
On the Future of eXene

Dustin deBoer and Alley Stoughton1

Kansas State University

Department of Computing and Information Sciences

234 Nichols Hall

Manhattan, KS 66506, USA

WWW: cis.ksu.edu/~stough/eXene/

E-mail (deBoer): ddeboer@cis.ksu.edu

E-mail (Stoughton): stough@cis.ksu.edu

July 18, 2005

Abstract. Up through the mid-1990s, Gansner and Reppy designed and

implemented eXene—a multi-threaded, higher-order user-interface toolkit

for the X window system. EXene is implemented in Concurrent ML

(CML), which is a Standard ML of New Jersey (SML/NJ) library, and is

provided as part of the SML/NJ distribution. EXene has many appealing

attributes and is certainly usable in its current state. But it suffers from

some deficiencies which have limited its use, and there are a number of

ways in which it could usefully be improved. In this paper, we describe

our efforts at restarting the development of eXene, saying what we have

accomplished so far, and detailing our plans for the future.

1 Introduction

From the mid-1980s until the mid-1990s, Emden Gansner and John Reppy designed

and developed a multi-threaded, higher-order user-interface toolkit for the X window

system that they called eXene [4, 6]. EXene is implemented in Concurrent ML (CML)

[14], which is actually a set of Standard ML of New Jersey (SML/NJ) [1] libraries.

CML supports very light-weight threads and provides flexible selective communication

1Please direct correspondence to Stoughton.

1



via its use of first-class synchronous events. Unlike many X toolkits, e.g., [11, 12],

eXene is multi-threaded, allowing processing that would naturally be concurrent to

be expressed directly, instead of having to be scheduled as part of an event-loop. This

makes it much easier to write applications that appear to run concurrently. EXene

communicates directly with an X server, but provides a higher-level interface than

does Xlib [8, 9], making a programmer’s life easier, and handling some operations

locally, without contacting the X server. A widget in eXene has encapsulated state

that is managed by its own thread; thus it can be thought of as an object, and we

often refer to operations on widgets as methods. When a hierarchy of widgets is

realized, each widget is given a window to manage, along with an input environment

on which it communicates with its parent. EXene turns X events into addressed

messages, which are routed to a destination widget through a widget hierarchy. This

organization makes it easy to provide wrappers for widgets that change their behavior.

In the early 1990s, Gansner and Reppy developed various applications using eXene

[6], and several other researchers used eXene to develop graphical user-interfaces

(GUIs) for their applications [2, 7, 16]. This use of eXene demonstrated its elegance,

utility and acceptable performance. But in more recent years, both the development

of eXene and its use by others has dwindled. Gansner and Reppy have put their

time into other projects, and potential users have apparently been put off by the

lack of up-to-date documentation and ongoing development, because some aspects

of eXene, like support for X resources and authorization, are unfinished, and since

some needed features, like the handle of input focus, are missing. When developing a

pretty-printing library using eXene [18], the second author wasn’t aware of significant

ongoing development or use of eXene.

During the last two years, as an outgrowth of the second author’s use of CML

and eXene in a graduate course, our group at K-State has been attempting to restart

the development of eXene. In the following sections, we will describe what we have

achieved so far, as well as our plans for the future. In Section 2, we consider widget

programming conventions, explaining our scheme for avoiding deadlock and maxi-

mizing concurrency. In Section 3, we describe our approach to handling input focus.

Section 4 is concerned with customization using X resources. In Section 5, we consider

support for X authorization. In Section 6, we describe our plan for supporting X se-

lections. In Section 7, we consider widget bounds and the layout widget. In Section 8,

we mention the past and present widget development projects undertaken at K-State.

Finally, in Section 9, we mention our plans for improving eXene’s documentation.

EXene is an open source project, and we encourage members of the SML commu-

2



nity to become involved in its design and development. For more information, contact

the second author. Because X servers now run on all major platforms, we believe that

a revitalized eXene has the potential to become popular with SML developers.

