts FAs
into EFAs by saying that faToEFAM is the result of running the
above algorithm on input M.

Theorem 3.9.2

For all M ∈ FA:

• faToEFAM ≈ M; and

• alphabet(faToEFAM) = alphabetM.

9 / 16

Processing EFAs in Forlan

The Forlan module EFA defines an abstract type efa (in the
top-level environment) of empty-string finite automata, along with
various functions for processing EFAs.

Values of type efa are implemented as values of type fa, and the
module EFA provides functions:

val injToFA : efa -> fa

val projFromFA : fa -> efa

val input : string -> efa

val fromFA : fa -> efa

injToFA is an “injection” function. projFromFA is a “projection”
function, which raises an exception if its argument isn’t a legal
EFA. The last of these corresponds to faToEFA, and is in the
top-level environment as:

val faToEFA : fa -> efa

10 / 16

Processing EFAs in Forlan

Finally, most of the functions for processing FAs that were
introduced in previous sections are inherited by EFA:

val output : string * efa -> unit

val numStates : efa -> int

val numTransitions : efa -> int

val equal : efa * efa -> bool

val alphabet : efa -> sym set

val checkLP : efa -> lp -> unit

val validLP : efa -> lp -> bool

val isomorphism : efa * efa * sym_rel -> bool

val findIsomorphism : efa * efa -> sym_rel

val isomorphic : efa * efa -> bool

val renameStates : efa * sym_rel -> efa

val renameStatesCanonically : efa -> efa

11 / 16

Processing EFAs in Forlan

More inherited functions:

val processStr : efa -> sym set * str -> sym set

val accepted : efa -> str -> bool

val findLP : efa -> sym set * str * sym set -> lp

val findAcceptingLP : efa -> str -> lp

val simplified : efa -> bool

val simplify : efa -> efa

12 / 16

Forlan Examples

Suppose that fa is the finite automaton

345

Start A B
12

0

Here are some example uses of a few of the above functions:

- projFAToEFA fa;

invalid label in transition: "12"

uncaught exception Error

- val efa = faToEFA fa;

val efa = - : efa

13 / 16

Forlan Examples

- EFA.output("", efa);

{states}

<1,A>, <1,B>, <2,<A,1,2,B>>, <2,<B,3,45,B>>,

<2,<B,34,5,B>>

{start state} <1,A> {accepting states} <1,B>

{transitions}

<1,A>, 0 -> <1,A>; <1,A>, 1 -> <2,<A,1,2,B>>;

<1,B>, 3 -> <2,<B,3,45,B>>; <2,<A,1,2,B>>, 2 -> <1,B>;

<2,<B,3,45,B>>, 4 -> <2,<B,34,5,B>>;

<2,<B,34,5,B>>, 5 -> <1,B>

val it = () : unit

14 / 16

Forlan Examples

- val efa’ = EFA.renameStatesCanonically efa;

val efa’ = - : efa

- EFA.output("", efa’);

{states} A, B, C, D, E {start state} A

{accepting states} B

{transitions}

A, 0 -> A; A, 1 -> C; B, 3 -> D; C, 2 -> B; D, 4 -> E;

E, 5 -> B

val it = () : unit

15 / 16

Forlan Examples

- val rel = EFA.findIsomorphism(efa, efa’);

val rel = - : sym_rel

- SymRel.output("", rel);

(<1,A>, A), (<1,B>, B), (<2,<A,1,2,B>>, C),

(<2,<B,3,45,B>>, D), (<2,<B,34,5,B>>, E)

val it = () : unit

- LP.output("", FA.findAcceptingLP fa (Str.input ""));

@ 012345

@ .

A, 0 => A, 12 => B, 345 => B

val it = () : unit

- LP.output

= ("", EFA.findAcceptingLP efa’ (Str.input ""));

@ 012345

@ .

A, 0 => A, 1 => C, 2 => B, 3 => D, 4 => E, 5 => B

val it = () : unit

16 / 16

