The eXene Widgets M anual
(Version 0.4)

February 11, 1993

Emden R. Gansner
John H. Reppy

AT& T Bell Laboratories
600 Mountain Ave.
Murray Hill, NJ 07974



COPYRIGHT (© 1993 by AT&T Bell Laboratories
ALL RIGHTS RESERVED



Contents

21
22
23
24

31
3.2

3.3

Introduction

Using Widgets

WIAGELS . . . . o e e e e e

Programming withWidgets . . . . . . . . . . . . . L

Widgets

Shell . . .
CompositeWIdgets . . . . . . . . o o e e
321 Background . . ... e e e e e
322 BOX . .. e
323 Frame . . . . ... e e
324 Pile . ..
325 Scrollbarlayout . . . . . . oL e
326 Scrollport . . ... e
327 Shapes . . . . . .. e
328 Viewport . . . .. e e
329 Widgetset . . . . . . e e e
SmpleWidgets . . . . . . . L e
331 BUONS . . . . . e e
332 Cavas . . . . .. e e e
333 Coalorrectangle. . . . . . . oL e
334 Divider . . . . . e e
335 Framedwidgets . . . . . . ... e
336 Label . . . .
337 Scrollbar . . . . e e
338 Sider . ... e

N OO O WwWoWw



339 TextList . . . .. e 29

3310 Toggles . . . . . . e 30

34 TeXtWIdgets . . . . . . e e e e e e e 32
341 SrEdit ... e 32

342 FHdEdit. . . ... 33

343 Virtudterminal . . .. L. oL 34

344 Text ..o e 34

4 Menus 36
405 Menubutton . . . . ... 37

5 Widget Internals 39
51 Keyboardand MouseEvents . . . . . . . . . .. L e 40
52 Control Events . . . . . . . L L e e e e e e e e 40
53 CompositeWidgets . . . . . . . . .. e 41
54 Miscalany . . . . . .. e e 43

Draft of June 2, 1993 10:25



Chapter 1

| ntroduction

This document describes the eXene widget library; it isa companion to The eXene Library Manual [RG93],
whichisaso included in the distribution.

The eXene widget library provides a collection of interface “widgets,” plusthe glue for connecting them
into an application program. On the surface, the eXene widgets serve the analogous role to the base eXene
library that theM otif, OpenL ook and Athenatoolkitsplay for Xlib. IneXene, however, thewidget’sinterna
structureand external connectionsare much more closely tied tothe base library. Boththe baselibrary and the
widget library were designed to reflect a common design philosophy for building user interfaces. Although
the base library could be used to build librariesand applicationsin almost any style, it contai nsvarious pieces
that strongly support a particular use of subwindows. The widget library uses these pieces to implement its
components and to exemplify the underlying philosophy of constructing graphical interfaces.

The design promoted by eXene for widgetsand their interactionswith each other and with the application
is based on a collection of related techniques.

e Most fundamental is concurrency. Highly-interactive graphical user interfaces are inherently concur-
rent. Thisconcurrency should bemade explicitand used. Allowingeach widget itsownthread separates
it from other widgets and from the application code. This allows simpler structure inside the widget,
with each widget synchronously reading its own input streams, and cleaner interfaces between widgets.

e Dedling with widget input can be further smplified by dividing “messages’ to a widget into three
functionally distinct streams, one each for the keyboard, mouse and control. The control stream
provides such messages as “your window has been resized” and “redraw yourself”. With thisdivision,
code for handling the keyboard or mouse can bewrittenin anatura synchronousfashion, with no need
to maintain state explicitly.

e Input is distributed hierarchically. Events are passed from the root widget down the hierarchy to the
appropriate target widget. This allows the programmer to interpose widgets at any level to modify
widget characteristics or ater the distribution of events.

e Few thingsare as full of state as graphical widgets. This state can best be controlled, especialy in the
context of alanguage such as M L that encouragesimmutabl e values, by encapsulating it withinthreads
and channels. This avoids the need for the explicit classes, objects and inheritance that are usually



used in building user interfaces. Additional object-oriented techniques can be replaced with wrapper
widgets and delegation.

The widget library is the most tentative part of the eXene system, and the most likely to undergo radical
alterations in the near future. The current set of widgets is incomplete, and the individua widgets lack
a finished look. The semantics of some widgets are not general enough, or are not what the user might
expect. Some of the necessary protocols, and the underlying support, have not been completely designed or
implemented. Most of the data structures, most notably the Wwidget structure itself, represent first passes at
what will be necessary. Experience will require that some types be changed, that some fields be added, that
some functions or types be judged wrong. Thereis, at present, no integration of X resources with the widget
hierarchy.

Despite these shortcomings, the widget library provides a workable fabric for embroidering a collection
of widgetsinto a user interface. It serves as aninitial proof-of-concept for the eXene design philosophy, and
pointsthe direction for the construction of mature libraries based on the eXene design.

Draft of June 2, 1993 10:25



Chapter 2

Using Widgets

Thewidget library provides ahigher-level platform for the construction of graphical interfaces than the basic
eXene library. In particular, it emphasizes the use of widget components as the basic building block, blocks
that can be used modularly in a wide variety of applications. Necessary alterations can be done externaly,
through resources, parameter settings, or by wrapping the widget in other widgets.

In order for widgetsto work together at thislevel, acertain uniformity must be assumed. Thisuniformityis
achieved by requiring widgetsto provide a certain external interface and to respect certain internal protocols,
and requiring the programmer to obey afew additional constraints on the construction and use of the widget
hierarchy. The basic types and values for working with eXene widgets are given in the Wwidget structure,
which matches the WIDGET signature. In this chapter, we describe the pieces of this structure in detail as
they relate to tailoring new widgets from old and combining them into applications. A discussion of the
implementation of a new widget from scratch isleft for Chapter 5.

2.1 Widget geometry

In order to specify widget layouts, it isnecessary to describe various geometric constraintson widgets, such as
possiblesizes and alignments. EXene providesasimple but fairly general way of modeling these constraints.
The assortment of types and values employed for specifying these constraints are given bel ow.



signature WIDGET =
sig

structure CML : CONCUR_ML
structure G : GEOMETRY
structure EXB : EXENE_BASE
structure Interact : INTERACT
structure EXW : EXENE_WIN

datatype valign = VCenter | VTop | VBottom
datatype halign = HCenter | HRight | HLeft

exception BadIncrement

datatype dim = DIM of {

base : int,
incr : int,
min : int,
nat : int,
max : int option

(* type bounds = { x_dim : dim, y_dim : dim } *)
type bounds
val mkBounds : { x_dim : dim, y_dim : dim } -> bounds

val fixDim : int -> dim

val natDim : dim -> int

val minDim : dim -> int

val maxDim : dim -> int option

val fixBounds : (int * int) -> bounds

val compatibleDim : (dim * int) -> bool

val compatibleSize : (bounds * G.size) -> bool

end

Thevalign and halign datatypes provide values for specifying vertical and horizontal alignment, respec-
tively. For example, to specify that a collection of items should be | eft-justified, the programmer chooses the
valueHLeft.

The genera size requirements of a widget are given by a value of type bounds. This record has fields
x_dim and y_dim for specifying requirements in the horizontal and vertica directions, respectively. The
dim datatype represents the size constraints of the widget in a given dimension. These sizes are expressed
as a base size plus some multiple of an increment. Specifically, the minimum size, in pixels, is given
by base + min*incr; the natural size iS base + nat*incr; if max = SOME mx, the maximum size is
base + mx*incr, otherwise, the dimension is unbounded. For example, a virtua termina might use an
x_dim of

DIM{base = pad, incr = fontw, min = 1, nat = 24, max = NONE}

where pad is some base padding and fontw is the width of a character. Thisgives a minimum width of one
character, anatural width of 24 characters, with an unbounded maximum width.

Theinteger values given in adim value should satisfy the following constraints:

Draft of June 2, 1993 10:25



e base >= 0
e incr >= 1
e base + min*incr >= 1

e 0 <= min <= nat <= max.

Notethat these constraintsare not in general enforced by eXene, but are theresponsibility of the programmer.
In certain cases, the exception BadIncrement will be raised if the second constraint is violated. The third
congtraint is only necessary because X does not allow windows of zero width or height. It may be possible
relax thisconstraint in eXene.

The Widget structure provides some auxiliary functions for dealing with dim and bounds values. The
mkBounds function is the identity function. It provides a constructor function for bounds values needed
in functors due to the absence of type abbreviations in signatures. The minDim, natDim and maxDim
functions return the respective sizes in pixels of the given dimension. fixDim and fixBounds return rigid
(i.e, min = nat = max) dimensions and bounds, respectively, corresponding to given parameters. The
compatibleDim function returnstrueif the integer argument isat least the minimum size and no more than
the maximum size specified by the dim argument. The compatibleSize function returnstrueif the sizeis
compatiblewith the bounds argument in both dimensions.

2.2 Roots

The root type serves as an abstraction for asingle screen. It can be viewed as representing the root window
of the screen. In the future, the root structure may aso carry various application specific information.

signature WIDGET =
sig

type root

val mkRoot : string -> root

val delRoot : root -> unit

val sameRoot : (root * root) -> bool

val display0f : root -> display
val screenOf : root -> screen

end

ThemkRoot function accepts a string argument specifying the server connection (see Chapter 3 of The eXene
Library Manual for more information). The mkRoot function opens a connection to the specified X server,
and returnsaroot value corresponding to the default screen of the server.

A root value is needed to create most widgets, and therefore mkRoot is usualy invoked early in an
application. Widgets use the root to get access to the display, and thus to various resources such as fonts,
colorsand pixmaps, al which require a display argument.

Draft of June 2, 1993 10:25



The delRoot function closes the display connection. This has the side effect of deleting al the windows
associated with that root, plus freeing all server resources (e.g., fonts, colors, etc.) associated with the root.
The screen0f, display0f and sameRoot functionsdo the obvious.

