
This paper was presented at the 1991 CMU Workshop on SML.

eXene

Emden R. Gansner
AT&T Bell Laboratories
erg@ulysses.att.com

John H. Reppy
�

AT&T Bell Laboratories
jhr@research.att.com

October 31, 1991

1 Summary

EXene is a multi-threadedX window system toolkit that we have been developing on top ofCon-

current ML[Rep91a, Rep90](CML). This paper describes a snapshot ofeXene’s development, as pre-

sented in two talks at theML workshop at CMU.

2 CML overview

Both the implementation and the user’s view ofeXene rely heavily on the concurrency model pro-

vided byCML
�

. CML is based on the sequential languageSML[MTH90, MT91] and inherits the fol-

lowing good features ofSML: functions as first-class values, strong static typing, polymorphism,

datatypes and pattern matching, lexical scoping, exception handling and a state-of-the-art module

facility. The sequential performance ofCML benefits from the quality of theSML/NJ compiler. In

additionCML has the following properties:

� CML provides a high-level model of concurrency with dynamic creation of threads and typed
channels, and rendezvous-style communication. This distributed-memory model fits well
with the mostly applicative style ofSML.

� CML is a higher-orderconcurrent language. Just asSML supports functions as first-class
values,CML supports synchronous operations as first-class values. These values, called
events, provide the tools for building new synchronization abstractions, which are tailored to
the application.

�
This work was done while the author was at Cornell University. It was supported, in part, by the NSF and ONR

under NSF grant CCR-85-14862, and by the NSF under NSF grant CCR-89-18233.
�

Conversely, the development ofCML was strongly motivated by the desire to be able to support user interface
systems comparable toeXene.



� CML provides integrated I/O support. Potentially blocking I/Ooperations, such as reading
from an input stream, are full-fledged synchronous operations. Low-level support is also
provided, from which distributed communication abstractions can be constructed.

� CML provides automatic reclamation of threads and channels, once they become inaccessi-
ble. This permits a technique of speculative communication, which is not possible in other
threads packages.

� CML uses pre-emptive scheduling. To guarantee interactive responsiveness, a single thread
cannot be allowed to monopolize the processor. Pre-emptioninsures that a context switch will
occur at regular intervals, which allows “off-the-shelf” code to be incorporated in a concurrent
thread without destroying interactive responsiveness.

� CML is efficient. Thread creation, thread switching and messagepassing are very efficient
(performance numbers are given in [Rep91a]). Experience with CML has shown that it is a
viable language for implementing usable interactive systems.

� CML is portable. It is written inSML and runs on essentially every system supported by
SML/NJ (currently four different architectures and many different operating systems).

� CML has a formal semantics. In the tradition of the definition ofSML[MTH90, MT91],
there is a formal definition of the core primitives ofCML (see [Rep91b] and [Rep92]).

To make this more concrete, Figure 1 gives the signature of some of theCML concurrency

operations.CML programs consist of a collection ofthreads, which communicate via typedchan-

type ’a chan
type ’a event

val spawn : (unit -> unit) -> thread_id
val channel : unit -> ’_a chan

val always : ’a -> ’a event
val receive : ’a chan -> ’a event
val transmit : (’a chan * ’a) -> unit event

val choose : ’a event list -> ’a event
val guard : (unit -> ’a event) -> ’a event
val wrap : (’a event * (’a -> ’b)) -> ’b event
val wrapAbort : (’a event * (unit -> unit)) -> ’a event

val sync : ’a event -> ’a
val poll : ’a event -> ’a option

Figure 1: BasicCML Concurrency Operations

nels. Both threads and channels are created dynamically, using the functions spawn and channel,

respectively. Rather than provide operations for communication, as is done in languages such as

2



CSP[Hoa78], occam[Bur88] andamber[Car86], CML provides first-class values, called events, to rep-

resent synchronous operations. For example, the functionsreceive and transmit build event values

to describe channel I/O operations. The function always builds an event value that supplies an in-

finite stream of its argument. The function sync is used by threads to actually synchronize on the

operations described by event values. And the operation poll is a non-blocking form of sync; in a

situation in which sync would block, it will return NONE instead of blocking. There are also event

combinators to build more complex synchronous operations:

choose. This constructs an event value that represents the non-deterministic choice of its arguments

(note that this choice is made when sync is applied). A choicemay involve multiple commu-

nications (both receive and transmit) on the same channel, but a thread cannot communicate

with itself.

guard. This constructs an event out of an event valued function. When sync is applied, the function

is called first, and the result is used for synchronization.

wrap. This wraps a function around an event value. If the event is chosen in a synchronization, then

the function is applied to the result of the event.

wrapAbort. This associates an action to be taken if an event isnot chosen in a synchronization. A

new thread is spawned to execute the action.