2 Widget Programming Conventions

When an eXene widget is realized, it is granted one X window upon which to render

itself and an input environment on which messages will be received. This input envi-

ronment consists of keyboard, mouse and control addressed message input streams,

represented as CML events. Each of these input streams has a corresponding out-

put stream upon which the messages are sent by its parent. Composite widgets—

widgets containing one or more child widgets, such as layout widgets—maintain out-

put streams corresponding to the child widgets’ input streams. A composite widget

must contain a router that determines the child widget (window) a message is destined

for, and then sends it on to the child widget via the output stream corresponding to

that child’s input environment. In addition, many widgets offer CML events to the

application—for example, a button widget may offer a button activity event on which

BtnDown and BtnUp events may be received. The button widget maintains an output

stream over which these events are sent to the user application.

EXene is intended to be a fully concurrent system [6]. To this end, each widget’s

state is normally encapsulated in its own thread. E.g., a button widget’s state is

represented by a thread that listens for user input on its input streams and sends

selected messages to the application on its output stream. In principle, this would

allow all widgets in an application to execute concurrently—e.g., if a particular widget

was executing a long-running computation, other widgets could continue to execute,

even responding to further user input. However, because communication in CML is

synchronous, and since eXene’s message router doesn’t buffer messages, it turns out

that some of this possibility for concurrency is lost.

Because CML communication and the widget input/output streams are syn-

chronous, any failure of a widget or application to respond to input in a timely

manner has the potential to block the execution of other widget threads. Consider a

widget E that performs some extensive computation, and that is part of a composite

widget C. While E is performing the computation, any messages that the router

thread of C attempts to send to E will be blocked. Therefore, no further input mes-

sages will reach any other children of C, and furthermore, if C itself is part of another

composite widget, that parent router thread will also become blocked. This cascading

3



blocking may also arise if the application itself fails to respond (at all, or in a timely

manner) to messages from a widget. The failure of any recipient of messages in an

application to respond to input will eventually block execution of all widget threads

in the same shell (the eXene abstraction for a top-level window).

In addition, some possibilities for deadlock arise by virtue of the bidirectional

communication between widgets and applications, and between parent widgets and

child widgets. A widget typically implements its methods by creating a request chan-

nel (stream) over which operation requests may be sent by applications. Optionally,

return values may be sent via synchronous variables specified in the requests. This

functionality is hidden from the application programmer, who sees only a method

that blocks until complete; the application programmer cannot selectively communi-

cate over the widget request channels. Now, suppose that an application A contains

a widget W with a method m. Further suppose that the application applies m to

W . The application is now blocked waiting for a reply (or receipt of the request

message) from W . But simultaneously, W may be attempting to send a message to A

without selective communication2 (without allowing for the possibility to also receive

the method request message). This causes both W and A to be blocked waiting on

the other. Unfortunately, this blocking will soon cascade to the rest of the shell.

Similarly, a child widget might be trying to communicate with its parent, while the

parent was trying to communicate with the child.

In [5, p. 42], Gansner and Reppy say that, in communication between a parent

widget and one of its children, the parent has the responsibility to be responsive,

and that queuing of a child’s messages to its parent could be used to avoid deadlock.

(A wrapQueue function is provided for this very purpose.) We propose using this

idea of parental responsibility as the basis for our widget programming conventions,

and we apply it not just in parent widget/child widget communication, but also in

communications between a widget (thought of as the parent) and the application

(thought of as the child). In general, we say that

Parents should be more responsible than children.

We feel that widgets should be tolerant of errors in user applications, and composite

widgets should be tolerant of errors in their child widgets.

2This deadlock situation is avoidable if each widget uses selective communication for each output

message sent—however, it is not trivial to design widgets in this way. In fact, this was how the

second author modified the scrollbar widget to avoid deadlock; this modification is incorporated in

the current eXene release.

4



Our approach to making parents more responsible than children does use queuing,

but in a different way than was suggested by [5, p. 42]. We recommend that parent

widgets queue messages sent to child widgets or applications.3 This prevents parent

threads from being blocked by error-prone or slow children, at the cost of extra queue

threads and some buffer space. It may sometimes be necessary to flush the queue—

perhaps at the request of an application that knows that only future messages are of

interest. Because all queued messages originated with the user, there is little risk of

the message queues becoming especially long.