2.3 Widgets

A widget is essentially atriple consisting of aroot value, abounds0f function, and arealize function. It
isimplemented as an abstract type through themkWidget function.

signature WIDGET =
sig

type widget
datatype wstate = Active of bool | Inactive of bool
exception AlreadyRealized

(* type realize_fn = {

* env : in_env,
* win : window,
* sz : size

* } -> unit

*)

type realize_fn

val mkWidget : {

root : root,

bounds0f : unit -> bounds,

realize : realize_fn

} -> widget

val rootOf : widget -> root
val boundsOf : widget -> bounds
val realizeFn : widget -> realize_fn
val sameWidget : (widget * widget) -> bool
val natSize : widget -> size
val boundsFn : widget -> unit -> bounds
val okaySize : (widget * size) -> bool

end

The root value smply specifies the root to which the widget belongs. A widget'swindow and its external
characteristics (e.g., Size, origin, visibility) are controlled by the widget’s parent. The parent creates the
window and passes it to the child through the child’'srealize function. A widget can only be realized once;
caling its realize function additiona times will raise the AlreadyRealized exception. The child also
receives the size of the window and its environment. The environment contains three event values used to
transmit keyboard, mouse and control events to the child. Thisisinput environment discussed in Chapter 7
of The eXene Library Manual. It isthe child’s responsibility to always be available to synchronize on these
events. Therealize function will be more fully discussed in terms of widget internals (see Chapter 5).

Thebounds0f functionisusually used by awidget’s parent to determine the size constraints of the widget

Draft of June 2, 1993 10:25



when positioning the child within the parent’swindow. It should be noted that what bounds a widget returns
through its bounds0f function is only a suggestion to the parent. Parent widgets should try to accommodate
a child’'s size requests, but sometimes thisis not possible. Widgets, in turn, should be designed to safely
accommodate any size. Also notethat thebounds0f function should not block; each widget should construct
itsbounds0f function to return as quickly as possible.

The Widget structure contains additional functions associated with widget properties. The root0f,
boundsFn and realizeFn functions act as selector functionsfor these defining attributes of a widget. The
bounds0f function returns the current bounds desired by the widget. The function natSize returns the
current natural size associated with the widget. The function okaySize returns true if the given size is
compatible (see compatibleSize above) with the widgets bounds.

Because of the stateimplicitly associated with widgets, each widget receives auniquestamp inmkWidget.
The sameWidget function reports on the equality of these stamps.

Thewstate typeisused various places in the widget library to specify widget state. Widgets associated
with awstate value can be considered either active or inactive. A widget in either state can be either set
or unset. Thus, an active widget that is set would correspond to Active true. Usualy, these states are
reflected in the display of the widget. In addition, the user is usually prohibited from changing the set/unset
state of an inactive widget.

Widgets live fairly circumscribed lives. They are created; they are inserted into a parent; they are
realized, being given an input environment and a window; they might be removed from a parent widget; their
environment and window are destroyed. As noted above, the program cannot realize a widget twice. Nor are
thereany provisionsfor removing awidget from the widget hierarchy, and then reinserting it | ater, even back
intoitsorigina parent.

2.4 Programming with Widgets

There are afew rules concerning the use of widgetsin building a program. At some point in the program, a
root value must be created. This can be used to create widgetsin varying order. Many composite widgets
requirealist of child widgetsat the time of creation; this necessitates that a child widget be created beforeits
parent. Certain composite widgets allow child widgets to be added dynamically. Even in these cases, itisa
good practice and more efficient to provide the child widgets at the timethe parent is created. At some point,
awidget tree must be attached to a shell widget. To actualy instantiate the widget tree (i.e., to reaize the
widgets and create and map the underlying windows), the init function must be called on the shell widget.
In most X toolkits, the call to instantiate the widgets causes the application program to give up control to the
event-driven control loop within the toolkit library. Alternatively, the application must be willing to provide
its own event distribution mechanism. Neither of these deficiencies is true in eXene. After instantiating
the widgets, the main application thread is still active and can continue to go about its business, whether
performing computations, reading from standard input or interacting with the widgets.

Figure 2.1 contains the code for a simple program which uses widgets. This example draws a framed
buttonlabeled “Goodbye, Cruel World!”. If theuser clickson the button with any mouse button, then the
function quit is called. The program will also quit if the user enters “quit\n” on standard input. Thisis
similar to the xgoodbye example in Chapter 2 of [NO90], but differsin one major way. In the xgoodbye,

Draft of June 2, 1993 10:25



open Widget Box FramedButton
fun goodbye server = let
val root = mkRoot server
fun quit () = (delRoot root; RunCML.shutdown())
val layout = Box.widgetOf (mkLayout root (VtCenter [
Glue {nat=30, min=0, max=NONE},
WBox (widgetOf (mkFrTextCmd root {
action = quit,
foregrnd = SOME(EXB.blackOfScr(screenOf root)),
backgrnd = NONE,
label="Goodbye, Cruel World!",
border_width = 1
0,
Glue {nat=30, min=0, max=NONE}
D))
val shell = Shell.mkShell (layout, NONE, win_name = NONE, icon_name = NONE)
fun loop () =
if (CIO.input_line CIO.std_in) = "quit\n"
then quit ()
else loop ()
in
Shell.init shell;
loop ()
end

Figure 2.1: Goodbye

control is passed off to the Xt event loop; in our version, the application retains control (reading the standard
input in this case).

There are many ways new widgets can betail ored from existing ones. 1n additionto the obvioustechnique
of altering the parameters and values of a widget, the eXene widget library provides the ability to compose
widgets graphically and functionally.

Graphica composition occurs when the window of a widget is included within the window of a parent
widget. A trivial example of this technique occurred in the example above, in which a button was composed
withinavertical box. Below, in Figure 2.2, we give a more substantial example, in which alabel widget and
adlider widget are combined to provide textual feedback for the dider’svalue.

The second technique for composing widgets occurs when a widget wraps another in order to interpose
itsown behavior. In thefollowing example, the wrapping widget creates arigid widget by interposing itsown
bounds0f function.

fun mkRigid w = let
fun myBounds () = let
val {x_dim,y_dim} = boundsOf w
in
{x_dim = fix x_dim, y_dim = fix y_dim}
end
in
mkWidget{root=root0f w, boundsOf=myBounds, realize=realizeFn w}
end

Draft of June 2, 1993 10:25



fun mkLabelSlide root (wid, color) = let
val label = Label.mkLabel root {
label=" 0",
foregrnd=color,
backgrnd=NONE,
font=NONE,
align=HRight
}
val slider = Slider.mkHSlider root {
foregrnd=color,
wid=wid,
init=0,
scale=100
}
val set = Label.setLabel label
val evt = Slider.evtOf slider
fun loop () = loop (set (makestring (sync evt)))
in
spawn loop;
mkLayout root (HzCenter [
WBox (Label.widgetOf label),
Glue nat=20, min=20, max=SOME 20,
WBox (Slider.widgetOf slider)
»

end
Figure 2.2: Composing label and dider widgets

Asanother exampl e of wrapping awidget to ater itsbehavior, Figure 2.3 showshow we can add a pop-up
menu to the example of Figure 2.1. In this example, we have taken the code from the previous example,
defined amenu, and used theattachMenu functionto wrap a handler for thismenu around the button widget.
This produces a new widget and a CML event. The new widget works identically to the old widget, except
when the user presses the third button in the window. When this happens, a pop-up version of the menu
appears. If the user makes a selection, this selection is reported through the event value. The main Loop
function now services both menu selection as well as keyboard input.

The Widget structure provides several high-level functions that support modifying widgets through
wrappers. These are discussed in Section 5.4.

Draft of June 2, 1993 10:25



10

val menu = MENU [
Menultem("item-1", 1),
Menultem("item-2", 2),
MenuIltem("item-3", 3),
Submenu ("'submenul', MENU [
Menultem("item-4", 4),
Menultem("item-5", 5),
Menultem("item-6", 6)
D,
Menultem("item-7", 7)
]
fun goodbye server = let
val root = mkRoot server
fun quit () = (delRoot root; RunCML.shutdown())
val layout = Box.widgetOf (mkLayout root (VtCenter [
Glue {nat=30, min=0, max=NONE},
WBox (widgetOf (mkFrTextCmd root {
action = quit,
foregrnd = SOME(EXB.blackOfScr(screenOf root)),
backgrnd = NONE,
label="Goodbye, Cruel World!",
border_width = 1
M,
Glue {nat=30, min=0, max=NONE}
1
val (widget, evt) = attachMenu (layout, [Interact.MButton 3], menu)
val shell = mkShell (widget, NONE, win_name = NONE, icon_name = NONE)
fun loop () =
select[
wrap (evt,
fn n => (CIO.print('choice = "~ makestring n = "\n"); loop())),
wrap(CIO0.inputLineEvt CIO0.std_in,
fn line => if line = "quit\n" then quit () else loop ())

in
init shell;

loop ()
end

Figure 2.3: Goodbye with a pop-up menu

Draft of June 2, 1993 10:25



Chapter 3

Widgets

We note that widgets divide naturally into two classes: composite and simple. The former are those that
take other widgets as parameters. They graphically contain one or more child widgets, and are responsible
for the layout of the child widgets. Simple widgets usualy occur as the leaf nodes in the widget hierarchy
and provide the basic pseudo-devices (scrollbars, meters, dials, buttons, etc.) with which the user doesinput.
These definitions are not meant to be precise. In particular, we note that some simple widgets are in fact
implemented as composite widgets.

All widgets act like subtypes of thewidget type. We use the convention that each widget type supplies
an explicit type casting function widget0f that exposes an underlyingwidget value.

In the following sections, we describe the currently available widgets. For each widget, we comment
on what it does, how it reacts to some of the important base protocols, how it is created, and how it is
parameterized. Note that there islittle consistency as to which parameters, such as color, font or sizes, are
available to the programmer dynamically and which are built into the widget. We assume that this problem
will go away in afuture release when a uniform resource mechanism is supplied.

3.1 Shel

The shell type does not define a widget per se. It provides an abstraction for top-level windows, which
obviously cannot beinserted in other widgets, and handl es the mismatch between the X model and the eXene
model. It alows the user to provide top-level window information to the window manager. It aso hides
various other implementation differences between top-level windows and subwindows.

11



12

signature SHELL =
sig
structure W : WIDGET

type shell

type wm_args (¥ = { win_name : string option, icon_name : string option } *)
val mkWMArgs : win_name : string option, icon_name : string option -> wm_args

type hints (* = { size_hints : size_hints list, wm_hints : wm_hints list } *)
val mkHints : {
size_hints : W.EXW.ICCC.size_hints list,
wm_hints : W.EXW.ICCC.wm_hints list
} -> hints

val mkShell : (widget * W.EXB.color option * wm_args) -> shell
val mkTransientShell : W.EXB.window ->
(widget * W.EXB.color option * wm_args) -> shell

val init : shell -> unit

val destroy : shell -> unit

val setWMHints : shell -> hints -> unit
end

The mkShell function creates a shell using a child widget, an optiona color, and optional 1abels for the
top-level window and itsicon. The color specifies the top-level background color; by default, itiswhite. The
|abel sare passed to the window manager. They correspondtothewin_name and icon_name parameters used
with setWMProperties, as described in Chapter 4 of The eXene Library Manual. The shell will be totally
overlaid by its child widget; the bounds of the shell are the same as itschild.

