
Chapter 4: Context-free Languages

In this chapter, we study context-free grammars and languages.
Context-free grammars are used to describe the syntax of
programming languages, i.e., to specify parsers of programming
languages.
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In this chapter, we study context-free grammars and languages.
Context-free grammars are used to describe the syntax of
programming languages, i.e., to specify parsers of programming
languages.

A language is called context-free iff it is generated by a context-free
grammar. It will turn out that the set of all context-free languages
is a proper superset of the set of all regular languages.

On the other hand, the context-free languages have weaker closure
properties than the regular languages, and we won’t be able to give
algorithms for checking grammar equivalence or minimizing the
size of grammars.
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4.1: Grammars, Parse Trees and Context-free
Languages

In this section, we:

• say what (context-free) grammars are;

• use the notion of a parse tree to say what grammars mean;

• say what it means for a language to be context-free; and

• begin to show how grammars can be processed using Forlan.
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(Context-free) Grammars

A context-free grammar (or just grammar) G consists of:

• a finite set QG of symbols (we call the elements of QG the
variables of G );

• an element sG of QG (we call sG the start variable of G ); and

• a finite subset PG of { (q, x) | q ∈ QG and x ∈ Str } (we call
the elements of PG the productions of G , and we often write
(q, x) as q → x).

In a context where we are only referring to a single grammar, G , we
sometimes abbreviate QG , sG and PG to Q, s and P , respectively.
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• a finite subset PG of { (q, x) | q ∈ QG and x ∈ Str } (we call
the elements of PG the productions of G , and we often write
(q, x) as q → x).

In a context where we are only referring to a single grammar, G , we
sometimes abbreviate QG , sG and PG to Q, s and P , respectively.

We write Gram for the set of all grammars. Since every grammar
can be described by a finite sequence of ASCII characters, we have
that Gram is countably infinite.
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Example Grammar

As an example, we can define a grammar G (of arithmetic
expressions) as follows:

• QG = {E};

• sG = E;

• PG =
{E→ E〈plus〉E, E→ E〈times〉E, E→ 〈openPar〉E〈closPar〉,
E→ 〈id〉}.

E.g., we can read the production E→ E〈plus〉E as “an expression
can consist of an expression, followed by a 〈plus〉 symbol, followed
by an expression”.
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Notation for Grammars

We typically describe a grammar by listing its productions, and
grouping productions with identical left-sides into production
families. Unless we say otherwise, the grammar’s variables are the
left-sides of all of its productions, and its start variable is the
left-side of its first production.

Thus, our grammar G is

E→ E〈plus〉E,

E→ E〈times〉E,

E→ 〈openPar〉E〈closPar〉,

E→ 〈id〉,

or

E→ E〈plus〉E | E〈times〉E | 〈openPar〉E〈closPar〉 | 〈id〉.
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Forlan Syntax for Grammars

The Forlan syntax for grammars is very similar to the notation of
the preceding slide. E.g., here is how our example grammar can be
described in Forlan’s syntax:

{variables} E {start variable} E

{productions}

E -> E<plus>E; E -> E<times>E; E -> <openPar>E<closPar>;

E -> <id>

or

{variables} E {start variable} E

{productions}

E -> E<plus>E | E<times>E | <openPar>E<closPar> | <id>
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Processing Grammars in Forlan

The Forlan module Gram defines an abstract type gram (in the
top-level environment) of grammars as well as a number of
functions and constants for processing grammars, including:

val input : string -> gram

val output : string * gram -> unit

val numVariables : gram -> int

val numProductions : gram -> int

val equal : gram * gram -> bool

During printing, Forlan merges productions into production families
whenever possible.
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More on Grammars

The alphabet of a grammar G (alphabetG ) is

{ a ∈ Sym | there are q, x such that q → x ∈ PG and

a ∈ alphabet x }

− QG .

I.e., alphabetG is all of the symbols appearing in the strings of
G ’s productions that aren’t variables.

For example, the alphabet of our example grammar G is
{〈plus〉, 〈times〉, 〈openPar〉, 〈closPar〉, 〈id〉}.
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Grammar Alphabets in Forlan

The Forlan module Gram defines a function

val alphabet : gram -> sym set

for calculating the alphabet of a grammar.