Queuing messages sent to child widgets does not entirely prevent parent threads

from being blocked by unresponsive child threads, however. All widgets have a

boundsOf method that returns the requested geometrical bounds of the widget. Even

if parents queue messages to their children, a parent will still be blocked while it calls

the boundsOf method of one of its children. Most boundsOf methods are implemented

similarly to other methods, with bound-of requests sent on a request channel. Parent

widgets generally calculate their own bounds based on the requested bounds of their

children. To avoid this source of blocking or unresponsiveness, we propose another

convention—the boundsOf function may only be called prior to widget realization.

Thereafter, the parent should cache the requested bounds of the child, and only up-

date the bounds when the child requests it be resized in a resize request (which will

now include the requested bounds).

This convention suggests the following life cycle of a widget:

• Construction. The widget is created, and the thread encapsulating its state

is started. Some of its methods may now be called by the application.

• Bounds Determination. The boundsOf method of the widget is called, de-

termining the requested bounds of the widget. The boundsOf method should

never be called again in the lifetime of the widget; calling boundsOf again will

raise the exception BoundsFunctionAlreadyCalled.

• Realization. The realize function of the widget is called, supplying the

widget with an input environment and a window. The realize function should

never again be called in the lifetime of the widget; calling realize again will

raise exception AlreadyRealized.

Note that, if the widget’s desired size changes after its bounds function has been

called but before it is realized, its parent won’t know what this desired size is.

3Top-level windows already buffer the X events they receive, before turning them into addressed

messages destined for descendants.

5



Some widgets in the current eXene release suffer from this defect. It can be

avoided by having the widget remember that it should ask its parent to resize

it after realization.

• Post-Realization. The widget is realized, and may be visible on the display.

User input or method calls causing a change in the desired bounds of the widget

should cause the widget to send its parent a resize request accompanied by the

desired bounds. Such requests may not be honored, and should not be repeated.

• Death. The widget is notified of the loss of its window by a CI OwnDeath

message.

We have implemented the queuing of messages sent by composite widget routers,

as well as those sent by some widgets to applications. In addition, we have imple-

mented a version of the button widget in which the button activity queue is flushed

whenever a button is made inactive (unresponsive to user input). We have not yet

enforced the above widget cycle on the existing eXene widgets.

To summarize, we recommend the following eXene widget programming conven-

tions:

• Parent widgets must queue output sent to child widgets and applications, and

may flush those queues in some cases.

• A widget’s boundsOf function may only be called prior to realization, and the

parent should cache a child’s desired bounds. Subsequently, the child is respon-

sible for letting its parent know when its sizing wishes have changed, supplying

it new bounds as part of the requests.

• A widget’s methods must be guaranteed to terminate (ideally, in a timely fash-

ion).

• Attempts by a child widget to send messages to its parent should always succeed

(ideally, in a timely manner).

3 Handling Input Focus

By default, the keyboard input focus of an X application is set to the root window,

which means that keyboard input is sent to the window currently pointed to by the

mouse [13, p. 612] [10]. This functionality can be annoying to deal with in eXene

6



applications, particularly when trying to enter text in an application with multiple

text input fields. The X protocol provides the SetInputFocus request for assigning

keyboard focus to a particular window. This allows, e.g., an application to assign a

text input widget input focus so that movement of the mouse pointer will not affect

the user’s ability to enter text in that widget.

Motif also provides the ability to navigate between widgets by moving the key-

board focus between “tab groups” of widgets; this is accomplished by pressing a

particular key (usually, of course, Tab). As normally all widgets are assigned to be

part of a tab group, this effectively allows a user to move keyboard focus to every

widget accepting keyboard input in an application by the use of the Tab navigation

key [13, p. 172]. We feel that this focus-handling functionality would be very useful

in eXene, as it would help provide a more pleasant experience for users. Although it

may not be appropriate to mimic all Xlib and X toolkit functionality, we feel that a

few of these features would be useful in eXene.