The power of this approach is that it allows the user to implement new communication and syn-

chronization abstractions. For example, we have found usesfor widely varying abstractions, such

as remote procedure call, multicast channels and buffered channels.

3 An eXene overview

The motivation foreXene comes from the need for an adequate foundation for building interac-

tive systems. Strong arguments can be made for basing the foundation on a high-level concurrent

system[RG86, GR92]. This allows the programmer to avoid a variety of complications in dealing with

the user interface, especially concerning such aspects as type safety, extensibility, component reuse

and the balance between the user interface and other parts ofthe program.

EXene is based on the following collection of design points.

� Concurrency.Concurrency is necessary to support multiple interface contexts in a clean fash-
ion while avoiding a program architecture biased towards the user interface. From a positive
viewpoint, threads provide a useful programming abstraction for structuring software, com-
parable to functions in their utility.CML provides the concurrency model foreXene.

3



� Applicative. The complexity of user interface systems magnifies the usualproblems with
mutable values.EXene hides state wherever possible.

� Widget threads encapsulate state.Since graphical user interfaces consist largely of side ef-
fects, the previous item begs the question of where does the state hide. Following the stylis-
tic lead ofCML, we use threads and channels to encapsulate state. IneXene, as in other
systems[Pik89, Haa90], concurrency and delegation replace the object-oriented approach adopted
by most standard user interface systems.

� Separate event streams.Input naturally divides into three classes: keyboard, mouse and
control. EXene delivers these events as three separate streams, as this makes it is simpler to
handle them in most applications.

� Hierarchical event distribution.Instead of a central distribution of events, they should flow
down the window hierarchy. This allows the programmer to have more control over how
events are processed. Functions can be interposed to createnew interactions.

� Limited scope.There are certain aspects of theX window system thateXene does not try
to handle. These include support for writing window managers as well as low-level color
map hooks to support various animation tricks. By avoiding this small collection of special-
purpose functions,eXene can be a much cleaner system.

4 The eXene library

The eXene library is composed of eight modules. Four (Geometry, Font, StdCursor,

ICCC) provide various utility services, handling points, rectangles, fonts, cursors and interclient

protocols. TheEXeneBase module provides the fundamental types, such as displays, screens,

windows, pixmaps and color maps, as well as functions for making and releasing a connection to an

X server. TheEXeneWinmodule fleshes out the window functionality, supplying functions for the

creation, deletion and manipulation of windows.EXene provides four types of windows: top-level

windows, whose parent is (essentially) the screen; pop-up top-level windows; subwindows, whose

parents are othereXene windows; and input only subwindows. Graphics operations ondrawables
�

are supplied by theDrawing module. Unlike the mutable, heavyweight graphics contextsused in

X to specify drawing characteristics,eXene uses immutable, lightweight pens. This helps maintain

an applicative style and makes the components more modular by removing the programmer’s need

to manage graphics contexts as a scarce resource. Finally, the Interact module provides the

mechanisms for handling events. Components communicate through environments, with output

environments providing the parent component’s view and input environments providing the child’s

view. An environment is basically a tuple of events. One event corresponds to keyboard events, such

as key press and release; another event provides mouse events, such as button down and up, mouse

motion, entering or leaving a window, plus the current mousestate. There are two control events:
�

Drawables include windows and off-screen pixmaps.

4



one allows the parent to inform the child that it should redraw part of its display or that its window

size has been changed; the other allows the child to request various services, such as changing its

window’s size, from its parent.