E.g., if gram of type gram is bound to our example grammar G ,
then Forlan will behave as follows:

- val bs = Gram.alphabet gram;

val bs = - : sym set

- SymSet.output("", bs);

<id>, <plus>, <times>, <closPar>, <openPar>

val it = () : unit
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Parse Trees and Grammar Meaning

We will explain when strings are generated by grammars using the
notion of a parse tree. The set PT of parse trees is the least
subset of Tree(Sym ∪ {%}) (the set of all (Sym ∪ {%})-trees; see
Section 1.3) such that:

(1) for all a ∈ Sym and pts ∈ List PT, (a, pts) ∈ PT; and
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Parse Trees and Grammar Meaning

We will explain when strings are generated by grammars using the
notion of a parse tree. The set PT of parse trees is the least
subset of Tree(Sym ∪ {%}) (the set of all (Sym ∪ {%})-trees; see
Section 1.3) such that:

(1) for all a ∈ Sym and pts ∈ List PT, (a, pts) ∈ PT; and

(2) for all a ∈ Sym, (a, [(%, [ ])]) = a(%) ∈ PT.

Note that the (Sym ∪ {%})-tree % = (%, [ ]) is not a parse tree.

It is easy to see that PT is countably infinite.
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Parse Tree Examples

For example, A(B,A(%),B(0)), i.e.,

A

B A B

% 0

is a parse tree. On the other hand, although A(B,%,B), i.e.,

A

B % B

is a (Sym ∪ {%})-tree, it’s not a parse tree, since it can’t be
formed using rules (1) and (2).
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Principle of Induction on Parse Trees

Since the set PT of parse trees is defined inductively, it gives rise
to an induction principle.

Theorem 4.1.1 (Principle of Induction on Parse Trees)
Suppose P(pt) is a property of an element pt ∈ PT.

If

(1) for all a ∈ Sym and trs ∈ List PT, if (†) for all i ∈ [1 : |trs|],
P(trs i), then P((a, trs)), and

then

for all pt ∈ PT,P(pt).

We refer to (†) as the inductive hypothesis.
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The Yield of a Parse Tree

We define the yield of a parse tree, as follows. The function
yield ∈ PT→ Str is defined by structural recursion:

• for all a ∈ Sym, yield a =

• for all q ∈ Sym, n ∈ N− {0} and pt1, . . . , ptn ∈ PT,
yield(q(pt1, . . . , ptn)) =

• for all q ∈ Sym, yield(q(%)) =

We say that w is the yield of pt iff w = yield pt.

13 / 34



The Yield of a Parse Tree

We define the yield of a parse tree, as follows. The function
yield ∈ PT→ Str is defined by structural recursion:

• for all a ∈ Sym, yield a = a;

• for all q ∈ Sym, n ∈ N− {0} and pt1, . . . , ptn ∈ PT,
yield(q(pt1, . . . , ptn)) =

• for all q ∈ Sym, yield(q(%)) =

We say that w is the yield of pt iff w = yield pt.

13 / 34



The Yield of a Parse Tree

We define the yield of a parse tree, as follows. The function
yield ∈ PT→ Str is defined by structural recursion:

• for all a ∈ Sym, yield a = a;

• for all q ∈ Sym, n ∈ N− {0} and pt1, . . . , ptn ∈ PT,
yield(q(pt1, . . . , ptn)) = yield pt1 · · · yield ptn; and

• for all q ∈ Sym, yield(q(%)) =

We say that w is the yield of pt iff w = yield pt.

13 / 34



The Yield of a Parse Tree

We define the yield of a parse tree, as follows. The function
yield ∈ PT→ Str is defined by structural recursion:

• for all a ∈ Sym, yield a = a;

• for all q ∈ Sym, n ∈ N− {0} and pt1, . . . , ptn ∈ PT,
yield(q(pt1, . . . , ptn)) = yield pt1 · · · yield ptn; and

• for all q ∈ Sym, yield(q(%)) = %.

We say that w is the yield of pt iff w = yield pt.