The widget tree attached to the shell is not instantiated until the program calls the init function on the
shell. Only at this point will the underlying windows be created and mapped, and the widget hierarchy will
becomevisible. The natural size of thetop-level window isthe natural size of the child widget. The shell uses
the bounds of the top-level window to specify a base, minimum and maximum window size pluswindow size
increments to the window manager. A call to destroy on a shell causes the destruction of al the windows
in the widget hierarchy below the shell.

ThemkTransientShell function allowsyou to create a“transient” top-level window. X provides three
flavors of top-level windows. Most are meant to be “long-lived” and managed by the window manager.
Typicaly, the window manager will decorate them with aframe, atitle bar and variousicons. These are the
windows created by the mkShell function. At the other extreme are pop-up windows. These are meant to
last very short periods of time, as in a pop-up menu, and are not registered with the window manager. At
present, the widget library does not provide direct access to such windows, athough they are used in the
implementation of menus. The programmer can create them using the createSimplePopupWin functionin
the base library. The third type of window is transient, occupying a middle ground between the other two. A
typical use of atransient window would bein adia oguebox. The window manager knows about the transient
window, but usually does not give it a title bar or other decoration. A transient window is associated with
another window (the first argument to the mkTransientShell function). Typicaly, the window manager
will iconify/de-iconify atransient window in conjunction with its associated window.

The setWMHints function allows the application to specify hints about the top-level window and the

Draft of June 2, 1993 10:25



13

applicationto thedisplay manager. In particular, the programmer can use setWMHints to override the default
size hintsthat the shell passes to the window manager. If setWMHints iscalled beforethe init function, the
shell queues the hints, which will be sent when init iscalled. A more complete description of the hints can
be found in The eXene Library Manual or X manuals (e.g., [Nye9Q]).

A shdll servicesitschild’'s control channel. Requests from the child widget for resizing are respected; the
shell will attempt to change the size of the top-level window. Receiving a C0_KillReq from the childisthe
same as calling thedestroy function.

ThemkWMArgs and mkHints functions are identity functions on the respective records.

3.2 Composite Widgets

Composite widgets are used to manage the layout of child widgets within a given window. A composite
widget plays the same rolefor its window as the window manager plays for the screen. Because of their dual
role as a child widget as well as a parent to various child widgets, composite widgets have more to do than
simple widgets in maintaining the protocols on the control events. Graphically, they usually have little or
nothing to do.

3.2.1 Background

The background widget is used to provide a default background color to a widget and its descendants.
The X graphic model associates a background color with a window. It is this color that is used in the
graphics operations clearirea and clearDrawable (cf. Chapter 5 in The eXene Library Manual). By
default, windows in eXene inherit their parent’s background color, which is set when the shell is created
(cf. Section 3.1).

signature BACKGROUND =
sig

type background
val mkBackground : { color : color option, widget : widget } -> background
val widgetOf : background -> widget

end

The mkBackground command creates a new widget with a new associated background color. The argument
widget and all itsdescendents will inherit the new color, until abackground iscreated lower in the hierarchy.
If no color is specified, whiteis used.

322 Box

Box widgets provide for the non-overlapping placement of child widgets along a horizontal or vertica axis.
A child widget is expanded or contracted to fill as much of itsinnermost containing box as possible, but the
size bounds of achild are never violated.

Draft of June 2, 1993 10:25



14

signature BOX =
sig

exception BadIndex

datatype box
= HzTop of box list
| HzCenter of box list
| HzBottom of box list
| VtLeft of box list
| VtCenter of box list
| VtRight of box list
| Glue of { nat : int, min : int, max : int option }
| WBox of widget

type box_layout

val mkLayout : root -> box -> box_layout

val widgetOf : box_layout -> widget

val insert : box_layout -> (int * box list) -> unit
val append : box_layout -> (int * box list) -> unit
val delete : box_layout -> int list -> unit

val mapBox : box_layout -> int list -> unit

val unmapBox : box_layout -> int list -> unit

end

ThemkLayout function requires adisplay root and abox value. The layout of the widgetsis recursive. The
boxesin alist are laid out from left to right in horizontal boxes, and from top to bottom in vertical boxes.
Glue boxes act like transparent widgets and are used to provide spacing between other boxes.

The layout algorithmis simple. We describe the case for a horizontal box. Vertical boxeswork the same
way, switching theroles of horizontal and vertical. Each child is given its natural width. If the sum of these
widths does not fill the width of the box, the slack is alocated uniformly to the child widgets, but only in
multiples of achild’sincrement value and a child’s maximum width is never exceeded. If thereisstill dack
after al children have been increased to the maximum widths, it is placed to the right of all the children. If
the sum of thewidthsistoo large for the box, the excess is removed uniformly from the child widgets, but a
child’s minimum width and increment value are respected. If thereis still excess after all children have been
decreased to the minimum widths, some of the rightmost children will not appear in the window.

Each child is guaranteed its minimum height. If this does not equa the height of the box, the child’'s
height is increased as much as possible, in multiples of the child's increment, up to its maximum height. If
thisis still not equal to the height of the box, the child is aligned vertically according to the box’s alignment
parameter. Thus, aHzCenter box will center its components vertically, while aHzTop box will top justify
itscomponents. If achild’ sheight istoo large for the box, the child is still aligned vertically according to the
box’s aignment parameter, but part of the child will not bevisible.

We now describe the bounds of a box. It seems reasonable that the minimum, natural and maximum
widthsof a horizontal box should be the sums of the respective widths of its children. To thisend, we set the
base width base to be the sum of the minimum widths of its children, in pixels. The horizonta increment
incr isthe minimum of the horizontal increments of al children with a non-fixed horizontal size. Themin
valueis set to zero. Thenat valueisthe least integer such that base + nat*incr isgreater than or equal

Draft of June 2, 1993 10:25



15

to the sum of the natural widths of its children. The max value is defined analogoudly. The natural height of
the box is the maximum of the natural heights of its children. The minimum height of a box is the maximum
of the minimum heights of its children. The maximum height of a box isthe maximum of the natural height
of the box along with the non-infinite maximum heights of itschildren, or infiniteif al children have infinite
height. We then set the base height base to the minimum height and min to 0. The vertical increment isthe
minimum of the vertical increments of all children with non-fixed vertica size and whose vertical increment
isgreater that 1. If there are no such children, the vertical increment isset to 1. Asinthe horizontal direction,
nat and max are taken to be the smallest integers such that base + nat*incr and base + max*incr are
greater than or equd to the natura height and the maximum height, respectively. In horizontal boxes, glue
components act like widgets whose horizontal bounds are given by the glue's parameters, with an implicit
base of 0 and incr of 1, and whose vertical bounds have a natura size of zero, with infinite shrinking and
stretching.

The rules given above for determining the bounds of a box are obviously heuristics. They should work
well in a given dimension when the sub-boxes have a fixed size in that dimension, have an increment of
one, or have “compatible’ sizes (e.g., the same natura size with increments that are multiples of some base
increment). These conditionshold truein such common cases as attaching a scrollbar or using sufficient glue.
When these conditionsare not satisfied, the resultant bounds of a box can be unexpected.

If the box argument b to mkLayout iS a Glue or WBox value, it is treated as HzCenter [b]. The
Widget .BadIncrement exceptionisraised if awidget hasazero increment.

The box tree managed by a box layout widget can be dynamically altered using functions provided in
the Box structure. At present, these changes can only be made in the top-level list in the box tree. (This
iS not a serious restriction, as a box_layout can be inserted within another box_layout.) A call of
insert layout (n,bl) insertsthelist of boxes bl before the nth box in the top-level box list. Indexing of
boxes starts at 0; n can be any integer up to and including the length of the top-level box list, the maximum
value corresponding to appending bl to the list. Any other value of n causes the exception BadIndex to be
raised. When a collection of boxesin inserted into abox layout, the layout isrecomputed using the geometry
of the new boxes. The widgets in the new boxes are assumed to be unrealized; they will be redized at this
time. append layout (n,bl) isequivalentto insert layout (n+1,bl).

delete layout il removes the boxes whose indices are given in the index list il. This destroys any
windows associated with widgets in the boxes, and effectively destroys the widgets. The unmapBox tellsthe
layout widget to pretend that the boxes whose indices are given in the argument list have zero size and to
repositionitschildren accordingly. Unmapping an already unmapped box hasno effect. ThemapBox function
allows unmapped boxes to be made visible again. Mapping an aready mapped box has no effect. All boxes
are assumed to be in a mapped state when inserted. In all these three functions, an invaid index will cause
the exception BadIndex to be raised.

3.23 Frame

The ability to specify a border of an X window is a programming convenience in simple applications, and
improves performance by allowing the server to perform damage control on borders which would otherwise
have to be handled by the application. On the negative side, the use of borders unnecessarily complicates the
computation of window geometries. Knowing the upper left corner of a window and the size of its drawing

Draft of June 2, 1993 10:25



16

region is not enough to cal cul ate the actual bounding box of the window; the window’s border must be taken
into account.

For these reasons, the eXene widget library assumes al underlying X windowswill have bordersof width
zero. To provide borders, the library suppliesframe widgets. A frame widget creates a border of agiven size
and color around its child widget.

signature FRAME =
sig
val mkFrame : {
color : color option,
width : int,
widget : widget
} -> widget

val widgetOf : frame -> widget
val setColor : frame -> color option -> unit

end

ThemkFrame functiontakes an optional color (the parent’s background if NONE), a border width, and the child
widget about which the border iswrapped. A negative border width causes the LibBase .BadArg exception
to beraised. The boundsof aframe are the same as those of its child except that the base isincreased to allow
for the border. Except for the actual border, aframe widget istransparent, inheriting its parent’s background.
The setColor function can be used to change the frame's color dynamically.

