
REVITALIZING EXENE

by

Matthew Hoag

B.S., Kansas State University, 2007

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Science

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2009

Approved by:

Major Professor
Alley Stoughton

Copyright

Matthew Hoag

2009

Abstract

This thesis covers the process leading up to the release of eXene 2.0, a User Interface

Management System (UIMS) toolkit. Since its inception, eXene has provided a unique way

to create meaningful graphical user interfaces (GUIs) for Standard ML applications. Addi-

tionally, it has gone through several quality revisions which have both enhanced the toolkit

and corrected many deficiencies that were present. Even with these improvements, however,

the full potential of eXene has become increasingly difficult for developers to utilize. That

is, in spite of the natural innovation that eXene brings to GUI construction, its current

lack of extensibility, usability, and functionality, has caused Standard ML developers to

choose simpler, more familiar UIMS toolkits, despite their limitations, for the creation of

their applications. In light of this fact, eXene needs an internal and cosmetic overhaul to

extend its usage and appeal. First, to improve its extensibility, formerly weakened by or-

ganic growth, eXene requires some restructuring of its architecture. Second, to improve its

overall usability, previously stifled by sparse documentation, eXene requires the implemen-

tation of an interactive electronic document for its API. Finally, to improve its functionality,

several new multi-purpose widgets are introduced. It is the author’s hypothesis that a re-

vised structure, improved documentation, and additional multi-purpose widgets sufficiently

elevate eXene’s extensibility, usability, and functionality such that eXene can be considered

a fully featured UIMS toolkit. With these changes and the release of eXene 2.0, eXene is

more likely to be adopted as the primary UIMS toolkit for Standard ML developers.

Table of Contents

Table of Contents viii

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Standard ML . 1
1.2 Concurrent ML . 2
1.3 EXene . 2
1.4 Advantages of eXene . 3
1.5 The Current State of eXene . 3
1.6 EXene’s Competition . 4
1.7 The Fully Featured UIMS Toolkit . 4

1.7.1 Functionality . 5
1.7.2 Usability . 5
1.7.3 Extensibility . 5

1.8 The Revitalization of eXene . 6

2 Restructuring eXene 7
2.1 The X Window System . 8
2.2 eXene’s Interface Library . 8
2.3 The Widget Library . 10
2.4 The Other Libraries . 11
2.5 The Compilation and Library Manager . 12
2.6 Refactoring eXene . 13
2.7 Improving the Abstraction Model . 16

2.7.1 The state of eXene’s abstraction model 16
2.7.2 Widget types . 17
2.7.3 Widget utilities . 19
2.7.4 The Interact abstraction . 20
2.7.5 Benefits of the revised abstraction model 21

2.8 Integrating the Enhancements . 21

3 eXene Documentation 24
3.1 An interactive documentation solution for eXene 25
3.2 Setting up ML-Doc . 26
3.3 Creating ML-Doc files . 27

viii

3.4 ML-Doc and CM . 28
3.5 Populating the eXene Documentation . 29

4 New eXene Widgets 31
4.1 Selectable List . 32
4.2 File Chooser . 34
4.3 Box Layout . 36

5 Conclusion 38

Bibliography 42

A linkToMLDOC source code 43

B mkdoc-tool source code 44

C Selectable List source code 45

D File Chooser source code 51

E File Chooser Demo source code 59

ix

List of Figures

2.1 shared types and structures in abstract.sml 9
2.2 EXeneBase in abstract.sml . 10
2.3 Library and Compilation Unit Comparison 12
2.4 eXene directory refactorization . 15
2.5 (widget-base.sml) Initial signature definition for basic widget types 18
2.6 (simple-edit.sml) Cycling/Releasing focus in the simple string edit widget . . 22

3.1 Previous and current versions of “lib/graph-util/sources.cm” 29

4.1 eXene file chooser screen shot . 35
4.2 Box Item datatype . 37

x

List of Tables

4.1 Attribute List for Selectable List . 33
4.2 Attribute List for File Chooser . 35

xi

Chapter 1

Introduction

Graphical User Interfaces (GUI) toolkits are often considered to be a major selling point to

application developers when choosing a programming language. They provide a means for

developers to create, arrange, and modify a set of pre-made widgets to provide a graphical

front-end to an application. In doing so, GUI toolkits can make a programming language

more attractive by providing the developer with a straight-forward method to create an

interaction environment for the users of their application. While GUI toolkits are not

essential to the usefulness or popularity of a programming language, they often give it much

needed appeal.