A top-level window may participate in the WM TAKE FOCUS window manager proto-

col, so that the window manager will send it a CLIENT TakeFocus client message when

it assigns focus to the window; in addition, any window may receive FocusIn and

FocusOut events indicating that it has received or lost input focus [17, pp. 648,592].

When a top-level window receives a CLIENT TakeFocus client message, it might use

the SetInputFocus X request to reassign focus to the sub-widget that had it before

focus was lost.4 And some widgets might highlight their borders when they have

input focus.

We have added a setInputFocus method for setting the keyboard input focus

to a window. We have also modified eXene’s createSimpleTopWin function to re-

turn a client msg CML event whereby CLIENT TakeFocus client messages may be

read. Also, we have added the ability for eXene windows to receive CI FocusIn and

CI FocusOut messages over their input environments.

We have also provided support for the WM DELETE WINDOW window manager pro-

tocol. When a top-level window participates in this protocol, it will receive a

CLIENT DeleteWindow client message when the user, via the window manager, has

requested that window delete itself. This message can also be received on the above-

mentioned client msg CML event. We have added a deletionEvent method to the

widget shell whereby a unit event may be obtained that can be synchronized on when

4A CLIENT TakeFocus client message carries the timestamp of the X event that caused the window

manager to assign focus to the top-level window. This timestamp (which isn’t part of a FocusIn

event), must be supplied to a subsequent SetInputFocus request.

7



the shell’s top-level window has received a CLIENT DeleteWindow message.

val deletionEvent : shell -> unit CML.event

We are also in the middle of adding a focus manager to the eXene widget top-level

shell (the widget-level abstraction of a top-level window).

signature SHELL =

sig

...

datatype focusable_msg = FocusIn

| FocusOut

| Assign of Interact.time

| Release of Interact.time

| Next of Interact.time

| Previous of Interact.time

datatype focusable = Focusable of

{focusableEvt : focusable_msg CML.event,

takeFocus : Interact.time -> unit}

type fid

val addFocusableFirst : shell -> focusable -> fid

val addFocusableLast : shell -> focusable -> fid

val addFocusableBefore : fid * focusable -> fid

val addFocusableAfter : fid * focusable -> fid

val deleteFocusable : fid -> unit

...

end

This focus manager will allow a user to move input focus through a list of eXene

widgets/windows by means of some navigation keys, for example Tab. Widgets that

can be turned into objects of type focusable, e.g., via a

val focusableOf : some_widget -> focusable

method, may be added to the manager. A focusable object will inform the manager

by means of a focusable msg when input received indicates that the focus has been

8



received or lost, when focus should be assigned to the object (perhaps upon a mouse

click; carried out by invoking the object’s takeFocus method), when focus should be

moved to the next or previous focusable object (perhaps upon a Tab or Shift+Tab),

or when focus should be released (perhaps upon an Esc).

Because the focus manager part of the shell will know which, if any, of its focusable

objects currently has the focus, when it receives a CLIENT TakeFocus client message,

it can take appropriate action when none of its focusable objects currently have the

focus. If none of its objects ever had the focus, or the last one to have the focus

explicitly gave it up, then the manager can assign focus to the first of its objects.

Otherwise, it can set the focus back to the object that had the focus before focus was

lost. The time that is included as part of some of the focusable messages and that

is passed to the takeFocus method is always supposed to be the time at which the

user pressed/released the key or mouse button that initiated the change.5 This time

must be passed to a subsequent call of setInputFocus.

The type fid stands for “focusable object identifier”; fid’s are used to re-

fer to managed focusable objects. A shell’s focus manager is told to man-

age focusable objects using the methods addFocusableFirst, addFocusableLast,

addFocusableBefore and addFocusableAfter; they return fid’s for referring to

those objects. The addFocusableFirst (respectively, addFocusableLast) method

makes the supplied focusable object be the first (respectively, last) element

of the list of managed objects, whereas the addFocusableBefore (respectively,

addFocusableAfter) method makes the supplied object be the last object before

(respectively, first object after) the object named by the supplied fid. Finally, the

deleteFocusable method is used to stop a focus manager from managing a given

focusable object.

