This paper was presented at the 1991 CMU Workshop on SML.

exene
Emden R. Gansner John H. Reppy
AT&T Bell Laboratories AT&T Bell Laboratories
erg@il ysses. att.com jhr @esearch. att.com

October 31, 1991

1 Summary

EXeneis a multi-threadeX window system toolkit that we have been developing on togaf-
current M L[Rep91a, RepSOCML). This paper describes a snapshoeéne’s development, as pre-
sented in two talks at th#l L workshop at CMU.

2 CML overview

Both the implementation and the user’s viewefene rely heavily on the concurrency model pro-
vided byCML!. CML is based on the sequential langu&héL MTHI0. MT91] and inherits the fol-
lowing good features oBML : functions as first-class values, strong static typingympalrphism,
datatypes and pattern matching, lexical scoping, exaetamdling and a state-of-the-art module
facility. The sequential performance GML benefits from the quality of th8M L/NJ compiler. In
additionCML has the following properties:

e CML provides a high-level model of concurrency with dynamiatien of threads and typed
channels, and rendezvous-style communication. Thisiloliséd-memory model fits well
with the mostly applicative style SML.

e CML is ahigher-orderconcurrent language. Just 881L supports functions as first-class
values,CML supports synchronous operations as first-class valuesseTvadues, called
eventsprovide the tools for building new synchronization absicms, which are tailored to
the application.

*This work was done while the author was at Cornell Universitywas supported, in part, by the NSF and ONR
under NSF grant CCR-85-14862, and by the NSF under NSF gaRt&2-18233.

!Conversely, the development @ML was strongly motivated by the desire to be able to support inserface
systems comparable 8Xene.

e CML provides integrated 1/0O support. Potentially blocking Bferations, such as reading
from an input stream, are full-fledged synchronous operatioLow-level support is also
provided, from which distributed communication abstratsi can be constructed.

e CML provides automatic reclamation of threads and channetg threy become inaccessi-
ble. This permits a technigue of speculative communicatidnich is not possible in other
threads packages.

e CML uses pre-emptive scheduling. To guarantee interactiymnss/eness, a single thread
cannot be allowed to monopolize the processor. Pre-emiptiomes that a context switch will
occur at regular intervals, which allows “off-the-shelfde to be incorporated in a concurrent
thread without destroying interactive responsiveness.

e CML is efficient. Thread creation, thread switching and mesgagsing are very efficient
(performance numbers are given in [Rep91la]). Experientde @M L has shown that it is a
viable language for implementing usable interactive syiste

e CML is portable. It is written irSML and runs on essentially every system supported by
SML/NJ (currently four different architectures and many différeperating systems).

e CML has a formal semantics. In the tradition of the definitiorShfL[MTH90, MT91],
there is a formal definition of the core primitives©@ML (see [Rep91b] and [Rep92]).

To make this more concrete, Figure 1 gives the signature rmesof theCML concurrency
operations. CML programs consist of a collection tifreads which communicate via typethan-

type 'a chan
type 'a event
val spawn (unit -> unit) -> thread_id
val channel unit -> "' _a chan
val al ways . 'a ->"a event
val receive "a chan -> 'a event
val transmt ("a chan * "a) -> unit event
val choose "a event list ->'"a event
val guard (unit -> "a event) ->'"a event
val wrap ("aevent * ("a->"b)) ->"'h event
val wrapAbort ("a event * (unit ->unit)) ->"a event
val sync : 'a event ->'a
val poll "a event -> 'a option
Figure 1: BasicCML Concurrency Operations

nels Both threads and channels are created dynamically, useuhctions spawn and channel,
respectively. Rather than provide operations for comnaiiun, as is done in languages such as

2

CSplHoa78] occam(Bures] gndamber[Ca86] CML provides first-class values, called events, to rep-
resent synchronous operations. For example, the functeresve and transmit build event values
to describe channel I/O operations. The function alwayklbw@n event value that supplies an in-
finite stream of its argument. The function sync is used bgatis to actually synchronize on the
operations described by event values. And the operatidrigpalnon-blocking form of sync; in a
situation in which sync would block, it will return NONE irestd of blocking. There are also event
combinators to build more complex synchronous operations:

choose This constructs an event value that represents the nomdatstic choice of its arguments
(note that this choice is made when sync is applied). A chwoiag involve multiple commu-
nications (both receive and transmit) on the same chanuaeg thread cannot communicate
with itself.

guard This constructs an event out of an event valued function. Wélyac is applied, the function
is called first, and the result is used for synchronization.

wrap. This wraps a function around an event value. If the eventdseh in a synchronization, then
the function is applied to the result of the event.

wrapAbort This associates an action to be taken if an evenbtghosen in a synchronization. A
new thread is spawned to execute the action.