Although providing most of the features offered by theX protocol and exposing the underlying

graphics model,eXene provides a qualitatively different feel to the programmer building a user

interface, with many of the rough edges found in standardX libraries and toolkits gone. Much of this

is due toeXene’s reliance on concurrency and the environment connection between components;

aspects of this will be discussed more fully in the followingsection. Some of the differences arise

from usingSML as the base language; features such as garbage collection, datatypes, and the

reliance on immutable values assist the programmer significantly. In addition,eXene provides a

number of small features that ease the programmer’s job by providing a higher-level approach than

Xlib. These features include using lightweight, immutable pensthat are not tied to a particular

class of drawables; having redraw events return the entire list of damaged regions; queueing draw

events until the first expose event is received; making the display and screen arguments implicit for

any graphics operation on a drawable; and, providing an efficient mechanism for handling window

repairs related to copying areas in a natural, synchronous fashion. This last feature provides a

particular good example of the value ofCML events, and is discussed further in Section 6.

5 The eXene widgets

The baseeXene library provides sufficient functionality to construct anyuser interface. However,

the architecture of the library does not directly support a general framework in which pieces of

the interface can be built by various people at various timesand then integrated into a single user

interface. For this, we introduce a widget
�

layer on top of the base library. This layer provides the

additional protocols necessary for cooperation among widgets, as well as their reuse and extension.

A widget ineXene is essentially an instance of the following type:

datatype widget_t = Widget of {
attrs : unit -> window_attr_t list, (* attributes *)
bounds_of : unit -> bounds_t, (* size data *)
realize : {

env : in_env_t,
win : window_t,
sz : size_t

} -> unit
}

The program creates widget values and inserts them into somewidget hierarchy, the root of

which corresponds to a top-level window. IneXene, a parent widget controls the external view
�

For want of a better term, we borrow theX term for a graphical object composed of a window and its interface
semantics.

5



and resources of a child; the child makes requests for services from its parent. For example, the

bounds of andattrs functions allow the widget to specify how big it would like its window to

be and what specific window attributes (e.g., background color, foreground color) it desires. For the

sake of efficiency, a programmer can construct a complete widget hierarchy before having any of it

appear on the screen. During the process of making a widget hierarchy visible, calledrealization,

a parent widget creates a window and an input/output environment pair for each child, and passes

this information to the child using the child’srealize function. The child uses the window for

display; the input environment provides its only built-in connection to the rest of the widgets.

The bounds t type mentioned above provides a fairly general mechanism for a widget to

specify its geometry requirements.

datatype dim_t = DIM of {
base : int,
incr : int,
min : int,
nat : int,
max : int option

}

type bounds_t = { x_dim : dim_t, y_dim : dim_t }

The fields in a dim˙t value correspond to the following semantics.

� The size in the specified dimension is given bybase + d * incr for some value ofd
subject tomin <= d <= max, wheremax = NONE corresponds to no upper bound.

� The preferred or natural value ford is given bynat.

The use ofbounds t does not preclude the use of more general constraint systems.

In addition to specifying how widgets communicate, a widgetsystem should provide mecha-

nisms by which widgets can be tailored.EXene currently provides four such mechanisms. The

simplest consists of value parameterization, in which the widget is written to adapt to additional

specifications supplied later, such as the font to use or a callback function to invoke. Graphical

composition is another mechanism. The programmer uses the widget hierarchy to construct a new

widget abstraction from the set of available widgets. An example of this would be a labeled slider

widget, in which a slider and label widget are combined, withthe slider’s value configured to af-

fect the value displayed by the label. Many widgets ineXene have been written to conform to the

model-view-controller architecture, in which the controland view of a widget are separated by a

specific protocol. For example, the standard collections ofbuttons ineXene are nothing more than

combinations of certain views (textual, arrow, toggle switch, check mark, etc.) with certain control

semantics (discrete, continuous, two-state, etc.). Both the views and the controllers are available to

the programmer, to be used in whatever combinations seem appropriate. Finally, the widget archi-

tecture promotes interposition, in which one widget is wrapped in a function that alters its behavior.

6



The wrapping function might do nothing more than translate keystrokes, or alter the desired bounds

or window attributes. As an example more indicative of the power of this approach, a menu can be

attached to a widget by wrapping it with a function that responds to mouse presses on the widget by

putting up a pop-up menu.

The current version ofeXene provides versions of most of the typical widgets found in other

toolkits. The simple widgets, i.e., those not having children of their own, include scrollbars, sliders,

labels, buttons, lists, canvases, text widgets and menus. For composite widgets, i.e., those that sup-

port the layout of children,eXene provides frames (to add borders), shapes (to constrain a widget’s

bounds) and layouts (for maintaining its children in a two-dimensional layout of non-overlapping

boxes). Particular toeXene is the shell widget, which serves as the root of a widget hierarchy and

provides the connection between theX notion of windows and events, and those ofeXene.