3.24 Pile

Where abox_layout widget composes its children in non-overlapping rows and columns, a pile widget
maintainsalist of children, only one of whichisvisibleat atime.

signature PILE =
sig

type pile

exception NoWidgets
exception BadIndex

val mkPile : root -> widget list -> pile
val widgetOf : pile -> widget

val mkVisible : pile -> int -> unit

val visible : pile -> int

val size : pile -> int

val insert : pile -> (int * widget list) -> unit
val append : pile -> (int * widget list) -> unit
val delete : pile -> int list -> unit

end

Draft of June 2, 1993 10:25



17

ThemkPile function takesaroot and alist of widgets and creates apile widget. Inapile, only one child
widget is visible at atime. The bounds and resize behavior of a pile widget are the same as its currently
visible child. The child widgets are indexed consecutively from zero. Initialy child Oisvisible. mkVisible
causes the child with the given index to become the new visiblewidget. This raises the exception BadIndex
if the index isinvalid. Note that, in this model, the currently visible child is not placed at the front of the
list of children: it is only marked as the visible child. Aslong as no widgets are added or deleted to a pile,
the indexing of the children remains fixed. The query functionsvisible and size return the index of the
currently visible child and the number of children, respectively.

A pile alows widgets to be dynamically inserted and deleted with the insert, append and delete
functions. Inserting or appending widgets does not alter the currently visible widget. It does change the
indices associated with the widgets, so it is possible the currently visible widget will have a new index.
Similary, deleting widgets does not necessarily alter the currently visible widget, though it does cause a
reindexing. However, if the visible widget is one of those removed from thepile, widget O of the remaining
widgets becomes the new visiblewidget. Additional semantics associated with these functionsare anal ogous
tothe similar functionsin Box (cf. Section 3.2.2).

An empty pile acts like a transparent widget whose bounds are fixed at one pixel by one pixel. Invoking
visible onan empty pileraisestheNoWidgets exception.

3.25 Scrollbar layout

TheScrollLayout structureimplementsautility function for combining widgetsinto atypical “widget with
scrollbar” layout. Thislayout consists of the main widget, with an auxiliary widget placed to the left or right
of the main widget, and another auxiliary widget place bel ow or above the main widget. The resulting widget
isastraightforward application of mkLayout.

signature SCROLL_LAYOUT =
sig

structure Box : BOX

val mkSBLayout : root ->
widget : widget,
hsb : {sb : widget, pad : int, top : booll} option,
vsb : {sb : widget, pad : int, left : booll} option
-> Box.box_layout

end

ThemkSBLayout functiontakesaroot, plusthemain and auxiliary widgets (plus someformatting information)
and producesabox_layout widget. If hsb isnot NONE, the associated widget will be centered above (bel ow)
the main widget if top istrue (false). The pad parameter specifies how much space, in pixels, to leave
between the main and auxiliary widget. The vsb field is handled anal ogoudly.

The bounds functions of the auxiliary widgets are not modified. If the programmer desires that they
always occupy an entire side of the main widget, they must have bounds that are flexible in the appropriate
dimension. The sb fields purposely take widget values rather than scrollbar values. This makes the
function useful in more general cases. Even when an auxiliary widget isbasically ascrollbar, it might still be

Draft of June 2, 1993 10:25



18

framed or composed with arrow buttonsand therefore would not be usable as a scrollbar in the composite
widget.

3.26 Scrollport

The ScrollPort structure is afirst attempt at automatically attaching panning features to a widget. The
programmer supplies awidget, and the scroll port attaches scrollbars. The user can use the scrollbarsto pan
over the underlying widget.

signature SCROLL_PORT =
sig

type scroll_port

val mkScrollPort : {
widget : widget,
continuous : bool,
color : color option,
hsb : {top : bool} option,
vsb : {left : bool} option
} -> scroll_port

val widgetOf : scroll_port -> widget

end

The widget argument to mkScrollPort specifies the underlying widget whose view is to be controlled
by the scroll port. The hsb and vsb arguments specify whether horizontal and vertical scrollbars are to be
attached, and to which side they should be attached. The color argument is passed to the scrollbar creation
functions (cf. Section 3.3.7). If continuous istrue, the scroll port will attempt to keep the widget view
continuoudly in step with the scrollbar position. Otherwise, it will wait until the user releases the mouse,
fixing afina position, before it updates the widget view. The latter choice is recommended if it is expensive
for awidget to update its display.

3.2.7 Shapes

ThewidgetsintheShape structureallow the programmer to control theboundsrequirementsof agivenwidget.
The mkShape function takes a widget whose bounds are to be constrained and two constraint functions. It
creates a new widget wrapping the given widget. The new widget isidentical to the given widget except for
two aspects. The new widget’s bounds0f function returns the value given by the bounds_fn when called
with the child’sbounds0f function. In addition, whenever the child asks to be resized, the resize request is
only passed on to the parent if theresize_£n, invoked with the child’sbounds0f function, returnstrue.

Draft of June 2, 1993 10:25



19

signature SHAPE =
sig

val mkShape : {
widget : widget,
bounds_fn : ((unit -> bounds) -> bounds),
resize_fn : ((unit -> bounds) -> bool)

} -> widget

val mkRigid : widget -> widget
val mkFlex : widget -> widget
val fixSize : (widget * size) -> widget
val freeSize : (widget * size) -> widget

end

The remaining functions are a special cases of mkShape. The fixSize function creates a widget whose
bounds will aways be fixed at the given size, and which will never request to be resized. The freeSize
function creates a widget whose natura size will always be the given size, but is totally flexible in both
dimensions. The widget will aways pass on resize requests from its child. The mkRigid and mkFlex
functions apply the fixSize and freeSize functions, respectively, using the natural size of the argument
widget.

3.28 Viewport

The Viewport structure is an initial primitive attempt at providing the basis for general-purpose panning
over widget. A viewport object provides a classical window on the virtual graphical space of an underlying
window. In effect, the underlying widget can be arbitrarily large, but only the part of it that is projected
through the viewport'swindow is visible. The amount of the underlying window that can be seen depends on
the size of the viewport window. In addition, the viewport’s position relative to the underlying widget can be
changed, providing panning. A viewport is usually tied to other widgets such as scrollbars to give the user
control over the panning (cf. Section 3.2.6).

signature VIEWPORT =
sig
type viewport
val mkViewport : widget -> viewport
val widgetOf : viewport -> widget
val getGeometry : viewport -> {rect : rect, childSz : size}
val setOrig : viewport -> point -> unit
val setHorz : viewport -> int -> unit
val setVert : viewport -> int -> unit

val evtOf : viewport -> {rect : rect, childSz : size} event

end

A viewport is obtained by applying mkViewport to a widget. The bounds of the viewport will have the
same natural size as the underlying widget, but can be arbitrarily shrunk or grown. If the underlying widget

Draft of June 2, 1993 10:25



20

is potentidly large, it is therefore usually a good idea to wrap a viewport in another widget to constrain its
size. At redlizationtime, the window of the underlying widget is made a subwindow of the viewport window.
Regardless of the size of the viewport’s window, the subwindow is precisely the size requested by the child
widget.

In the current model, the viewport cannot extend beyond the boundaries of the underlying widget. In
particular, it can be no larger than thewidget’ swindow. The viewport determines arectanglein the underlying
widgets coordinate system.

There are various functions for monitoring and controlling the viewport’s position. The function
getGeometry returnsthe underlying widget's current size, and the viewport’srectangle in the child widget’s
coordinates. The set0rig function can be used to move the viewport'sorigin in the widget's coordinate sys-
tem. Thisraises the exception LibBase .BadArg if the new rectangleisillegal. The x and y coordinates can
be set independently using setHorz and setVert. These functionsinvolve the same exception as setOrig.
Any changes to the viewport configuration are reported through the event supplied by evt0f. Monitoring
thisevent allowsthese changes to be reflected in any associated widgets such as scrollbars.

32.9 Widget set

Strictly spesking, a widget_set is not a widget. It provides a mechanism for managing a collection of
widgets, some of which can be selected, either by the user or under program control. A typica use would
involve a collection of toggle buttons, each setting a piece of shared program state to some value. Using
awidget_set, the user could change the state by clicking on one of the buttons; the button indicating the
previous state setting would automatically be unset.

Draft of June 2, 1993 10:25



21

signature WIDGET_SET =
sig

exception BadIndex
exception MultipleChoices

type widget_set

(* type set_item = {
*  widget : widget,
* state : wstate,
* pick_fn : bool -> unit,
* active_fn : bool -> unit
* }
*)
type set_item
val mkSetItem : {
widget : widget,
state : wstate,
pick_fn : bool -> unit,
active_fn : bool -> unit
} -> set_item

val mkMultiSet : root -> set_item list -> (widget_set * widget list)
val mkSingleSet : root -> set_item list -> (widget_set * widget list)

val setChosen : widget_set -> (int * bool) list -> unit
val setActive : widget_set -> (int * bool) list -> unit
val getChosen : widget_set -> int list

val getState : widget_set -> Widget.wstate list

val insert : widget_set -> (int * set_item list) -> widget list
val append : widget_set -> (int * set_item list) -> widget list

end

The mkMultiSet and mkSingleSet functions are used to creste a widget set. The principa differenceis
that the former allows multiple items to be set, whereas the latter allows at most one item to be set. These
functionstake a root and alist of items to be included in the set. They return a list of wrapped widgets,
and awidget_set valuefor controllingthe set. Thewidget_set doesno placement and is not a composite
widget. The return widgets must still be inserted into the widget hierarchy through some composite widget.

Each set_item specifies an underlyingwidget, theinitial state of thewidget, afunctionto be called when
the widget changes between set and unset, and a function to be called when a transition is made between
active and inactive. These functions are only called due to subsequent transitionsin the widget_set; they
are not applied to the initial widget state.

It is assumed that widgets are chosen that graphically reflect the current state. If the user clicks mouse
button 1 on an active widget, thewidget isput in the set state. If itisalready in the set state, nothing happens.
Otherwisg, if it isin a singleton set, the pick_fn of any currently set item is caled with false. Then the
pick_fn of thenew itemiscalled withtrue. If the user clicks mouse button 2 on an active widget, the widget
isput in the unset state. If it isaready in the unset state, nothing happens. Otherwise, itspick_fn iscalled
with false. User clicks on an inactive item have no effect. All input environment events, including mouse
clicks, are passed to the underlying widget after processing by the widget set.

Draft of June 2, 1993 10:25



22

The states of the widgetsare under program control. The setChosen function can be used to set theitems
whose indices are given to the specified state. Note that setChosen affects inactive as well as active items.
The getChosen function returns a list of the indices of currently selected items. The setActive function
can be used to ater which items are currently active. The getState function returns a list of the current
widget statesin order. Invalid indiceswith setChosen and setActive cause the BadIndex exception to be
raised.

The composition of awidget_set can be changed dynamically, usingthe insert and append functions.
Semantics associated with indexing are the same as with the analogous functionsin Box (cf. Section 3.2.2).
Thereturned list widgets must be inserted into some composite widget to be realized.