The power of this approach is that it allows the user to imgletmew communication and syn-
chronization abstractions. For example, we have found fasesidely varying abstractions, such
as remote procedure call, multicast channels and bufféradnzls.

3 An eXeneoverview

The motivation foreXene comes from the need for an adequate foundation for builditgyéac-
tive systems. Strong arguments can be made for basing thddtan on a high-level concurrent
systenfRG86. GRI2Z] This allows the programmer to avoid a variety of complimasi in dealing with
the user interface, especially concerning such aspecypasafety, extensibility, component reuse
and the balance between the user interface and other pdits pfogram.

EXeneis based on the following collection of design points.

e Concurrency.Concurrency is necessary to support multiple interfacéest® in a clean fash-
ion while avoiding a program architecture biased towarésutber interface. From a positive
viewpoint, threads provide a useful programming abswacior structuring software, com-
parable to functions in their utilityCM L provides the concurrency model feXene.

e Applicative. The complexity of user interface systems magnifies the ustgidlems with
mutable valuesEXene hides state wherever possible.

e Widget threads encapsulate stat@ince graphical user interfaces consist largely of side ef-
fects, the previous item begs the question of where doeddtelside. Following the stylis-
tic lead of CML, we use threads and channels to encapsulate stateXelre, as in other
system’k89. Haad0] concurrency and delegation replace the object-oriergpdoach adopted
by most standard user interface systems.

e Separate event streamdnput naturally divides into three classes: keyboard, racasd
control. EXene delivers these events as three separate streams, as thas ihisksimpler to
handle them in most applications.

e Hierarchical event distributionInstead of a central distribution of events, they should flow
down the window hierarchy. This allows the programmer toeheore control over how
events are processed. Functions can be interposed to nexaiateractions.

e Limited scope.There are certain aspects of tKewindow system thaeXene does not try
to handle. These include support for writing window manages well as low-level color
map hooks to support various animation tricks. By avoidiig small collection of special-
purpose functiongXene can be a much cleaner system.

4 TheeXenelibrary

The eXene library is composed of eight modules. Fo@epnetry, Font, StdCursor,

| CCC) provide various utility services, handling points, rewtes, fonts, cursors and interclient
protocols. TheEXeneBase module provides the fundamental types, such as displayserss,
windows, pixmaps and color maps, as well as functions foringg&nd releasing a connection to an
X server. TheeEXeneW n module fleshes out the window functionality, supplying fiimras for the
creation, deletion and manipulation of windoviesXene provides four types of windows: top-level
windows, whose parent is (essentially) the screen; poppyevel windows; subwindows, whose
parents are othegXene windows; and input only subwindows. Graphics operationsiramable$
are supplied by th&r awi ng module. Unlike the mutable, heavyweight graphics contegesl in

X to specify drawing characteristiosXene uses immutable, lightweight pens. This helps maintain
an applicative style and makes the components more modyi&@ntoving the programmer’s need
to manage graphics contexts as a scarce resource. Fitnglynt er act module provides the
mechanisms for handling events. Components communicetegh environments, with output
environments providing the parent component’s view andtigovironments providing the child’s
view. An environment is basically a tuple of events. One egerresponds to keyboard events, such
as key press and release; another event provides mouss,estgit as button down and up, mouse
motion, entering or leaving a window, plus the current mastage. There are two control events:

2Drawables include windows and off-screen pixmaps.

one allows the parent to inform the child that it should redpart of its display or that its window
size has been changed; the other allows the child to reqagsusg services, such as changing its
window’s size, from its parent.