We are also building a FocusableFrame composite widget that wraps around a

widget and its focusable object, and that draws a border around the child widget

when that widget has focus. This is done by monitoring the focusableEvt of the

focusable object. Of course, the FocusableFrame widget has a method that may be

used to turn it into a focusable object, enabling it to be added to the focus manager

of the shell.

5The current eXene release doesn’t annotate keyboard messages with timestamps; this will have

to be rectified if, e.g., Tab is to cause focus to be assigned to the next focusable object.

9



4 Customization using X Resources

Xlib provides for user customization of applications by means of “resource specifi-

cations”. For example, an application may allow background and foreground color,

window geometry, and font settings to be configured by the user [8, p. 339]. Some

of these resource settings might be passed as arguments to the application on the

command line, such as “-background white”. On the other hand, some resource

specifications may be general to several applications or to all instances of a given

application, and these may be stored in a configuration file. Xlib provides support for

both of these methods, with a XrmParseCommand function for loading resource set-

tings from a list of arguments into a resource “database”, and a XrmGetFileDatabase

function for loading a resource configuration file into a resource database.

In addition, as X users may often wish to apply a set of resource specifications to

all applications on a given display, regardless of whether those applications all have

access to a common filesystem, X distributions provide an xrdb (“rdb” stands for

resource database) utility that loads the contents of a resource specification file into a

XA RESOURCE MANAGER property of the X display. The contents of this property may

then be used as the contents of a file would.

Finally, as resource specifications may originate from several sources (say, from

command line options or the XA RESOURCE MANAGER property), application developers

must have a way of combining resource databases in such a way that one database

takes preference over another. Xlib provides the XrmMergeDatabases function for

this purpose.

EXene currently provides support for user customization of widgets [3]. Widgets

are passed the following resource-related information:

• A “view”, consisting of a a “style” and a “style-view”, where a style is the eXene

version of an Xlib resource database, and a style-view is a search key into that

style, such as the name of the application.

• An “args” list, consisting of a list of attribute/value pairs.

Internally, the widget maintains an “attrs” list of triples, where each triple consists

of an attribute, its type (an element of a datatype of attribute types) and its default

value. EXene provides support for searching for the value of an attribute that is in

the attrs list, first looking in the args list, then looking in the style as filtered by the

style-view, and falling back on the default in the attrs list if necessary. When this

search succeeds, it’s guaranteed to have the type listed in the widget’s attrs list.

10



As noted in [3],

The idea of the argument list used at widget creation is right, but

its form is not. A flat name-value list does not allow a programmer to

control the resources of specific internal widgets. The name component

of an argument needs to reflect the hierarchy. This suggests replacing the

type of name with a list of names . . .

Our view is slightly different: although a widget may be built out of various widgets,

it’s not necessarily that case that this physical structure should be exposed to the

application developer. But it is true that there may be various instances of a given

attribute, say font, that a widget wants to expose. It is this logical structure that

we will expose. As a result, we do plan to makes the keys of the args and attrs lists

be lists of names, terminated by attributes.

EXene provides support for creating a style from a list of strings with the function

styleFromStrings. This is sufficient, in our opinion, for loading resource specifica-

tions from a configuration file, as an application may simply read a file, then pass

a list of lines to this function. However, eXene currently lacks the ability to create

a style from the XA RESOURCE MANAGER property of the X server, lacks the ability to

merge styles together, and has no helper functions to assist the application developer

in sorting through command line arguments.