If multiplewidgetsin aset state are passed tomkSingleSet, or if insert or append cause multipleitems
in a singleton set to be in a set state, the exception MultipleChoices israised. However, the setChosen
processesits list sequentially, as though the user were making the choices. The setting of any item will cause
acurrently set item to be unset.

3.3 Simple Widgets

Simple widgets have no subwidgets, at least explicitly. They form the basic set from which more complex
widgets can be composed. Simple widgets can be modified in variousways. Parameters can be set at creation
or dynamically. The widget can be wrapped functionally within another widget, which can interpose control
over theinner widget'sbounds0f function or itsinput and control events. As an example, awidget might set
boundsthat allow it to be stretched or shrunk. A programmer wishing to nail the widget down to a specific
size could wrap the widget in another widget that could reset the size changes to zero (cf. Section 3.2.7).

The current widget set is not very rich or well-devel oped, nor particularly pleasing to theeye. There area
variety of notable omissions. Some of theimplementationsare not graphically efficient. However, the current
set is enough to demonstrate how widgets should be written and interconnected within the eXene framework.

3.3.1 Buttons

TheButton structure providesvarioussimplebuttonsfor user input. Therearetwo different control semantics.
The command button semantics simply calls a given function whenever the button is pressed. (A button is
pressed by moving the mouse over the button and pressing any mouse button.) The button will usually
indicate graphically that it has been pressed. In the more genera semantics, the button provides an event
registering button transitions and the button-down state. When the button is pressed, the button generates a
BtnDown event indicating the mouse button pressed. It continuesto generate BtnDown events until the button
isreleased, at which point it generates a BtnUp event, or until the mouse leaves the window, at which point it
generates aBtnExit event.

Draft of June 2, 1993 10:25



23

signature BUTTON =
sig

datatype arrow_dir
= AD_Up

| AD_Down

| AD_Left

| AD_Right

datatype button_act
= BtnDown of mbutton
| BtnUp of mbutton
| BtnExit

type button

val evt0Of : button -> button_act event
val widgetOf : button -> widget
val setActive : (button * bool) -> unit
val getActive : button -> bool

val mkArrowBtn : root -> {
backgrnd : color option,
dir : arrow_dir,
foregrnd : color option,
sz : int
} -> button

val mkArrowCmd : root -> {
action : unit -> unit,
backgrnd : color option,
dir : arrow_dir,
foregrnd : color option,
sz : int
} -> button

val mkTextBtn : root -> {
rounded : bool,
backgrnd : color option,
foregrnd : color option,
label : string
} -> button

val mkTextCmd : root -> {
rounded : bool,
action : unit -> unit,
backgrnd : color option,
foregrnd : color option,
label : string
} -> button

end

To create a button, the user supplies a display root, and various display characteristics. The foregrnd and
backgrnd colors specify optional choicesfor foreground and background colors. The default colorsare black
and white, respectively.

Draft of June 2, 1993 10:25



24

Arrow buttons require a direction parameter indicating which way the arrow should point, and asize, a
sguare of that size being used asthe natural size of the button. If sz < 4, theLibBase.BadArgexceptionis
raised.

Text buttons require a text label for the buttons. The button sets its bounds to be just large enough to
containitstext. If rounded istrue, thetext button appears withinarectanglewith rounded corners. Otherwise,
no frame is attached to a text button. Text buttons use the 8x13 font.

The action attached to a command button is invoked on BtnUp. Thus, a user can cancel an action after
pressing a button by first moving the mouse off the button and then rel easing the mouse button. The program
should not synchronize on the event of a command button; a thread is spawned to monitor this event and
invokethe action routine,

Buttons and toggl e buttons (cf. Section 3.3.10) are actually constructed as the cross-product of itemsin
view and control modules. The structure ButtonView describes a ssimple state-view protocol, and provides
variousvisua button representations (arrows, text, icons, etc.) accepting this protocol. TheButtonCtrl and
ToggleCtrl structures implement input control semantics using the protocol. The buttons provided in the
Button and Toggle structures are just common combinations of aview and a control. A programmer can
easily create new buttons using different combinations, or combining a new view with an old controller or
vice versa

N.B. It isthe programmer’s responsibility to provide a thread to synchronize on the button event supplied
by theevtof function. Otherwise, the button thread will block. The protocol for the delivery of button events
isthat aninitial BtnDown and aterminating BtnUp Or BtnExit event are guaranteed to be generated and must
be synchronized upon. In the interim, the button widget will supply aBtnDown event every time the client
synchronizes on the button event value.

3.3.2 Canvas

The canvas widget provides a drawing surface that can aso be used as basis for building new widgets.

signature CANVAS =
sig

structure D : DRAWING

type canvas

val mkCanvas : root —-> bounds -> (canvas * size * in_env)
val widgetOf : canvas -> widget

val sizeOf : canvas -> size

val drawableOfCanvas : canvas —-> D.drawable

end

To create a canvas, the programmer provides a display root and a preferred bounds. The mkCanvas function
returns a canvas on which to draw, the current size of the canvas and an input environment. The function
drawableOfCanvas returnsthe drawablefor the canvas. Thiscan be used with the drawing operations of the
Drawing module in the eXene library. The drawable isnot available until the canvas widget is realized. A

Draft of June 2, 1993 10:25



25

cal todrawable0fCanvas beforehand will cause the calling thread to block. The programmer isresponsible
for handling the input environment in the same manner as the programmer of a raw widget (cf. Chapter 5).
Thereisalso asize0f function, which returns the current size of the canvas. The actual event of the canvas
being resized is reported, as usual, through the input environment.

3.3.3 Color rectangle

The ColorRect structure implements awidget that fillsits window with afixed color.

signature COLOR_RECT =
sig

val mkColorRect : root -> (color option * (unit -> bounds)) -> widget

end

ThemkColorRect takes aroot value, plus an optiona color and a bounds function. The resulting widget
uses the given bounds function to specify its size requirements. If the color iSNONE, black is used.

3.3.4 Divider

TheDivider structure providesfor flexible linesto be used as dividers between other widgets.

signature DIVIDER =
sig

val mkHorzDivider : root -> {color : color option, width : int} -> widget
val mkVertDivider : root -> {color : color option, width : int} -> widget

end

The color of the divider is specified by the color option; black is used by default. In a horizontal divider,
the bounds are fixed to width in the vertical direction, and are arbitrarily flexible in the horizontal direction.
A vertical divider is similar with the horizontal and vertical roles reversed. A negative width raises the
LibBase.BadArg exception.

3.35 Framed widgets

Various basic widgets with text labels do not possess frames or boundaries. This alows them to be used in
situations where frames are undesired. Following the eXene approach, a programmer can add borders by
wrapping awidget in a frame widget (cf. Section 3.2.3). However, since certain framed widgets are such
common idioms, thelibrary providesthree structuresFramedButton,FramedLabel and FramedToggle that
providethiswrapping. Theresulting typesfr_button, fr_label and fr_toggle have the same semantics
astheir unframed brethren. The constructor functionstakes the same arguments, with the assumption that the
shape will be rectangular and with the addition of a border width argument. If thislast argument is negative,
the exception Frame .BadWidth israised. The foreground color is used as the frame color.

Draft of June 2, 1993 10:25



26

3.3.6 Labe

A label widget allowsthe programmer to put unadorned text in theinterface. The text and colorsare mutable,
under control of the programmer.

signature LABEL =
sig

type label

val mkLabel : root -> {
label : string,
font : string option,
foregrnd : color option,
backgrnd : color option,
align : halign
} -> label

val widgetOf : label -> widget

val setLabel : label -> string -> unit

val setBackground : label -> color option -> unit
val setForeground : label -> color option -> unit

end

A label is created by supplying a display root, an initial label string, an optional font, optional foreground
and background colors and an alignment. On the screen, a label consists of the string written in the given
foreground color (black by default) on the given background color (by default, the parent’s background). The
font argument specifies the name of the font to use (the 8x13 font is used by default). A label is naturally
high enough to contain any string written in the font, and wide enough to contain the current string, plus a
bit of padding around the string. A label specifies no shrinking or stretching. If the window provided for the
label islarger than necessary, the text will be aligned within the window according to the align parameter.

The functions setLabel, setForeground and setBackground alow the program to modify the ap-
pearance of the label. If anew label istoo large for the current window, the widget requests more space.
Otherwise, the new text iswritten with the specified alignment.

3.3.7 Scrollbar

The scrollbar widget is used to indicate a position and a size, and to allow the user to change the position.
Scrollbars are used most commonly to specify the view awindow gives on alogically much larger display
area, and to alow the user to pan the window over the display area.

Draft of June 2, 1993 10:25



27

signature SCROLLBAR =
sig

datatype scroll_evt
= ScrUp of real
| ScrDown of real
| ScrStart of real
| ScrMove of real
| ScrEnd of real

type scrollbar

val mkHScrollbar : root -> {color : color option,sz : int} -> scrollbar
val mkVScrollbar : root -> {color : color option,sz : int} -> scrollbar

val evt0Of : scrollbar -> scroll_evt event
val widgetOf : scrollbar -> widget
val setVals : scrollbar -> {sz:real option,top:real option} -> unit

end

ThefunctionsmkHScrollbar and mkVScrollbar make horizontal and vertica scrollbars, respectively. The
user suppliesadisplay root, an optional color and asize. The size indicatesthe desired size of the minor axis,
and isused in the bounds with no stretch or shrink. If dim is non-positive, the exception LibBase .BadArgis
raised. Along the major axis, the scrollbar alows arbitrary stretching and shrinking. The scrollbar is drawn
in the given color on its parent’s background. By default, the color is black.

Scroll valuesfall intherange [0.0,1.0]. The setVals function alowsan application or another widget to
specify the current scrollbar values. Thus, the call

setVals sb {sz = SOME 0.2, top = SOME 0.5}

causesthe start of the scrollbar curosr or “thumb” to be half way a ong thewindow and be one-fifth the window
size. If either sz or top is not given, the present value is retained. The scrollbar values are additionally
congtrained by top + sz <= 1.0.

When the user interacts with the scrollbar, the scrollbar generates an event of type scroll_evt. The
following protocol s are associated with these events. ScrStart indicatesthat the user has begun to move the
scrollbar cursor with the middle mouse button, with the top at the given relative position. The scrollbar will
continueto generate ScrMove events asthe user continuesto move the thumb. When the user has stopped, the
ScrEnd reportsthiswith thefinal top position. During thisinteraction, the scrollbar automatically updatesits
values and display.