Although providing most of the features offered by ¥@rotocol and exposing the underlying
graphics modeleXene provides a qualitatively different feel to the programmaeilding a user
interface, with many of the rough edges found in standalibraries and toolkits gone. Much of this
is due toeXene's reliance on concurrency and the environment connecta@wéden components;
aspects of this will be discussed more fully in the followsertion. Some of the differences arise
from usingSML as the base language; features such as garbage collectitatypets, and the
reliance on immutable values assist the programmer signific In addition,eXene provides a
number of small features that ease the programmer’s jobdasiging a higher-level approach than
Xlib. These features include using lightweight, immutable glas are not tied to a particular
class of drawables; having redraw events return the emdirefldamaged regions; queueing draw
events until the first expose event is received; making thglay and screen arguments implicit for
any graphics operation on a drawable; and, providing aneftienechanism for handling window
repairs related to copying areas in a natural, synchronasisidn. This last feature provides a
particular good example of the value@®ML events, and is discussed further in Section 6.

5 TheeXenewidgets

The base=Xene library provides sufficient functionality to construct anger interface. However,
the architecture of the library does not directly supporteaayal framework in which pieces of
the interface can be built by various people at various tiaresthen integrated into a single user
interface. For this, we introduce a widédayer on top of the base library. This layer provides the
additional protocols necessary for cooperation among &igj@s well as their reuse and extension.

A widget ineXene s essentially an instance of the following type:

dat at ype wi dget _t = Wdget of ({
attrs : unit -> window attr _t |ist, (* attributes *)
bounds_of : unit -> bounds_t, (* size data *)
realize : {
env : in_env_t,
win : wndowt,
sz . size_t
} -> unit

}

The program creates widget values and inserts them into swidhget hierarchy, the root of
which corresponds to a top-level window. éXene, a parent widget controls the external view

3For want of a better term, we borrow théterm for a graphical object composed of a window and its fater
semantics.

and resources of a child; the child makes requests for senfiom its parent. For example, the
bounds_of andat t r s functions allow the widget to specify how big it would likes i#vindow to
be and what specific window attributes (e.g., backgroundrcfidreground color) it desires. For the
sake of efficiency, a programmer can construct a completgetiierarchy before having any of it
appear on the screen. During the process of making a widgedrbhy visible, calledealization

a parent widget creates a window and an input/output enviesr pair for each child, and passes
this information to the child using the childfseal i ze function. The child uses the window for
display; the input environment provides its only built-ionmection to the rest of the widgets.

The bounds_t type mentioned above provides a fairly general mechanigna feidget to
specify its geometry requirements.
datatype dimt = DI M of {

base . int,
i ncr . int,
mn Coint,
nat Coint,
max :int option

}
type bounds t = { x dim: dimt, y dim: dimt }

The fields in a dim't value correspond to the following serntant

e The size in the specified dimension is giventigse + d * i ncr for some value ofi
subjecttari n <= d <= max, wheremax = NONE corresponds to no upper bound.

e The preferred or natural value fdris given bynat .

The use obounds_t does not preclude the use of more general constraint systems

In addition to specifying how widgets communicate, a widgggtem should provide mecha-
nisms by which widgets can be tailore@&Xene currently provides four such mechanisms. The
simplest consists of value parameterization, in which tidget is written to adapt to additional
specifications supplied later, such as the font to use orlaack function to invoke. Graphical
composition is another mechanism. The programmer usesitigetahierarchy to construct a new
widget abstraction from the set of available widgets. Amepie of this would be a labeled slider
widget, in which a slider and label widget are combined, wlith slider’s value configured to af-
fect the value displayed by the label. Many widget&ifene have been written to conform to the
model-view-controller architecture, in which the contasld view of a widget are separated by a
specific protocol. For example, the standard collectionsuttons ineXene are nothing more than
combinations of certain views (textual, arrow, toggle stvittheck mark, etc.) with certain control
semantics (discrete, continuous, two-state, etc.). Balviews and the controllers are available to
the programmer, to be used in whatever combinations seero@jgie. Finally, the widget archi-
tecture promotes interposition, in which one widget is vaegin a function that alters its behavior.

6

The wrapping function might do nothing more than translatgskrokes, or alter the desired bounds
or window attributes. As an example more indicative of thevgoof this approach, a menu can be
attached to a widget by wrapping it with a function that rexfsto mouse presses on the widget by
putting up a pop-up menu.

The current version oéXene provides versions of most of the typical widgets found ineoth
toolkits. The simple widgets, i.e., those not having cleitdof their own, include scrollbars, sliders,
labels, buttons, lists, canvases, text widgets and merursdmposite widgets, i.e., those that sup-
port the layout of childrereXene provides frames (to add borders), shapes (to constrain getsd
bounds) and layouts (for maintaining its children in a twamehsional layout of non-overlapping
boxes). Particular teXene is the shell widget, which serves as the root of a widget heésaand
provides the connection between Kaotion of windows and events, and thosesgene.