6 The internals of the eXene library

TheX window system is a distributed program with the applicationclients communicating with the

X server process. The coreX protocol consists of 211 different messages, divided into 119 request

messages, of which 42 have replies, 33 event messages and 17 error messages. Each request to the

server has an implicit sequence number (i.e., the first message sent is number 1, etc.). Messages

from the server to the client are tagged with the sequence number of the last request processed by

the server; this is used to match replies with requests.

Unlike some non-C language bindings forX, eXene is implemented directly on top of theX pro-

tocol. The only non-ML code involved is the run-time system’s support for socket communication.

This approach of a complete implementation has the advantage of avoiding theC language biases

of Xlib. Furthermore, it provides a demonstration thatSML andCML can be used to implement

low-level systems programs without significant loss of performance.

A connection to anX server is called adisplay. In eXene a display consists of seven threads;

Figure 2 gives the message-passing architecture of these threads. Theinput and output threads

provide buffering of the communication with the server. Thesequencerthread generates sequence

numbers and matches replies with requests. All error messages are logged with theerror handler; in

addition, errors on requests that expect a reply are forwarded to the requesting thread. The sequencer

sendsX events to theevent buffer, which decodes and buffers them. Thetop-level window registry

is a thread that keeps track of the top-level windows in the application and their descendants. It

manages a stream of events for each top-level window in the application. The other two display

threads manage global resources: thekeymap serverprovides translations fromkeycodesto keysyms;

the font serverkeeps track of the open fonts used by the application.

A display has one or morescreens, each of which can support differentvisualsanddepths(e.g.,

7



X Server

Socket

Sequencer Error
Handler

Output
Buffer

Input
Buffer

Font
Server

Event
Buffer

Top-level
Window
Registry

Keymap
Server

Display

�

�

�

�

�

�

�

�

�

�

�

�

�

� � �

� � �
�

Window
Event Streams

�

�

KeySym
Translations

�

�

Request/
Reply

��

Font
Requests

Figure 2: The display message-passing architecture

8



black and white or 8-bit color). Each visual and depth combination of a screen is supported by two

threads; Figure 3 shows the message architecture for these.Thedraw masteris a thread that encodes

Display

Request/
Reply

Font
Requests

Draw
Master

GC
Server

Screen

�

�

�

�

�

�

Pixmap
Draw Requests

�

�

GC Requests

Figure 3: The screen message-passing architecture

and batches drawing requests for a particular visual and depth combination; the draw masters at the

screen level are used for operations onpixmaps(off screen rectangles of pixels). TheGC server

handles the mapping ofeXene’s immutable pens toX’s mutable graphics contexts
�

.

Windowsare displayed with a particular visual and depth on a screen.Internally, windows are

organized into a tree hierarchy with a top-level window at the root. Figure 4 gives the message-

passing architecture for the top-level window threads. As described above, each top-level window

in an application has a dedicated stream ofX events from the display. This stream is monitored by

thetop-level window routerthread. This thread provides the transition from theX view of events to

theeXene view (i.e., a window environment). There is a draw master thread for each window tree

as well.
�

It is an unpleasant artifact ofX that pixmaps and graphics contexts must be associated with aparticular screen, visual
and depth.

9



�
�
�
�
�
�
��

�
�

�
�

�
�

��

Window
Tree Hierarchy

���

�

Top-level
Window
Router

Draw
Master

Screen

GC Requests

Display

Event
Stream

Keysym
Translations

Request/
Reply

�

�

�

�

�

�

�

�

�
�
�
�
�
��

�

�
��

�

�

�
���

�

Window Tree

Figure 4: The top-level window message-passing architecture

10



6.1 Example: CopyArea

An interesting example of the use ofCML’s features ineXene is the CopyArea operation, which

can be used to copy a rectangle of pixels from one place on the screen to another. A complication

arises if a portion of the source rectangle is obscured by another window. For example, Figure 5

shows a use of CopyArea to translate a rectangle on the screen; here the cross-hatched region of the

destination corresponds to the obscured region of the source. While some window system maintain

Destination rectangle

Source rectangle

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

�� �
��

�
��

�
�� ����

�
��
�
��
�
��
��

Figure 5: TheCopyArea operation

a backing store(or virtual bitmap) to handle these situations, the standardX policy is to notify the

client that the CopyArea operation was not able to completely fill in the destination� . This policy is

calleddamage control, since it is up to the client to repair the damage.