The ScrUp and ScrDown events are discrete events associated with the user clicking on the scrollbar with
buttons1 and 3 respectively. The application can interpret these events as appropriate. By convention, theuser
hasindicated a desire to move the application window up or down, with the value being the indicated relative
position. For example, one application might use ScrUp Vto move itswindow up to the val ue corresponding
tov. A text window might instead interpret this event by moving the top line of the window to the position
indicated by the user. As these events are application-dependent, it is up to the application to reposition its
view and then use setVals to register this new view with the scrollbar.

N.B. Itisthe programmer’ sresponsibility to provideathread to synchronize on the scrollbar event supplied

Draft of June 2, 1993 10:25



28

by the evtof function. Otherwise, the scrollbar thread will block.

3.3.8 Slider

The dslider widget provides an analogue means for a user to supply a numerical value. It is comparable to
ascrollbar, having a slide piece that can be moved along a track using any mouse button. The value varies
linearly with the position of the didepiece. Unlikea scrollbar, aslider supportsa state of only asingle value
rather than arange of values.

signature SLIDER =
sig
type slider

val mkHSlider : root -> {
foregrnd : color option,
wid : int,
init : int,
scale : int
} -> slider

val mkVSlider : root -> {
foregrnd : color option,
wid : int,
init : int,
scale : int
} -> slider

val widgetOf : slider -> widget

val evtOf : slider -> int event

val setValue : slider -> int -> unit
val getValue : slider -> int

val getScale : slider -> int

end

To create a dider, the programmer supplies the display root, an optiona foreground color (with black the
default), an integer value specifying the “width” (the size of the slider perpendicular to the dide track), a
scale and an initial value. The mkHS1ider function returnsaslider widget with a horizontal slide track, and
mkVSlider returnsonewith avertical track.

The dider isdrawn in the specified color on its parent’s background. The size of the slider perpendicul ar
tothe dlidetrack isfixed to thevalue of wid. Itisarbitrarily flexible aong the dimension parallel to the slide
track.

Thedider’svauewill fall intherange [0,scale]. Theinitia didervaueisinit. Thedider constructors
requirethat 0 <= init <= scale and scale > 0. They raisetheLibBase.BadArg exception otherwise.
Clientswishing a different range format (e.g., [~5,101), a different range type (e.g., redls), or a non-linear
function can wrap the widget as necessary.

The functionsgetValue and getScale allow oneto query the dider’sstate. The setValue can be used
to change the dlider’s value, which isreflected in the position of the dide piece. Aninvalid value will raise
theLibBase.BadArg exception.

Draft of June 2, 1993 10:25



29

The evt0f function returns an integer event associated with the changing of the dider’s value. Asthe
user moves the dlide piece aong the track or the dlider value is changed by setValue, the slider uses the
event to report the current value.

N.B. It isthe programmer’s responsibility to provide a thread to synchronize on the slider event supplied
by the evtof function. Otherwise, the slider thread will block.

339 TextList

A text list provides the user with alist of strings, and allows the user to select items from the list. The user
selects an item by clicking on it with the left mouse button. The user can unselect an item by clicking on it
with the middle button. The widget reports user selections as events, which can be tied to application-specific
actions. There are two types of list behavior, viz., listsallowing multiple selections and listsallowing at most
one selection. In the single selection case, selecting a new item automatically causes a previoudy selected
item to be unselected (cf. Section 3.2.9).

signature TEXT_LIST =
sig

exception BadIndex
exception MultipleChoices

type ’a text_list
datatype ’a list_evt = Set of ’a | Unset of ’a
datatype list_mode = OneSet | MultiSet

type ’a list_item (* = (string * ’a * wstate) *)
val mkItem : (string * ’a * W.wstate) -> ’a list_item

val mkHList : root -> {
mode : list_mode,
backgrnd : color option,
foregrnd : color option,
items : ’2a list_item list
} -> ’2a text_list

val mkVList : root -> {
mode : list_mode,
backgrnd : color option,
foregrnd : color option,
items : ’2a list_item list
} -> ’2a text_list

val evtOf : ’a text_list -> ’a list_evt event
val widgetOf : ’a text_list -> widget

val setChosen : ’a text_list -> (int * bool) list -> unit
val setActive : ’a text_list -> (int * bool) list -> unit
val getChosen : ’a text_list -> int list

val getState : ’a text_list -> wstate list

end

Draft of June 2, 1993 10:25



30

To create a text list, the programmer supplies the display root, optiona foreground and background colors
(with black and white the respective defaults), the selection mode of the widget, and a list of items. The
mkHList function returnsahorizontal list widget whilemkVList returns onewith avertical orientation. The
sel ection mode specifies which of thetwo list behaviorsisdesired, withOneSet and MultiSet corresponding
respectively to allowing at most one selection and allowing multiple selections. Anitemisessentially atriple
of astring, avalue and an initial state. The string specifies thetext displayed inthelist. The valueisreturned
when the user selectstheitem. The initia state specifies whether or not the item isactive, and whether or not
theitemisset.

Theset of selected and activeitems can be controlled by theprogramusingthesetChosenand setictive
functions. The getChosen and getState alow the program to query the state of thelist.

The evt0f function returnsan ’a list_evt event associated with items being selected or unsel ected.
Thelist_evt indicates whether the user has selected (Set) or unselected (Unset) an item, along with the
value associated with the item. In the OneSet mode, in which the widget automatically unsets the currently
selected item when a new oneis chosen, the widget supplies an Unset event before reporting the Set event.

The constraintsand exceptions associated with creating and using atext list are described in Section 3.2.9.

N.B. It isthe programmer’s responsibility to provide a thread to synchronize on thelist event supplied by
the evt0f function. Otherwise, the list widget will block.

3.3.10 Toggles

Togglesare buttonsthat maintain an on-off state. The user changes thetoggl € sstate by clicking on the button
with any mouse button. As with ordinary buttons, toggle buttons can aso be active or inactive. A button’s
display usually indicates both aspects of the button’s state.

Draft of June 2, 1993 10:25



31

signature TOGGLE =
sig
type toggle

val widgetOf : toggle -> widget

val getState : toggle -> bool

val setState : (toggle * bool) -> unit
val setActive : (toggle * bool) -> unit
val getActive : toggle -> bool

val mkToggleCheck : root -> {
state : wstate,
action : bool -> unit,
color : color option,
sz : int
} > toggle

val mkToggleText : root -> {

state : wstate,

rounded : bool,

action : bool -> unit,
backgrnd : color option,
foregrnd : color option,
label : string

} > toggle

val mkToggleSwitch : root -> {
state : wstate,
action : bool -> unit,
backgrnd : color option,
foregrnd : color option
} > toggle

val mkToggleCircle : root -> {
state : wstate,
action : bool -> unit,
backgrnd : color option,
foregrnd : color option,
radius : int
} > toggle

val mkToggleIcon : root -> {
state : wstate,
action : bool -> unit,
backgrnd : color option,
foregrnd : color option,
icon : tile
} > toggle

end

All constructors take an initial toggle state and an action function that is called whenever the toggle changes
from on to off or from off to on. The new vaue, with on mapped to true, off mapped to false, is passed
to the action function. The action function is not invoked on the initial toggle state. The various toggle
congtructors produce widgets differing only in the appearance of thewidget. These differences are reflected
in the remaining constructor arguments.

Draft of June 2, 1993 10:25



32

mkToggleCheck produces a check mark toggle within a square widget. The sz parameter indicates
the desired size of a side. The widget bounds are set to a fixed square of this size. If sz < 14, the
LibBase.BadArg exception israised. The toggleisdrawn in the specified color (black by default) on the
parent’s background.

mkToggleText produces atext buttontoggle. The display parameters have the same useasinmkTextBtn
(cf. Section 3.3.1).

ThemkToggleSwitch toggleisrepresented by arocker switch of fixed bounds. The switch isdrawn in
the foreground color (black by default) on afield of the background color (white by default).

The mkCircleToggle button appears as a circular button, with the radius parameter specifying the
desired radius. The widget’s bounds will be a fixed square slightly larger than what is necessary to hold a
circleof thegiven radius. If radius < 4,theLibBase.BadArgexceptionisraised. Thewidget isdravnin
the foreground color (black by default) on afield of the background color (white by default).

Thetoggleproduced by mkIconToggle displaystheargument icon, using theforeground and background
colorssupplied. Asusual, these colors are black and white, respectively, by default. The widget’sbounds are
fixed at the size of theicon.

Astoggles are implemented using the same button views as the buttons described above in Section 3.3.1,
most of the remarks in that section apply here. The only difference is that toggles supply the functions
getState to query thetoggle state and setState to set thetoggle state. The program can change atoggle's
state even if thetoggleisinactive.

3.4 Text Widgets

Widgets providing textual input form a specia class of widgets. Going beyond a simple mouse interface,
these widgets are combinations of virtual terminals and editors. The underlying model is more complex, but
the user isfamiliar with the model and expects a richer, more complicated set of interactions. In this section,
wedescribe an initial set of widgetswhose interfaceis principally based on the keyboard and characters. The
text widgets are probably the least fully developed of the eXene widget set. For example, thereis currently
no support for text selection.

34.1 StrEdit

ThestrEdit structureprovidesasimplestring editingwidget. Astheuser types, the corresponding characters
areentered at the cursor position. The backspace character ("\f") can be used to erase the character preceding
the cursor. The entire string can be deleted by typing "\X". The user can reposition the cursor by clicking
themouse on the desired character. If theinsertion or deletion of a character would cause the cursor to move
off the window, the widget shiftsthe window’s view appropriately.

Draft of June 2, 1993 10:25



33

signature STREDIT =
sig

type str_edit

val mkStrEdit : root -> {
foregrnd : color option,
backgrnd : color option,
initval : string,
minlen : int
} -> str_edit

val setString : str_edit -> string -> unit
val getString : str_edit -> string

val shiftWin : str_edit -> int -> unit
val widgetOf : str_edit -> widget

end

The mkStrEdit function takes a display root, optiona foreground and background colors (black and
white, by default), an initia string and a minimum length. Initialy, the cursor is placed at the end of the
string.

The widget uses the font 9x15. The natural height of the widget is the font height, with no vertical
shrinking or stretching. Horizontally, the natural size specifies enough space to display al the charactersin
thestringor minlen characters, which ever islarger. Thewidget will expand indefinitely, but will only shrink
to theminlen minimum. Whenever the widget's string goes from fitting to not fitting within the widget's
window, or vice versa, it requestsits parent to resize it.