6 Theinternalsof theeXenelibrary

The X window system is a distributed program with the applicatbents communicating with the
X server process. The coXeprotocol consists of 211 different messages, divided ii® request
messages, of which 42 have replies, 33 event messages anwilihessages. Each request to the
server has an implicit sequence number (i.e., the first gessant is number 1, etc.). Messages
from the server to the client are tagged with the sequencébaunf the last request processed by
the server; this is used to match replies with requests.

Unlike some nortz language bindings foX, eXeneis implemented directly on top of thépro-
tocol. The only norML code involved is the run-time system’s support for socketroainication.
This approach of a complete implementation has the advartthgvoiding theC language biases
of Xlib. Furthermore, it provides a demonstration t8&tL andCML can be used to implement
low-level systems programs without significant loss of parfance.

A connection to arX server is called display In eXene a display consists of seven threads;
Figure 2 gives the message-passing architecture of thesadh Theanput and outputthreads
provide buffering of the communication with the server. Beguencethread generates sequence
numbers and matches replies with requests. All error messag logged with therror handler, in
addition, errors on requests that expect a reply are fomearalthe requesting thread. The sequencer
sendsX events to thevent bufferwhich decodes and buffers them. Tiop-level window registry
is a thread that keeps track of the top-level windows in thaiegtion and their descendants. It
manages a stream of events for each top-level window in tpicagion. The other two display
threads manage global resources:kiymap servaprovides translations frokeycodeso keysyms
thefont serverkeeps track of the open fonts used by the application.

A display has one or morgcreenseach of which can support differevisualsanddepths(e.g.,

X Server

N

Socket

Display _________________ N

| 1 |
| |
| |
| |
: Input Output |
: Buffer Buffer |
| |
| |
| |
| |
| |
| |
| |
| |
' Error '
i Sequencer Handler i
| |
| |
| |
| |
| |
: Event !
! Buffer |
| |
I Font !
: Server !
| |
| |
| |
! Top-level |
: Window Ksegxsf :
| Registry :
| |
! J[... }[J{ I
| |

Window KeySym Request/ Font
Event Streams Translations Reply Requests

Figure 2: The display message-passing architecture

black and white or 8-bit color). Each visual and depth coratiim of a screen is supported by two
threads; Figure 3 shows the message architecture for thesdraw masteis a thread that encodes

Screen

r----—-—-—--------------- - - - - —-"-"7- - -~ - - - - - - - == il

| |
| |
| |
| |
| |
| . |
: Display :
1 H H 1
! Request/ !
| L Reoy Redliests |
| |
| |
| |
| |
| |
| |
| < |
| |
| |
| I I |
| |
| |
! Draw GC !
| Master Server |
| |
| |
| |
| |

S % ____________________ l _________ J

Pixmap GC Requests
Draw Requests

Figure 3: The screen message-passing architecture

and batches drawing requests for a particular visual anthaepnbination; the draw masters at the
screen level are used for operationspixmaps(off screen rectangles of pixels). TI&C server
handles the mapping @Xene's immutable pens t&X’s mutable graphics contegts

Windowsare displayed with a particular visual and depth on a scrigarnally, windows are
organized into a tree hierarchy with a top-level window &t thot. Figure 4 gives the message-
passing architecture for the top-level window threads. dscdbed above, each top-level window
in an application has a dedicated streanXa@vents from the display. This stream is monitored by
thetop-level window routethread. This thread provides the transition fromheiew of events to
the eXeneview (i.e., a window environment). There is a draw mastegdtrfor each window tree
as well.

41t is an unpleasant artifact of that pixmaps and graphics contexts must be associated witttiaular screen, visual
and depth.

Window Tree

[m m m m m m m o e e e e m—m———— - — -

gvent
tream

5 o

Display

Keysym Request/
Reply

Translations

Top-level

Y

P Screen

Window
Router

i

Window

Tree Hierarchy

Draw
Master

Figure 4: The top-level window message-passing architectu

10

6.1 Example: CopyAr ea

An interesting example of the use GML’s features ineXene is the CopyArea operation, which
can be used to copy a rectangle of pixels from one place orcteers to another. A complication
arises if a portion of the source rectangle is obscured byhanevindow. For example, Figure 5
shows a use of CopyArea to translate a rectangle on the s¢reenthe cross-hatched region of the
destination corresponds to the obscured region of the soWbile some window system maintain

Destination reetangle

Figure 5: TheCopy Ar ea operation

abacking storgor virtual bitmap to handle these situations, the standérdolicy is to notify the
client that the CopyArea operation was not able to compldikin the destinatiof. This policy is
calleddamage contrglsince it is up to the client to repair the damage.