A typical use of CopyArea is in inserting a line of text. In this case the client thread might issue

the following sequence of operations: a CopyArea to create space for the new text, followed by a

ClearArea to erase the old text and lastly a DrawText to insert the new line. The following picture

illustrates these steps:
�
SomeX servers do support backing store as an option, but applications must be designed to function correctly when

it is not available.

11



THIS IS
TEXT �

�CopyArea THIS IS
TEXT
TEXT

�
�ClearArea THIS IS

TEXT
�
�DrawText THIS IS

SOME
TEXT

It is important that the user of the system see this sequence as a single smooth transition, which has

implications for the implementation of operations using CopyArea.

If CopyArea is treated as a normalX RPC that returns a list of damaged rectangles, then the user

will be subjugated to screen flicker
�
. To understand the reasons for this, examine Figure 6, which

shows the timing information for the client doing the text scrolling, the thread handling the buffering

of communication with the server (really two threads ineXene), and theX server. Because the other

Client

�

Buffer

�

X Server

�

�CopyArea

����������������

����������������
� CopyAck

�ClearArea

�DrawText
����������������

�

Display in
transition

�

Figure 6: Synchronous text scrolling

drawing operations are postponed until an acknowledgementof the copyArea is received, the period

of time the display is in transition can be quite lengthy.

Because of these performance concerns theX protocol does not use the standard reply mech-

anism for CopyArea, but instead uses one of twoX events, GraphicsExpose and NoExpose, to

notify the client of the result
�
. For single-threadedC clients (which make up the vast majority of

	
Practical experience has demonstrated this effect.

Things are a little more complicated, since multipleGraphicsExposeevents can be generated for a singleCop-

12



X clients), this means that the code using the CopyArea operation must also scan the event stream

for the acknowledgement. IneXene, where we have concurrency and events, we can solve this

operation in a much more elegant way. Our solution is to use anasynchronous RPC, also known as

a promise([LS88]), to support CopyArea calls.EXene provides an event-valued function with the

type

val copyArea : arg-type -> rect_t list event

wherearg-type is the type of the arguments that specify the actual operation. The event that is

returned is the promise of the results. This function is easily implemented:

fun copyArea arg = let
val replyCh = channel()
in
spawn (fn () => request (COPY_AREA(reply_ch, arg)));
guard (fn () => (
case (poll (receive replyCh))
of (SOME rects) => always rects
| NONE => (flush(); receive replyCh)

(* end case *))
end

where request sends the operation to the buffer thread and flush tells the buffer thread to fluch any

buffered messages to the server. The guard is optimized to first check if the acknowledgement is

already available. The buffer code is more complicated, since it must match the acknowledgements

with outstanding CopyArea requests. The advantage of this approach can be seen by comparing its

timing diagram, given in Figure 7, with Figure 6.

7 Future work

Although quite usable in its current state,eXene is still very much a work in progress. We are

already planning various specific changes, some at the implementation level, others providing en-

hancements to the user’s view.

� X11R5.The newest release of the X window system includes support for four significant new
features: standard, device-independent color models; internationalization; font servers and
scalable, machine-independent font representations; andPEX, the X implementation of the
PHIGS standard. Some aspects of these features will be incorporated in future versions of
eXene.

� Cages.The Trestle window system[Nel91] uses the notion of cages to specify mouse motion
events. Essentially, a cage is a region surrounding the cursor position; the system generates an
event when the cursor leaves the cage. This mechanism generalizes theX notions of mouse
motion (a 1 pixel square cage) and window enter and leave events (a cage corresponding
to a window or its screen complement). At present,eXene provides no facility by which a

yArearequest.

13



Client

�

Buffer

�

X Server

�

�CopyArea

�ClearArea

�DrawText

�Flush
����������������

����������������
� CopyAck

�

Display in
transition�

Figure 7: Asynchronous text scrolling

widget can tell theX server to ignore unwanted mouse motion events, leading to unnecessary
network traffic. It is possible that cages may provide an elegant solution to this problem.

� Direct event routing.The hierarchical routing used ineXene provides the basis for program-
mer’s ability to wrap an old component in a function providing new behavior. Most of the
time, though, events are routed through most paths unchanged. We would like to explore
means of maintaining the semantics of hierarchical routingwhile providing more efficient
direct routing when possible.