Notethat thewidget does not providethe user the ability to move thewidget’ swindow over thetext. 1t does
provide the shiftWin function, which an application can use to provide this interface (cf. theFieldEdit
widget below). Using shiftWin v movesthewidget view |v| charactersto the left if v is negative and to
theright if v is positive.

The setString and getString functionsallow the application to query and set the widget’s string.

3.4.2 FieldEdit

The FieldEdit structure provides a widget derived from the string edit widget above. The interface and
interaction are amost identical. The only difference is that the field edit widget provides scroll buttons to
allow the user to move the view of the underlying text when it does not all fit withinthe window. The buttons
are only made available when this situation arises.

Draft of June 2, 1993 10:25



34

signature FIELD_EDIT =
sig

type field_edit

val mkFieldEdit : root -> {
foregrnd : color option,
backgrnd : color option,
initval : string,
minlen : int
} > field_edit

val setString : field_edit -> string -> unit
val getString : field_edit -> string
val widgetOf : field_edit -> widget

end

3.4.3 Virtual terminal

The virtual terminal widget provides asimple way to support traditional 10 stream-based applications. Itis
implemented on top of the text widget (see Section 3.4.4), adding a device driver for the keyboard and the
instream/outstreaminterface. The structure Vtty has the signature VTTY:

signature VITY =
sig
structure CIO : CONCUR_IO

type vtty

val mkVtty : root -> {rows : int, cols : int} -> vtty
val openVtty : vtty -> (CIO.instream * CIO.outstream)
val widgetOf : vtty -> widget

end (x VTTY %)

See the CML manua for the details of the operations provided by the €TI0 structure ([Rep90]). Writing on
theoutstream displaystext inthewindow. User input isline-buffered: itisonly available onthe instream
after the user hastyped acarriage return (") or newline("\n"). Aninput line can be edited, with backspace
("\E") and delete ("\127") erasing the previously input character. Tab characters are not handled correctly,
nor does the vtty provide avisible cursor.

344 Text

The text widget is alow-level widget for managing a window of text. It provides limited highlighting, and
asingle font; a prototype text widget supporting multipl fontsand color has been implemented, and will be
included in the next release.

1Thanksto Thomas Yan for finishing our implementation of this widget.

Draft of June 2, 1993 10:25



35

signature TEXT_WIDGET =
sig

datatype char_coord = ChrCrd of {col : int, row : int}
type text_widget

val mkTextWidget : root -> {rows : int, cols : int} -> text_widget

val widgetOf : text_widget -> widget

val charSizeOf : text_widget -> {rows : int, cols : int}
val sizeOf . text_widget -> size

val ptToCoord . text_widget -> point -> char_coord

val coordToRect : text_widget -> char_coord -> rect

val scrollUp : text_widget -> {from : int, nlines : int} -> unit
val scrollDown : text_widget -> {from : int, nlines : int} -> unit

val writeText : text_widget -> {at: char_coord, text : string} -> unit
val highlightText : text_widget -> {at: char_coord, text : string} -> unit

val insertLln : text_widget -> {lnum : int, text : string} -> unit
val deleteln : text_widget -> int -> unit

val deletelns : text_widget -> {lnum : int, nlines : int} -> unit

val clearToEOL : text_widget -> char_coord -> unit
val clearToEOS : text_widget -> char_coord -> unit

val moveCursor : text_widget -> char_coord -> unit

val cursorPos : text_widget -> char_coord
val cursorOn : text_widget -> unit
val cursorOff : text_widget -> unit

end (* TEXT_WIDGET x)

Draft of June 2, 1993 10:25



Chapter 4

M enus

The eXene widgets currently provide a simple form of pop-up menu support in the structure SimpleMenu.
Figure 4.1 has the signature of this structure. A menu value specifies the structure of a menu and the value

signature SIMPLE_MENU =
sig
datatype ’a menu = MENU of ’a menu_item list
and ’a menu_item
= Menultem of (string * ’a)
| Submenu of (string * ’a menu)

val attachMenu : (widget * mbutton list * ’1a menu)
-> (widget * ’la event)

val attachLabeledMenu : (widget * mbutton list * string * ’la menu)
-> (widget * ’la event)

datatype menu_pos = Absolute of point | Item of int

datatype where_info =

WI of
but : mbutton,
pt : point,

scr_pt : point,
time : time

val buttonMenu : (widget * mbutton list # ’la menu * (where_info -> menu_pos))
-> (widget * ’la event)

val popupMenu : (root * ’la menu * string option)
-> (mbutton * menu_pos * point * mouse_msg addr_msg event)

-> ’l1a option event

end

Figure4.1: Simple menus

associated with each entry. The Submenu constructor is used for defining hierarchical menus. The display

36



37

form of these menus is essentially that used by twm [?]. The menu remains displayed and active as long as
some mouse buttonis depressed. The user’s choice correspondsto the item under the mouse cursor when the
last mouse button is released.

Once a menu has been defined, there are various ways it can be used. The simplest way is to attach it
to awidget using one of the two attach functions. For menus without labels, use attachMenu; if alabe is
desired, then use attachLabeledlMenu. The result of attaching a menu to awidget is a new widget and an
event value that provides the user’s menu choices as a stream of CML events. When attaching a menu to a
widget, the programmer specifies the mouse buttonsthat are to be used to pop up the menu. If the user presses
a specified mouse button while the cursor is over the widget to which the menu is attached, then the menu
will be popped up. Any other mouse button press events, and all other mouse events, are passed on to the
underlying widget. If the user selects amenu item, then the associated valueis reported through the event. If
the user does not select an item, no event is generated.

Figure 2.3 and the accompanying text provide an example of the this use of menus.

The buttonMenu function isthe same as attachlenu, except it provides control over menu placement.
In particular, as its name suggests, buttonlenu can be used to implement menu buttons (see Section 4.0.5).
When a mouse button press triggers the display of the menu, the user-supplied function is invoked, being
passed avalue of type where_info. Thisis essentially the information supplied by the MOUSE_FirstDown
event corresponding to the button press. The function returns a hint as to where the menu should appear.
If the function returns Absolute pt, the upper left corner of the menu will be placed at pt, given in screen
coordinates. If thefunctionreturnsItem n, the menu will be positioned so that the mouse cursor is centered
over item n of the menu, indexed from 0. The first form can be used to implement menu buttons; the latter
form can be used to redisplay a menu with the last selected item chosen by default. The code will honor the
position hint unlessit has to shift the menu to make sure it fits on the screen.

At times, these high-level menu interfacesto not provide enough control. For these situations, thestructure
provides the popupMenu function. This low-level routine takes a root, amenu and an optiona string. It
returns a function that can be used to activate a pop-up menu on the given display. To use the activation
function, a thread waits for some mouse button press and then calls the activation function with a tuple
(btn, pos, pt, mouse). The btn argument denotes the pressed mouse button. The pos parameter provides
control of menu placement, as described in the previous paragraph. The pt parameter is the mouse position,
in screen coordinates, reported with the button press event. Finally, the mouse parameter is the widget's
mouse event stream. The function returns a CML event. The menu will be displayed and managed by a
separate thread, getting its input from the mouse event stream. The protocol requires that the calling thread
does not read events from that stream until it is notified, through synchronization on the menu event, that the
menu thread is done. If the user did not make a choice, the event will evaluate to NONE. Otherwise, the value
associated with the chosen menu item will be supplied.

4,05 Menu button

A menu button is a text button with a menu attached. When the user presses any mouse button on the menu
button, the menu is displayed as a pull-down menu. They can be combined to form menu bars.

Draft of June 2, 1993 10:25



38

signature MENU_BUTTON =
sig
structure Menu : SIMPLE_MENU

val mkMenuButton : root -> (string * ’la Menu.menu)
-> (widget * ’la event)

end

ThemkMenuButton functiontakesaroot, and alabel and a menu, and returns a widget plus an event. The
widget appears as a plain rectangul ar text button, using the supplied label. If the user makes a selection using
the menu, the selection is reported through the event value.

Draft of June 2, 1993 10:25



Chapter 5

Widget Internals

We now turn to the internal widget structure and the low-level details of building a widget. The creation
of awidget valueis usually a simple affair, involving some initial parameter computation, the allocation
of certain resources such as fonts, colors and pixmaps, and perhaps the spawning of a thread to encapsulate
mutable widget data. No eXene windows are cresated at thisstage. The widget value returned by mkWidget
encapsul ates the associated root value, abounds0f function and arealize function (see Section 2.3). The
semantics of the bounds0f function were described above. Here we discuss what should happen when a
widget'srealize functioniscalled.

First, we note that in the eXene widget library, the parent widget controls the child’s window resources.
The parent alocates the child’s window; it positionsthe window; it changesits size; it deletesit. If the child
needs any of these actions performed, then it asks the parent to perform the action. A child should never
directly alter the externa configuration of its window; it should only deal with what isinside itswindow.

The parent widget invokes the child’'s realize function, passing in three arguments. One argument is
the input environment. This is the value through which the child receives al of its input and by which it
communicates with its parent. This will be discussed in detail below. The remaining arguments are the
child’swindow and its size. The window'sorigin and size are presumably set by the parent using the child’'s
bounds0f function. Thiswindow isthe child’scanvas. It can draw on thewindow using any of the functions
supplied intheDraw structure in the base library. The sizeis supplied for convenience.

A widget’s realize function must do the following: configure itself corresponding to the given size
and spawn the necessary threads to handle graphics operations and events on its input environment. If the
widget isacompositewidget, thentherealize functionmust also layout its children, all ocate their windows,
arrange to handle input to and from the children, and recursively call their realize functions. A composite
widget is a so responsible for mapping its children’swindows (using the eXene function mapWin). A simple
widget should not map or unmap itself.

All window system events come to a window through itsinput environment. This environment is defined
intheWindowEnv structure,

39



40

datatype in_env = InEnv of {
m : mouse_msg addr_msg event,
k : kbd_msg addr_msg event,
ci : cmd_in addr_msg event,
co : cmd_out -> unit event

}

It is assumed that a widget will spawn one or more threads to be able to synchronize on them, k, and ci
eventsimmediately. The addr_msg implicitly contains awindow path that specifies the target window of the
accompanying value. This path is only of concern to composite widgets, and will be discussed below. For
now, we assume that a widget has received an event targeted for it and has stripped off the window path part
(using the eXene functionmsgBody0£) and isleft with the base value.