To rectify this, we have added several helper functions to the eXene WIDGET sig-

nature. First, mergeStyles, when applied to (style
1
, style

2
), returns a style where all

specifications of style
1

have been inserted into style
2
, effectively giving priority to the

specifications of style
1

(this function was trivial to write, given the previously existing

support for updating styles).

val mergeStyles : style * style -> style

The styleFromXRDB function takes a widget root (the widget-level abstraction for

an X display) as an argument, and returns a style created from the specifications in

the XA RESOURCE MANAGER property of the X server.

val styleFromXRDB : root -> style

Finally, several functions have been added to facilitate sorting through command

line arguments.

val parseCommand : optSpec -> string list -> optDb * string list

val findNamedOpt : optDb -> optName -> root -> attr_value list

val styleFromOptDb : root * optDb -> style

11



The function parseCommand takes an option specification, type optSpec, and a list

of strings. It returns an “option database”, type optDb, and a list of strings not

recognized as arguments.

The option specification is a list of possible arguments that may be provided on the

command line. Each of these individual argument specifications includes an optName

to identify the argument (either a simple string such as “background” or a resource

name such as “*background”) and the argument string that identifies the option in

the command line (such as “-bg”). Each individual argument specification also in-

cludes an option “kind”, similar to Xlib’s option kind furnished to XrmParseCommand,

such as OPT STICKYARG signifying that the option value will be the next string in the

argument list.

Once command line arguments are organized into an option database by

parseCommand, they may be retrieved by their optName tag, or by converting the

options with resource names to a style. A value named with a string tag may

be retrieved with findNamedOpt; an optDb may be converted into a style with

styleFromOptDb.

5 X Authorization

While testing eXene applications, especially applications to be displayed over a tun-

neled SSH connection to the X server, the authors encountered a few issues with

eXene’s X authorization code. The file specified in a user’s XAUTHORITY environment

variable contains a series of records, each with family (Local (Unix Socket), Inter-

net, etc.), host address, display number, authorization name, and authorization data

fields. When an application is given a hostname and display number as an argument

to connect to, or takes this information from the user’s DISPLAY environment variable,

this X authorization file is searched for an authorization method (and authorization

data) to supply in opening the connection.

For records whose family is Internet, the address is stored as a four-byte packed

IP address. It is therefore necessary to convert this IP address to a hostname for

comparison with the hostname string of the argument to the application.6 In addition,

if a hostname of "" or "localhost" is given as an argument, we must consider any

family in the list of X authorization methods, rather than just methods with family

6While it is true that the IP address of the argument hostname could be obtained for comparison,

the given hostname might have multiple interfaces leading to an incorrect match if IP addresses were

compared.

12



Local. We have modified eXene’s X authorization code to convert IP addresses to

hostnames for comparison, and to search all authorization families when the empty

string or "localhost" is provided as the host to connect to, thus correcting the

authorization issues that we have encountered so far.

6 X Selections

The Inter-Client Communication Conventions [15] of the X window system provides

two ways for X clients (applications) to share information: the selection and the cut

buffer.

The selection mechanism is the more complex and general of the two methods.

An application that wants to share information with other applications may acquire

a selection, either the primary selection or another one, by making a request to the

X server. Then, other applications may request that the value of the selection be

converted to specified target types, where the set of these types is extensible, but

includes different kinds of text and images. An application’s request is transmitted

by the X server to the owner of the selection, who can honor it (but may convert

the value to a different type if it wishes) or reject it. If it honors the request, the

supplied value is stored by the selection owner in a window property supplied by the

requester, and the requester is notified that the value is now available. Afterward,

the requester is responsible for deleting the property. There are three target types

that all clients are required to handle: TARGETS, MULTIPLE and TIMESTAMP. TARGETS

is used to ask the selection owner what target types it is willing to convert the value

of the selection to. And, MULTIPLE and TIMESTAMP are used for batching requests and

determining the time of the X event that caused the selection owner to acquire the

selection, respectively. When the value in a specified type of a selection is big, it can

be transmitted incrementally. Finally, there is a way of passing data to a selection

owner so as to influence the value that it supplies.