A typical use of CopyArea is in inserting a line of text. Indldase the client thread might issue
the following sequence of operations: a CopyArea to cregdeesfor the new text, followed by a
ClearArea to erase the old text and lastly a DrawText to trikernew line. The following picture
illustrates these steps:

SSomeX servers do support backing store as an option, but apmlitatnust be designed to function correctly when
itis not available.

11

TEXT = TEXT == == SOVE

TEXT TEXT TEXT

It is important that the user of the system see this sequenassimgle smooth transition, which has
implications for the implementation of operations usingp@&rea.

If CopyArea is treated as a normélRPC that returns a list of damaged rectangles, then the user
will be subjugated to screen flickerTo understand the reasons for this, examine Figure 6, which
shows the timing information for the client doing the texiadking, the thread handling the buffering
of communication with the server (really two threadgXene), and theX server. Because the other

Client Buffer X Server
CopyAr ea

CopyAck
Cl ear Area Dlspl_ay in
transition

Dr awText

Y,

Figure 6: Synchronous text scrolling

drawing operations are postponed until an acknowledgeonfehe copyArea is received, the period
of time the display is in transition can be quite lengthy.

Because of these performance concernsitpotocol does not use the standard reply mech-
anism for CopyArea, but instead uses one of Mva@vents, GraphicsExpose and NoExpose, to
notify the client of the result For single-threade@ clients (which make up the vast majority of

5Practical experience has demonstrated this effect. _
"Things are a little more complicated, since multig¢aphicSExposevents can be generated for a singlep-

12

X clients), this means that the code using the CopyArea dperatust also scan the event stream
for the acknowledgement. leXene, where we have concurrency and events, we can solve this
operation in a much more elegant way. Our solution is to usesgnchronous RP@lso known as
apromise([LS88]), to support CopyArea call&Xene provides an event-valued function with the
type

val copyArea : arg-type-> rect_t list event
wherearg-typeis the type of the arguments that specify the actual operatiche event that is
returned is the promise of the results. This function islgasiplemented:

fun copyArea arg = let
val replyCh = channel ()
in
spawn (fn () => request (COPY_AREA(reply_ch, arg)));
guard (fn () => (
case (poll (receive replyCh))
of (SOME rects) => always rects
| NONE => (flush(); receive replyCh)
(* end case *))
end

where request sends the operation to the buffer thread astutéils the buffer thread to fluch any
buffered messages to the server. The guard is optimizedstacfieck if the acknowledgement is
already available. The buffer code is more complicated;esinmust match the acknowledgements
with outstanding CopyArea requests. The advantage of fiigoach can be seen by comparing its
timing diagram, given in Figure 7, with Figure 6.

7 Futurework

Although quite usable in its current staeXene is still very much a work in progress. We are
already planning various specific changes, some at the imguitation level, others providing en-
hancements to the user’s view.

e X11R5.The newest release of the X window system includes suppofbdo significant new
features: standard, device-independent color modelsrnationalization; font servers and
scalable, machine-independent font representationsP&d the X implementation of the
PHIGS standard. Some aspects of these features will bepoiaied in future versions of
eXene.

e Cages.The Trestle window syste¥f91] uses the notion of cages to specify mouse motion
events. Essentially, a cage is a region surrounding thecposition; the system generates an
event when the cursor leaves the cage. This mechanism geregitheX notions of mouse
motion (a 1 pixel square cage) and window enter and leavetgyancage corresponding
to a window or its screen complement). At presetene provides no facility by which a

yArearequest.

13

Client Buffer X Server
CopyAr ea

Cl ear Area

Dr awText

Fl ush

Display in
transition

y A

Figure 7: Asynchronous text scrolling

widget can tell theX server to ignore unwanted mouse motion events, leadingrieagssary
network traffic. It is possible that cages may provide anatéegolution to this problem.

Direct event routing.The hierarchical routing used &Xene provides the basis for program-
mer’s ability to wrap an old component in a function proviglinew behavior. Most of the
time, though, events are routed through most paths uncbang& would like to explore

means of maintaining the semantics of hierarchical routitge providing more efficient

direct routing when possible.