� Shape extension.A fairly standard extension to theX protocol provides support for windows
of non-rectangular shape. We plan to incorporate this extension intoeXene.

� Stub generation.Much of the code for marshalling and unmarshalling communication with
the X server is boiler plate code. Because of the many messages andthe slight variations
between the classes of messages, producing the boiler plateis an error-prone process. We
would like to be able to generate this code from tables specifying theX protocol.

� Finalization of system resources.In the implementation ofeXene, there is a correspondence
between variouseXene resources, such as fonts and tiles, and their counterparts in the server.
Although eXene resources can, in general, be automatically reclaimed, this is not possible
with those tied toX resources, as we must guarantee that theX resource is also freed. We
plan to attach finalization routines to these resources, which will automatically free the cor-
respondingX resources before reclaiming them ineXene.

� More widgets.There are obvious omissions from the current collection ofeXene widgets.
In particular, we mention a widget for providing panning across a child widget, a composite

14



widget providing a panes mechanism, and a widget view for radially displayed values, for use
in clocks, meters, etc. In general, we prefer to implement a rich set of primitive widgets and
allow the programmer to extend them using the mechanisms provided byeXene.

� Different widgets.Widgets usually correspond to anX window. For certain applications, this
is too inefficient given the current limitations inX and hardware. We hope to explore means
by whicheXene can support more primitive graphical components involvingless overhead.
This could be viewed as giving widget views a more “first class” status ineXene.

Acknowledgments

We wish to thank L. Augustsson, T. Breuel, H. Lin and T. Yan fortesting the initial versions of

eXene, pointing out bugs and suggesting various useful changes.

References

[Bur88] Burns, A.Programming in occam 2. Addison-Wesley, Reading, Mass., 1988.

[Car86] Cardelli, L. Amber. InCombinators and Functional Programming Languages, vol. 242 ofLecture
Notes in Computer Science. Springer-Verlag, July 1986, pp. 21–47.

[GR92] Gansner, E. R. and J. H. Reppy. A foundation for user interface construction. In B. A. Myers
(ed.),Languages for Developing User Interfaces, pp. 239–260. Jones & Bartlett, Boston, Mass.,
1992.

[Haa90] Haahr, D. Montage: Breaking windows into small pieces. InUSENIX Summer Conference, June
1990, pp. 289–297.

[Hoa78] Hoare, C. A. R. Communicating sequential processes.Communications of the ACM, 21(8), August
1978, pp. 666–677.

[LS88] Liskov, B. and L. Shrira. Promises: Linguistic support for efficient asynchronous procedure calls
in distributed systems. InProceedings of the SIGPLAN’88 Conference on Programming Language
Design and Implementation, June 1988, pp. 260–267.

[MT91] Milner, R. and M. Tofte.Commentary on Standard ML. The MIT Press, Cambridge, Mass, 1991.

[MTH90] Milner, R., M. Tofte, and R. Harper.The Definition of Standard ML. The MIT Press, Cambridge,
Mass, 1990.

[Nel91] Nelson, G. (ed.).Systems Programming with Modula-3. Prentice-Hall, Englewood Cliffs, N.J.,
1991.

[Pik89] Pike, R. A concurrent window system.Computing Systems, 2(2), 1989, pp. 133–153.

[Rep90] Reppy, J. H.Concurrent programming with events – The Concurrent ML manual. Department
of Computer Science, Cornell University, Ithaca, N.Y., November 1990. (Last revised October
1991).

[Rep91a] Reppy, J. H. CML: A higher-order concurrent language. InProceedings of the SIGPLAN’91
Conference on Programming Language Design and Implementation, June 1991, pp. 293–305.

[Rep91b] Reppy, J. H. An operational semantics of first-class synchronous operations.Technical Report TR
91-1232, Department of Computer Science, Cornell University, August 1991.

15



[Rep92] Reppy, J. H.Higher-order concurrency. Ph.D. dissertation, Department of Computer Science,
Cornell University, Ithaca, NY, January 1992. Available as Technical ReportTR 92-1285.

[RG86] Reppy, J. H. and E. R. Gansner. A foundation for programming environments. InProceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Develop-
ment Environments, December 1986, pp. 218–227.

16