In contrast, the cut buffer mechanism is very simple. It simply consists of eight

properties of type string on the root window. An application can add a string to

the cut buffer by shifting the values of the first seven properties to the last seven

properties, and then setting the first property to that string. An application may

obtain the value in the first property of the cut buffer, or may rotate the cut buffer,

simultaneously moving the value in the first property to the last, and shifting the

values of the last seven properties to the first seven.

At present, eXene provides only partial support for selections. If a client requests

13



ownership of a selection, it gets back a selection handle. From this handle, it can

obtain a CML event with which it should synchronize to obtain selection requests,

as well as another CML event with which it should synchronize to learn if it has lost

(or never obtained) the selection. There is also a method that may be applied to the

selection handle to give up ownership of the selection. EXene also provides a method

for requesting the value of a selection. Currently, there is no support for the TARGETS,

MULTIPLE and TIMESTAMP targets, or for incremental transfers, and we plan to rectify

this. But we also plan to provide a higher-level interface to the selection mechanism.

When acquiring ownership of a selection, one will supply a function that takes in a

requested target type and returns an option value that is NONE, if it’s not possible to

convert the selection’s value to the requested target, and is SOME v, if that value was

successfully converted to the result v. If necessary, this function can communicate via

CML channels to determine the current value of the selection. But more commonly,

this value will be fixed, as long as the selection is owned; in such cases, we can speak

of simply setting the selection to a given value. And, for common target types like

STRING, we will provide curried functions that take in values of the given target type,

and return the functions that know how to convert these values to requested types.

We will provide support for passing data along with a selection request. Finally,

because the property supplied along with a request for a selection is supposed to be

currently unused (except when data is supplied along with the request), and because

the requester is supposed to delete the property after the request is completed, we

plan to hide the allocation/deallocation of the property within the eXene function for

requesting the value of a selection.

We will also provide support for the cut buffer. In fact, because many applications

use the cut buffer as a substitute for the primary selection, when the latter is unowned,

we will provide support for doing this. I.e., we will provide support for simultaneously

setting the primary selection to a string and adding the string to the cut buffer. And

we will provide support for requesting the value of the primary selection as a string,

and, if that fails, obtaining the head of the cut buffer instead.

7 Widget Bounds and the Layout Widget

In EXene, a widget or other graphical entity (like a box of the layout widget—see

below) indicates its bounds constraints (which don’t have to be honored) to its parent

in two dimensions, using elements of the following datatype, which corresponds to

the hints on a window’s desired size that are supplied to window managers. Here,

14



dim and DIM stand for “dimension”, incr stands for “increment”, and nat stands for

“natural”.

datatype dim = DIM of {base : int,

incr : int,

min : int,

nat : int,

max : int option}

A (horizontal or vertical) dimension

DIM{base = b, incr = i, min = m, nat = n, max = x}

means that the widget will be happy with a window with b + ki pixels in the given

dimension, where m ≤ k and, if x = SOME j, then k ≤ j. But it would prefer its

window to have b + ni pixels, which is its natural size.

EXene provides a very general layout widget for displaying boxes, a recursive data

structure consisting of different kinds of horizontal and vertical lists of boxes, whose

leaves consist of widgets and glue. Although very useful, the existing widget produces

odd results in some cases. E.g., putting inflexible glue around a flexible widget results

in an overall widget that’s inflexible. Part of the problem is that the existing behavior

of the layout widget is largely undocumented, and its code is complex and hard to

fathom. With a student collaborator, we are attempting a complete redesign of the

layout widget, learning from the existing one.

We plan to start by carefully specifying how the bounds of a box is determined

from the bounds of its components, and how the components of a box are sized and

positioned, relative to a rectangle in which the overall box is to be rendered. As an

example of the issues involved in doing this, consider a case when several boxes are put

into a horizontal list. Let’s restrict out attention to the horizontal dimension. How

should the dimensions of the individual boxes be combined into an overall dimension

for the list? (If any of the boxes are inflexible, their fixed sizes can simply be included

in the base value for the list; in what follows, let’s assume that all of the boxes are

flexible.) If each of the component boxes has the same increment, the answer is clear.