Shape extensior fairly standard extension to thé€ protocol provides support for windows
of non-rectangular shape. We plan to incorporate this sidgarintoexXene.

Stub generationMuch of the code for marshalling and unmarshalling commatioa with
the X server is boiler plate code. Because of the many messagetheustight variations
between the classes of messages, producing the boileriplateerror-prone process. We
would like to be able to generate this code from tables syiegittheX protocol.

Finalization of system resourceln the implementation oéXene, there is a correspondence
between variousXeneresources, such as fonts and tiles, and their counterpettie server.
Although eXene resources can, in general, be automatically reclaimed,ishnot possible
with those tied taX resources, as we must guarantee thatdiresource is also freed. We
plan to attach finalization routines to these resourceschwvill automatically free the cor-
respondingX resources before reclaiming themeXene.

More widgets. There are obvious omissions from the current collectioeXtdne widgets.
In particular, we mention a widget for providing panningass a child widget, a composite

14

widget providing a panes mechanism, and a widget view faallgdlisplayed values, for use
in clocks, meters, etc. In general, we prefer to implemeiitraget of primitive widgets and
allow the programmer to extend them using the mechanismada byeX ene.

o Different widgetsWidgets usually correspond to ¥nhwindow. For certain applications, this
is too inefficient given the current limitations ¥ and hardware. We hope to explore means
by whicheXene can support more primitive graphical components involMegs overhead.
This could be viewed as giving widget views a more “first cladatus ineXene.

Acknowledgments

We wish to thank L. Augustsson, T. Breuel, H. Lin and T. Yan tiesting the initial versions of
eXene, pointing out bugs and suggesting various useful changes.

References

[Bur88] Burns, A.Programming in occam.2Addison-Wesley, Reading, Mass., 1988.

[Car86] Cardelli, L. Amber. I€Combinators and Functional Programming Languages. 242 ofLecture
Notes in Computer Sciencgpringer-Verlag, July 1986, pp. 21-47.

[GR92] Gansner, E. R. and J. H. Reppy. A foundation for user interfacgtremtion. In B. A. Myers
(ed.),Languages for Developing User Interfacep. 239-260. Jones & Bartlett, Boston, Mass.,
1992.

[Haa90] Haahr, D. Montage: Breaking windows into small piecedJ&ENIX Summer Conferenckine
1990, pp. 289-297.

[Hoa78] Hoare, C. A. R. Communicating sequential processesmunications of the ACM1(8), August
1978, pp. 666-677.

[LS88] Liskov, B. and L. Shrira. Promises: Linguistic suppant éfficient asynchronous procedure calls
in distributed systems. IRroceedings of the SIGPLAN’'88 Conference on Programming Language
Design and Implementatipdune 1988, pp. 260-267.

[MT91] Milner, R. and M. Tofte.Commentary on Standard MT'he MIT Press, Cambridge, Mass, 1991.

[MTH90] Milner, R., M. Tofte, and R. HarpeiThe Definition of Standard MLThe MIT Press, Cambridge,
Mass, 1990.

[Nel91] Nelson, G. (ed.).Systems Programming with Modula-Brentice-Hall, Englewood Cliffs, N.J.,
1991.

[Pik89] Pike, R. A concurrent window syster@omputing System2(2), 1989, pp. 133-153.

[Rep90] Reppy, J. H.Concurrent programming with events — The Concurrent ML manapartment
of Computer Science, Cornell University, Ithaca, N.Y., November 199@st(kevised October
1991).

[Rep91a] Reppy, J. H. CML: A higher-order concurrent languagePrbteedings of the SIGPLAN'91
Conference on Programming Language Design and Implemenidtiore 1991, pp. 293-305.

[Rep91b] Reppy, J. H. An operational semantics of first-class synchsampmrationsTechnical Report TR
91-1232 Department of Computer Science, Cornell University, August 1991.

15

[Rep92] Reppy, J. H.Higher-order concurrency Ph.D. dissertation, Department of Computer Science,
Cornell University, Ithaca, NY, January 1992. Available as Technical R82-1285.

[RG86] Reppy, J. H. and E. R. Gansner. A foundation for programmingaments. InProceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium ani¢abSoftware Develop-
ment Environmentecember 1986, pp. 218-227.

16