13 / 34



Yield Example

For example, the yield of

A

B A B

% 0
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Yield Example

For example, the yield of

A

B A B

% 0

is

yieldB yield(A(%)) yield(B(0)) = B% yield 0 = B%0 = B0.
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Validity of Parse Trees for Grammars

We say when a parse tree is valid for a grammar G as follows.
Define a function validG ∈ PT→ Bool by structural recursion:

• for all a ∈ Sym, validG a =

• for all q ∈ Sym, n ∈ N− {0} and pt1, . . . , ptn ∈ PT,

validG (q(pt1, . . . , ptn))

=

• for all q ∈ Sym, validG (q(%)) =

We say that pt is valid for G iff validG pt = true. We often
abbreviate validG to valid.
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Parse Tree Validity Examples

Suppose G is the grammar

A→ BAB | %,

B→ 0

(by convention, its variables are A and B and its start variable is
A). Let’s see why the parse tree A(B,A(%),B(0)) is valid for G .
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Validity Examples

• Since B→ 0 ∈ PG and the root label of the child 0 is 0, the
parse tree B(0) will be valid for G if the child 0 is valid for G .
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Validity Examples

• Since B→ 0 ∈ PG and the root label of the child 0 is 0, the
parse tree B(0) will be valid for G if the child 0 is valid for G .

• The child 0 is valid for G since 0 ∈ alphabetG .

Thus, we have that

A

B A B

% 0

is valid for G .
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Validity Examples

Suppose G is our grammar of arithmetic expressions

E→ E〈plus〉E | E〈times〉E | 〈openPar〉E〈closPar〉 | 〈id〉.

Then the parse tree

E

E 〈plus〉 E

E 〈times〉 E

〈id〉 〈id〉

〈id〉

is valid for G .
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The Meaning of Grammars

Suppose G is a grammar, w ∈ Str and a ∈ Sym. We say that w is

parsable from a using G iff there is a parse tree pt such that:

• pt is valid for G ;

• a is the root label of pt; and

• the yield of pt is w .

Thus we will have that w ∈ (QG ∪ alphabetG )∗, and either
a ∈ QG or [a] = w .
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• pt is valid for G ;

• a is the root label of pt; and

• the yield of pt is w .

Thus we will have that w ∈ (QG ∪ alphabetG )∗, and either
a ∈ QG or [a] = w .

We say that a string w is generated from a variable q ∈ QG using

G iff w ∈ (alphabetG )∗ and w is parsable from q.

And, we say that a string w is generated by a grammar G iff w is
generated from sG using G .
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The Meaning of Grammars

The language generated by a grammar G (L(G )) is

{w ∈ Str | w is generated by G }.

Proposition 4.1.3
For all grammars G , alphabet(L(G )) ⊆ alphabetG.
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Grammar Meaning Examples

Let G be the example grammar

A→ BAB | %,

B→ 0.

Then 00 is generated by G since
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A→ BAB | %,

B→ 0.

Then 00 is generated by G since 00 ∈ {0}∗ = (alphabetG )∗ and
the parse tree

A

B A B
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is valid for G , has sG = A as its root label, and has 00 as its yield.
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Grammar Meaning Examples

Suppose G is our grammar of arithmetic expressions

E→ E〈plus〉E | E〈times〉E | 〈openPar〉E〈closPar〉 | 〈id〉.

Then 〈id〉〈times〉〈id〉〈plus〉〈id〉 is generated by G since
〈id〉〈times〉〈id〉〈plus〉〈id〉 ∈ (alphabetG )∗ and the parse tree

is valid for G , has sG = E as its root label, and has
〈id〉〈times〉〈id〉〈plus〉〈id〉 as its yield.

22 / 34



Grammar Meaning Examples

Suppose G is our grammar of arithmetic expressions

E→ E〈plus〉E | E〈times〉E | 〈openPar〉E〈closPar〉 | 〈id〉.

Then 〈id〉〈times〉〈id〉〈plus〉〈id〉 is generated by G since
〈id〉〈times〉〈id〉〈plus〉〈id〉 ∈ (alphabetG )∗ and the parse tree

E

E 〈plus〉 E

E 〈times〉 E

〈id〉 〈id〉

〈id〉

is valid for G , has sG = E as its root label, and has
〈id〉〈times〉〈id〉〈plus〉〈id〉 as its yield.
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Context-free Languages

A language L is context-free iff L = L(G ) for some G ∈ Gram. We
define

CFLan = {L(G ) | G ∈ Gram }

= {L ∈ Lan | L is context-free }.