5.1 Keyboard and Mouse Events

Keyboard events are reported as either key presses or key releases. The related values specify an X keysym
value and the state of the modifier keys. Keysyms can be trandated into strings using functions related to
the translation type of the base library. Mouse events correspond to mouse motion, button presses and
releases, and window enter and leave events. Note that when a window receives a mouse button press, it
is guaranteed to receive al mouse events on its mouse stream until all mouse buttons have been released.
This corresponds to an active grab in X terminology (cf. The eXene Library Manual and [Nye9(Q]). Also
note that the first mouse button event a widget receives is a MOUSE_FirstDown event, and the last will be a
MOUSE_LastUp event. Keyboard and mouse events a so provide a synchronization value that can be used by
composite widgetsto coordinate event routing with window changes.

5.2 Control Events

The events received viathe ci event correspond to window system events not directly related to user input.
A widget should act as follows upon one of these events.

e A CI_Redrawmessage correspondsto an X Expose event, informing thewidget that part of itswindow
has been corrupted and it should redraw those parts. The event provides the list of rectangles, in the
window’s coordinate system, that should be redrawn. It isalwayssafe, though not necessarily efficient,
to redraw the entire window.

e A CI_Resize message corresponds to a notification that the widget’s window has changed size (or
position). Therectangle parameter specifiesitsnew size and itsorigininitsparent’s coordinate system.
Theactud resizing of thewindow was performed by the parent. On receiving thisevent, awidget should
reconfigure itself, recomputing whatever window size dependent parameters it uses. In particular, a
composite widget should recompute the layout of its children and, if necessary, cal the moveWin,
resizeWin Or moveAndResizeWin to repositionthem. The corresponding CI_Resize messages will
be automatically generated by the system and delivered to the child throughitsinput environment. Upon
receiving a CI_Resize event, a widget should not automatically redraw itself. If thisis necessary, it
will receive a CI_Redraw event. Note that a widget is informed of its initia window size when its
realize functioniscalled.

Draft of June 2, 1993 10:25



41

e A CI_OwnDeath tellsawidget that itswindow has been destroyed. At thispoint, it should cease from
performing any further output to itswindow. N.B. It must still service its mouse and keyboard events,
asthese events may till be queued somewhere inthe hierarchy. One approach isto attach null loopsto
these events.

e TheCI_ChildBirth and CI_ChildDeath events are used by composite widgetsto synchronize the
routing of input.

A widget may require certain services of its parent. That is the purpose of the co field of the input
environment. A CO_ResizeReq message passed to its parent informs the parent that the child’s size needs
have changed. The parent should call the widget’s bounds0f function to determine these needs and try to
meet them by repositioning the child’ swindow. The parent is not obligated to meet these needs, and the child
cannot assume anything has changed until it recelvesaCI_Resize event. The CO_KillReq messageinforms
the parent that the child wishes its window destroyed. The parent should attempt to perform this service,
using thedestroyWin command. It will beinformed of theloss of its window viaa CI_OwnDeath message
(seetheitem on handling the CI_0OwnDeath message above).

5.3 Composite Widgets

A composite widget, containing one or more child widgets, must handle its own input environment, as
described above, as well as manage its children. This involves several tasks. One task isthe layout of child
widgetswithinitswindow. Another task is creating a child’s window and input environment, By convention,
widget windowsin eXene do not explicitly use the border or background property of windowsin X, but rely
on wrapper widgets (e.g., frame and background) to supply these effects. We adopted this convention as
being cleaner and more consistent, and in order to better divorce the widget level from the specific X graphics
model. The utility function wrapCreate conformsto thisconvention, and the writer of composite widgetsis
encouraged to use thisfunction to create child windows. The createWinEnv function from the base library
can be used to create the necessary input environment. Additional tasks require calling a child’'srealize
function with its window and environment, and mapping the child’'s window.

A further task concerns servicing requestsfromachild. For each child and itsinput environment, the parent
widget maintai nsthe corresponding output environment. UponreceivingaC0_ResizeReqoOraC0_KillReq,
the composite widget should attempt to handle thisas described above. Notethat aparent widget can attempt
to resize the child within the parent’s current bounds, or has the opportunity of percolating a resize request
further up the hierarchy.

We also emphasize the possibility of deadlock implicit in the two-way protocols between a composite
widget and its children. For example, a composite widget might be in the process of positioningits children,
during which it calls a child's bounds0f function. Meanwhile, because of user input, the child might
be sending a resize request to its parent, with deadlock possibly ensuing. Because of the synchronous
communication and hierarchica distribution of events used in eXene, this local deadlock could quickly
disseminate throughout an application. It isthe responsibility of the programmer implementing a widget to
code against such possibilities. In the specific case of child-to-parent communication using control messages,
we assume the additional specification that it is the parent’s responsibility to aways be receptive to control
messages from its children. The Widget structure provides the function wrapQueue that wraps a queue

Draft of June 2, 1993 10:25



42

around aCML event. This can be used to safely queue child requests on the co event if other processing is
going on.

The final task of a composite widget is handling the routing of all events to widgetsin its subtree. Each
event coming through its input environment may be targeted for the composite widget or one of its children
or their children. Each input event is implicitly tagged with a routing path to the correct window. The
Interact structure provides various functions with which awidget can determine if a message isfor itself
or one of its children. If the message is targeted for a child, the message must be distributed to that child’'s
input environment.

TheeXenewidget library’ sRouter structure provides functionsthat can handletypical routing scenarios.

signature ROUTER =
sig

structure EXB : EXENE_BASE
structure Interact : INTERACT

exception NotFound
type router

val mkRouter : Interact.in_env * Interact.out_env *
(EXB.window * Interact.out_env) list -> router

val addChild : router -> EXB.window * Interact.out_env -> unit
val delChild : router -> EXB.window —-> unit
val getChildEnv : router -> EXB.window -> Interact.out_env

val routePair : Interact.in_env * Interact.out_env * Interact.out_env -> unit
end

At redlization time, a composite widget can create arouter using themkRouter function, passing it the input
environment that it received via the invocation of its realize function. In addition, the composite widget
should create an new input/output environment pair, and pass the output component as the second argument to
mkRouter. Thewidget will then receiveitsinput from the corresponding i nput component of the environment
pair. In addition, for each child widget, the composite widget should create an input/output environment pair.
The input environment should be handed to the child throughitsrealize function. The child’swindow and
output environment are registered with the router. If desired, alist of these pairs can be passed as the third
argument in creating the router. Alternatively, these pairs can be incrementally inserted and deleted from the
router using addChild and delChild, respectively. The getChildEnv returnsthe output environment that
wasregistered with the given window. The exception NotFound israised if no such environment isregistered.

For composite widget'swith asingle child, the Router module providesthe routePair function. This
creates a router that takes the composite widget'sinitia input environment, the new output environment for
the composite widget and the output environment for the child widget.

With either of these routers, all events for children will be automatically routed to them. Only events
targeted specifically to the composite widget will be received through its new input environment. We remark
that this routing scheme is tentative, and may be replaced by more appropriate mechanisms in later releases.

The following schema illustrates the routing technique described above, plus a mechanism for alocating

Draft of June 2, 1993 10:25



43

child windows and instantiating child widgets.

fun realize {env, win, sz} = let
val (myInEnv, myOutEnv) = createWinEnv ()
val router = mkRouter (env, myInEnv, [])
fun doChild (childWidget, childPt, childSz) =
val crect = mkRect(childPt, childSz)
val cwin = wrapCreate (win, crect)
val (cinenv, coutenv as OutEnv{co=childco,...}) = createWinEnv ()
in
addChild router (cwin, coutenv);
realizeFn childWidget {env=cinenv, win=cwin, sz=childSz};
mapWin cwin
end

fun loop () =

(*
* obtain input events from myInEnv; handle child requests
* received on childco.

*)

in
app doChild children;
spawn loop

end

ThewrapCreate functionisautility function provided by thewidget structurefor creating child windows.
It returns a subwindow of the given parent with the given placement. The LibBase.BadArg exception is
raised if the height or width of the rectangleis not positive.

A composite widget may wish to alow widgets to be inserted and removed from it dynamically. If a
widget isinserted, it should be assumed to be unrealized. The compositewidget should repositionitschildren
inlight of the new widget, and allocate resources for and realize the new widget. If awidget isto be removed
from a composite widget, the parent widget should destroy the child’ swindow and remove the child from the
router.

54 Miscellany

Rather than have a programmer write a widget from scratch, eXene promotes creating, when possible, a new
widget by wrapping an old one. Thisisthe compositional technique discussed in Section 2.4, and supported
by the hierarchical routing of events. The wrapping widget interposes itself between the parent and the
child, and alters the event streams between parent and child. Thisidiom is common enough that the widget
structure provides severa functionsto support it.

Draft of June 2, 1993 10:25



signature WIDGET =
sig

val filterMouse : widget ->
(widget *
((mouse_msg addr_msg event * mouse_msg addr_msg chan) event))

val filterKey : widget ->
(widget *
((kbd_msg addr_msg event * kbd_msg addr_msg chan) event))

val filterCmd : widget ->
(widget *
((cmd_in addr_msg event * cmd_in addr_msg chan) event))

val ignoreMouse : widget -> widget
val ignoreKey : widget -> widget

end

The filterMouse function takes a widget and returns a new widget wrapped around the old widget. The
new widget |ets the application have access to the plumbing of mouse events to the original widget. Before
the original widget is realized, the wrapper widget uses the returned event value to supply the receiving end
of the widget's stream of mouse events, plus a channel by which the application can transmit mouse events
to the origina widget. As usua with these event values, the application must be capable of synchronizing
on the mouse event with littledelay. The filterKey and filterCmd functions are the obvious anal ogues.
The ignoreMouse and ignoreKey wrappers filter out all mouse and keyboard events, respectively, from the
original widget.

TheWidget structure has a utility function val colorOf : root -> color_spec -> color which
provides awidget-level trandlation of color specifications into colors. The call color0f root specisequiv-
alentto color0fScr (screenOf root) Spec.

Draft of June 2, 1993 10:25



Bibliography

[NO90] Nye, A. and T. O'Rellly. X Toolkit Intrinsics Programming Manual, vol. 4. O'Reilly & Associates,
Inc., 1990.

[Nye90] Nye, A. Xlib Programming Manual, vol. 1. O’ Reilly & Associates, Inc., 1990.

[Rep90] Reppy, J. H. Concurrent programming with events — The Concurrent ML manual. Department of
Computer Science, Cornell University, Ithaca, N.Y., November 1990. (Last revised February 1993).

[RG93] Reppy, J. H. and E. R. Gansner. The eXene Library Manual. AT& T Bell Laboratories, Murray Hill,
N.J. 07974, February 1993. Included in the eXene distribution.

45