1.1 Standard ML

Higher order language such as Standard ML (SML)RMM97 can benefit from a comprehensive

and well-documented GUI toolkit. By itself, SML is a highly usable, feature rich pro-

gramming language. It provides a strong typing system (with type inference), higher order

functions, polymorphism, and a high degree of modularity. The standard distribution of

SML also contains several extended libraries which greatly increase its applicability to var-

ious real world applications. One of these extended libraries, Concurrent ML (CML)Rep99,

deserves special mention for its contribution to the overall capability of SML.

1

1.2 Concurrent ML

Leveraging first-class continuations and the UNIX style signal handling integrated into the

Standard ML of New Jersey compiler, the CML library constructs a set of concurrency

primitives that can be used in conjunction with any SML application. More specifically,

CML allows for the creation of one or more processes (or threads) that run in parallel and

facilitates synchronous communication between said threads via typed channels. CML also

provides a means for selective communication; that is, it gives a thread the nondetermin-

istic choice to synchronize over one of several different channels. It is important to note

that unlike many other concurrent languages, CML is a higher order concurrent language,

where the communication and synchronization operations are themselves first-class values.

This not only provides an abstraction of the synchronization operation, but also a mecha-

nism to separate the description of the synchronization operation from the act itselfRep99.

This concurrency concept, among many others inherent in CML, provides the basis for the

communication of widgets and windows in eXene.

1.3 EXene

EXeneGR93a,GR93b, a multi-threaded User Interface Management System (UIMS) toolkit de-

signed to create GUIs for SML applications, is quite unique and visionary in its implemen-

tation. The standard approach for handling user input (e.g., keyboard, mouse) in UIMS

toolkits is to employ the event-based paradigm. This approach consists of a main loop that

checks for incoming events from users or other threads and event handlers that provide a

reaction or sub-routine to events specified by the developer. In this approach, the main

loop and the input checking code are often built into the programming language itself be-

cause their computation is not dependent on the application. Conversely, the application

developer is required to provide event handling functions for instances where the applica-

tion needs to react with particular events. For those with experience in concurrency, it is

easy to see that this simple event-based paradigm is only a small subset of the function-

2

ality provided by a full fledged concurrent system. Unlike almost every standard UIMS

toolkit, eXene’s interaction with the user and its inter-window/widget communication are

implemented using the full set of concurrency primitives provided by CML.

1.4 Advantages of eXene

By virtue of its extensive concurrent backend, eXene reaps several substantial rewards. First,

eXene developers are not forced to rely on the event loop embedded in the UIMS toolkit

of choice (although it is theoretically possible to implement such a loop for use in eXene).

Instead, the application developer maintains full control over the application’s computation.

Second, eXene remains free to execute additional computation over multiple threads where

an event-based UIMS can be largely inactive waiting for the next input. Thirdly, while

it is always possible for an individual GUI element to fail or deadlock in eXene, this does

not cause the whole system to fail or deadlock. More specifically, the inherent modularity

provided by CML allows GUI elements in eXene to fail gracefully without affecting the rest

of the application. Finally, and possibly most important, eXene forgoes the imperative style

of most UIMS toolkits and allows developers to utilize SML’s powerful type system when

providing communication between GUI components. The SML type system can be used to

create both terse and descriptive communication depending on the situation and ultimately

gives GUI construction a very functional feel. Overall, the usage of eXene allows the de-

velopers to maintain greater control over the execution of their application and provides a

development environment that can exploit the functional nature and strong type system of

SML.

1.5 The Current State of eXene

In combination, SML/NJ, CML, and eXene make a powerful application development envi-

ronment. SML/NJ’s strong typing system and functional nature coupled with eXene’s high

computational and concurrent versatility provide developers with a reliable and succinct

3

means to create a variety of meaningful graphical applications. Nevertheless, eXene still

contains a number of deficiencies. More specifically, eXene provides the “proof of concept”

for a UIMS, but lacks some needed implementation. While great strides have been made to

enhance the functionality of eXeneGan95,DeB05, little attention has been addressed to making

it accessible to developers.

1.6 EXene’s Competition

It is important to note that eXene is not the only choice for GUI development in SML. Several

SML bindings to well known UIMS toolkits exist, such as GTK+LN01 and TCL/TKLW04.

While the GTK+1 and the TCL/TK bindings are widely sufficient for the construction of

meaningful GUIs, they provide a fairly imperative approach to GUI development. Moreover,

it is a common occurrence in application development to trade innovation for simplicity.

Thus, many developers may trade the natural innovation and functional capabilities of

eXene for a simpler and/or currently more fully featured UIMS toolkit.