But if these boxes have different increments, it seems there is no real alternative

but to fall back on setting the increment for the list to 1. Then, given a rectangle

in which to display the list, it will sometimes be necessary to distribute some extra

pixels between the widgets.

15



8 Other Widgets

K-State students have developed, or are developing, widgets for displaying images,

displaying rich text, and letting a user browse the filesystem for a file. Suggestions of

widget projects are welcome.

9 Documentation

We plan to develop up-to-date documentation for eXene using Reppy’s MLDoc

utility—which has been used to good effect for the Standard ML Basis Library man-

ual.

Acknowledgments

We have benefited from a large number of (mostly email) conversations with John

Reppy concerning SML/NJ, CML and eXene. Jonathan Hoag and the second author

are currently working on a redesign of the eXene layout widget, and it’s a pleasure to

acknowledge Jonathan’s contributions to Section 7. Thanks are also due to the fol-

lowing K-State students who have contributed to the local development of eXene: Jan

Antolik, Dominic Gélinas, John Homer, Kevin Jones, Georg Jung, Joseph Lancaster,

Jan Miksatko, Alan Reinhold, Ryan Shelton, Charles Thornton and Julie Thornton.

References

[1] A. W. Appel and D. B. MacQueen. Standard ML of New Jersey. In Programming

Language Implementation and Logic Programming, volume 528 of Lecture Notes

in Computer Science, pages 1–26. Springer-Verlag, 1991.

[2] B. N. Freeman-Benson, J. Maloney, and A Borning. An incremental constraint

solver. Communications of the ACM, 31(1):54–63, 1990.

[3] E. M. Gansner. Notes on the new eXene widgets. Included as part of version 1.0

of the eXene distribution, 1995.

[4] E. M. Gansner and J. H. Reppy. eXene. In 1991 CMU Workshop on SML, 1991.

[5] E. M. Gansner and J. H. Reppy. The eXene widgets manual. AT&T Bell Labo-

ratories, February 1993.

16



[6] E. R. Gansner and J. H. Reppy. A multi-threaded higher-order user interface

toolkit. In Bass and Dewan, editors, User Interface Software, volume 1 of Soft-

ware Trends. Wiley, 1993.

[7] H. Lin. PAM: a process algebra manipulator. In Third Workshop on Computer

Aided Verification, July 1991.

[8] A. Nye. Xlib programming manual, volume 1 of The definitive guides to the X

window system. O’Reilly & Associates, Inc., third edition, 1992.

[9] A. Nye. Xlib reference manual, volume 2 of The definitive guides to the X window

system. O’Reilly & Associates, Inc., third edition, 1992.

[10] A. Nye. X protocol reference manual, volume 0 of The definitive guides to the X

window system. O’Reilly & Associates, Inc., fourth edition, 1995.

[11] A. Nye and T. O’Reilly. X toolkit intrinsics programming manual, volume 4

of The definitive guides to the X window system. O’Reilly & Associates, Inc.,

second edition, 1992.

[12] A. Nye and T. O’Reilly. X toolkit intrinsics reference manual, volume 5 of The

definitive guides to the X window system. O’Reilly & Associates, Inc., second

edition, 1992.

[13] A. Nye and T. O’Reilly. X toolkit intrinsics programming manual, volume 4 of

The definitive guides to the X window system. O’Reilly & Associates, Inc., Motif

edition, 1993.

[14] J. H. Reppy. Concurrent Programming in ML. Cambridge University Press,

1999.

[15] D. Rosenthal. The inter-client communication conventions manual, Version 2.0.

Sun Microsystems, Inc., December 1993.

[16] M. Sarkar and M. H. Brown. Graphical fisheye views of graphs. Technical

Report 84, DEC Systems Research Center, March 1992.

[17] R. W. Scheifler and J. Gettys. X window system: the complete reference to Xlib,

X protocol, ICCCM, and XLFD. Digital Press, third edition, 1992.

[18] A. Stoughton. Infinite pretty-printing in eXene. In Trends in Functional Pro-

gramming, volume 3, pages 13–24. Intellect, 2002.

17