Since {00}, {01}, {02}, . . . , are all context-free languages, we
have that CFLan is infinite. But, since Gram is countably infinite,
it follows that CFLan is also countably infinite.

Since Lan is uncountable, it follows that CFLan ( Lan, i.e., there
are non-context-free languages. Later, we will see that
RegLan ( CFLan.
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Equivalence of Grammars

We say that grammars G and H are equivalent iff L(G ) = L(H). In
other words, G and H are equivalent iff G and H generate the
same language.

We define a relation ≈ on Gram by: G ≈ H iff G and H are
equivalent. It is easy to see that ≈ is reflexive on Gram,
symmetric and transitive.
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Processing Parse Trees in Forlan

The Forlan module PT defines an abstract type pt of parse trees
(in the top-level environment) along with some functions for
processing parse trees:

val input : string -> pt

val output : string * pt -> unit

val height : pt -> int

val size : pt -> int

val equal : pt * pt -> bool

val rootLabel : pt -> sym

val yield : pt -> str

The Forlan syntax for parse trees is simply the linear syntax that
we’ve been using in this section.
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Graphical Editor for Parse Trees

The Java program JForlan, can be used to view and edit parse
trees. It can be invoked directly, or run via Forlan. See the Forlan
website for more information.
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More Parse Tree Processing

The Forlan module Gram also defines the functions

val checkPT : gram -> pt -> unit

val validPT : gram -> pt -> bool

The function checkPT is used to check whether a parse tree is
valid for a grammar; if the answer is “no”, it explains why not and
raises an exception; otherwise it simply returns ().

The function validPT checks whether a parse tree is valid for a
grammar, silently returning true if it is, and silently returning
false if it isn’t.
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Forlan Examples

Suppose the identifier gram of type gram is bound to the grammar

A→ BAB | %,

B→ 0.

And, suppose that the identifier gram’ of type gram is bound to
our grammar of arithmetic expressions

E→ E〈plus〉E | E〈times〉E | 〈openPar〉E〈closPar〉 | 〈id〉.
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Forlan Examples

Here are some examples of how we can process parse trees using
Forlan:

- val pt = PT.input "";

@ A(B, A(%), B(0))

@ .

val pt = - : pt

- Sym.output("", PT.rootLabel pt);

A

val it = () : unit

- Str.output("", PT.yield pt);

B0

val it = () : unit

- Gram.validPT gram pt;

val it = true : bool
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Forlan Examples

- val pt’ = PT.input "";

@ E(E(E(<id>), <times>, E(<id>)), <plus>, E(<id>))

@ .

val pt’ = - : pt

- Sym.output("", PT.rootLabel pt’);

E

val it = () : unit

- Str.output("", PT.yield pt’);

<id><times><id><plus><id>

val it = () : unit

- Gram.validPT gram’ pt’;

val it = true : bool

30 / 34



Forlan Examples

- Gram.checkPT gram pt’;

invalid production: "E -> E<plus>E"

uncaught exception Error

- Gram.checkPT gram’ pt;

invalid production: "A -> BAB"

uncaught exception Error

- PT.input "";

@ A(B,%,B)

@ .

line 1: "%" unexpected

uncaught exception Error
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Grammar Synthesis

We conclude this section with a grammar synthesis example.
Suppose X = { 0n1m2m3n | n,m ∈ N }. How can we find a
grammar G such that L(G ) = X?

The key is to think of generating the strings of X
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We conclude this section with a grammar synthesis example.
Suppose X = { 0n1m2m3n | n,m ∈ N }. How can we find a
grammar G such that L(G ) = X?

The key is to think of generating the strings of X from the outside
in, in two phases.

In the first phase, one generates pairs of 0’s and 3’s, and, in the
second phase, one generates pairs of 1’s and 2’s. E.g., a string
could be formed in the following stages:

0 3,

00 33,

001233.
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This analysis leads us to the grammar

A→

where A corresponds to the first phase, and B to the second phase.
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This analysis leads us to the grammar

A→ 0A3,

A → B,

B → 1B2,

B → %,

where A corresponds to the first phase, and B to the second phase.
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For example, here is how the string 001233 may be parsed using G :

A

A 3

A 3

B

B 2

%

0

0

1
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