1.7 The Fully Featured UIMS Toolkit

UIMS toolkits come in various forms and are used in a variety of languages. Yet, to be

successful, they must provide a level of extensibility, usability, and functionality expected

by the typical developer. That is, if a typical developer expects a certain set of features in

a UIMS toolkit, and these features are missing, it is likely that no amount of innovation or

uniqueness will persuade the developer to use the toolkit. However, with a sufficient level of

functionality, usability and extensibility, a UIMS toolkit may be considered fully featured

by developers.

1Currently, the bindings for GTK+ are only usable with the Moscow ML compiler and not with SML/NJ
compiler. It is foreseeable, however, that they may be extended to SML/NJ.

4

1.7.1 Functionality

For a developer, functionality is often the primary determinant when choosing a UIMS

toolkit. This is because a toolkit’s functionality determines the range of GUI applications

that can be constructed with its use. A UIMS toolkit with high functionality usually contains

numerous low-level or modular GUI components that can be used in tandem to construct

complex and meaningful GUIs, as well as several high-level GUI components2 which are

used consistently in generic application development. In their entirety, the low-level and

high-level GUI components govern the type GUI applications that can be created along

with the time and work required to do so. As a result, developers will choose a UIMS

toolkit that possesses a level of functionality such that it is possible and efficient to create

the envisioned GUI application.

1.7.2 Usability

Usability is of paramount concern to the developer when choosing a UIMS toolkit. It is often

employed as the metric to determine a UIMS toolkit’s ease of use. More specifically, usability

defines the extent to which the overall structure and individual elements of functionality

are explained to the developer. Highly usable UIMS toolkits generally have manuals that

describe the basic usage and structure of the toolkit and also contain easily accessible, up-to-

date documentation describing the functionality of the toolkit. In its extremes, the usability

of a UIMS toolkit ranges from a guiding hand to an impassable barrier for the developer. As

such, regardless of the functionality provided, usability dictates the developer’s willingness

to use the toolkit.

1.7.3 Extensibility

An element of foundational importance in a UIMS toolkit is extensibility. While extensibility

is not a direct or immediate concern of the developer, it defines the longevity of the toolkit.

2High-level GUI components are generally fabricated completely from low-level GUI components.

5

If a UIMS toolkit lacks extensibility, it becomes increasingly difficult to add enhancements

and correct certain deficiencies that are present. Thus, as time passes, a toolkit reaches

a plateau in its functionality and is surpassed by more extensible toolkits. Consequently,

developers will choose toolkits that demonstrate a high degree of extensibility.

1.8 The Revitalization of eXene

The subject of this thesis covers three areas of improvement needed to draw out eXene’s

full potential: a revised structure, improved documentation, and additional multi-purpose

widgets. While the overall architecture of eXene has long been viable, through various im-

provements and additions, a number of structural problems have become apparent. Dealing

primarily with lack of abstraction and incomplete integration, these structural problems

are addressed in Chapter 2. Next, even though there are several manualsGR93a,GR93b and

documents that provide an overview of the functionality of eXene, they represent earlier

versions of eXene and give an incomplete list of eXene’s current functions and their usage.

The insufficient documentation of eXene has been a deterrent to its adoption. Therefore, a

documentation solution for eXene is introduced in Chapter 3. Lastly, the addition of new

multi-purpose widgets is proposed to extend the usability of eXene. In Chapter 4, widgets

created by several developers, including two by the author, and their subsequent integration

are described.

In order to maintain eXene as a viable option for GUI development in SML, the devel-

oper’s perspective must be taken with regard to extensibility, usability, and functionality. It

is the author’s hypothesis that a revised structure, improved documentation, and additional

multi-purpose widgets sufficiently elevate eXene’s extensibility, usability, and functionality

such that eXene can be considered a fully featured UIMS toolkit. In light of this revitaliza-

tion, the natural advantages inherent in eXene are likely to become visible and appealing

to the SML developer.

6

Chapter 2

Restructuring eXene

There are a number of structural elements that must be considered when revising the ar-

chitecture of eXene. First and foremost, eXene is an X client, and thus interfaces with the

X window system in order to provide services as a UIMS toolkit. Consequently, eXene is

significantly reliant on the features provided by the X window system, which in turn, affects

its base architecture. The next structural elements of importance are the eXene libraries.

EXene contains two major libraries: the interface library, and the widget library. The in-

terface library provides the means for eXene to communicate with the X window system,

while the widget library provides the developer with a high-level tool for creating graphical

objects. There are two additional minor libraries, the graph utility library1 and the styles

library2, present in eXene. The last structural element is the compilation and library man-

agerBlu02, a tool used to modularize and compile large projects in SML/NJ. Its consideration

is important because any physical change in the directory hierarchy of eXene must also be

mirrored in compilation and library manager source files. Given eXene’s architecture, the

structural decisions and subsequent revisions of eXene can have far reaching effects. Thus,

it is the goal of this thesis to make such changes only with the proper justification.

1The graph utility library was introduced with the initial release of eXeneGR93a

2The styles library was introduced in the release of eXene 1.0Gan95

7

2.1 The X Window System

The X window system (X) is a client-server application that allows for the creation of GUIs

using bitmaps. The server side of X, or the X server, provides the functionality for sending

user input to the client-side of X and also rendering text and graphics in windows on a

physical display. The X client, then, has the complementary abilities to request information

about the state of the X server, receive information about user requests, and most impor-

tantly request the X server perform a particular action (e.g., draw an object, place text).

Therefore, eXene must, in some capacity, provide this functionality in order to serve as an

X client.

2.2 eXene’s Interface Library

The interface library of eXene includes nearly all of the functionality required of an X client.

In general, it follows the X protocol conventions set forth in XNye90, and in that way, eXene’s

interface library is operationally comparable to the widely used X client, Xlib. The interface

library is broken up into eight structures (or modules). These modules are categorical

abstractions of eXene’s various low-level components which facilitate communication with

the X server. Because these low-level components are numerous in size and functionality,

the abstractions provide a clean way for eXene developers to operate in the X environment

without an in-depth knowledge of the interface library’s structureGR93a.

Due to the strong typing system present in SML, there were additional considerations

when making the interface library abstraction. Many of the low-level components use the

same types and structures, but after these types and structures are absorbed into the abstrac-

tion, the declarations remain independent of each other. For example, the same Geometry

structure (seen in Figure 2.1) is instantiated in the various low-level components that com-

promise EXeneBase, Drawing, ICCC, Interact, and EXeneWin, but this fact is unknown

to the abstracted components and would raise a type error during compilation. Thus, it

is necessary in eXene to use the sharing keyword to explicity state that these Geometry

8

structure EXene :> sig

structure Geometry : GEOMETRY

structure EXeneBase : EXENE_BASE

structure Font : FONT

structure Drawing : DRAWING

structure ICCC : ICCC

structure Interact : INTERACT

structure EXeneWin : EXENE_WIN

structure StdCursor : STD_CURSOR

sharing Geometry = EXeneBase.G = Drawing.G = ICCC.G = Interact.G

= EXeneWin.G

sharing EXeneBase = Font.EXB = Drawing.EXB = ICCC.EXB = Interact.EXB

= EXeneWin.EXB = StdCursor.EXB

sharing ICCC = EXeneWin.ICCC

sharing Interact = EXeneWin.Interact

sharing type Font.font = EXeneBase.font

sharing type EXeneWin.window = Drawing.window = EXeneBase.window

sharing type Drawing.pixmap = EXeneBase.pixmap

sharing type Drawing.tile = EXeneBase.tile

sharing type Drawing.font = EXeneBase.font

sharing type Drawing.color = EXeneBase.color

sharing type ICCC.atom = EXeneBase.atom

end = struct

Figure 2.1: shared types and structures in abstract.sml

structures are all the same despite having slightly different heredity.

For ease of development the structural names of the low-level components are removed

and their types and functions are opaquely ascribed to one of the eight modules3. In the

case of EXeneBase, the types and functions of XProtTypes, DrawTypes, FontBase, Display,

Cursor, ColorServer, and Pixmap are all completely absorbed by the abstract module

3Clearly, not all of the functions from the low-level components are ascribed to one of the eight compo-
nents, as that would defeat the purpose of the abstraction. Therefore, it is important to note that each of
the eight modules has a signature which determines which functions from the low-level components will be
available to the developer.

9

structure EXeneBase : EXENE_BASE =

struct

structure G = Geometry

structure XTime = XTime

open EXeneVersion

exception BadAddr = XDisplay.BadAddr

open XProtTypes DrawTypes FontBase Display Cursor ColorServer Pixmap

Image Tile

open HashWindow

...

end

Figure 2.2: EXeneBase in abstract.sml

(shown in Figure 2.2). As noted previously, the name of the low-level components no longer

needs to be addressed, post abstraction. That is, if a developer needs to reference the

type Display.display through the abstraction he/she would only be required to reference

EXeneBase.display.

In the end, the abstracted version of the eight modules are neatly packaged as sub-

structures in the eXene structure. To access a module one need only open or reference

the eXene structure for it to become visible. While the low-level components of eXene’s

interface library are quite complex, the interface abstraction is straight-forward and easy

to use. Additionally, the whole of the interface library is abstracted through the interface

abstraction, and contains little to no functionality beyond communication with the X server.

2.3 The Widget Library

The widget library, the second major library of eXene, is built on top of the interface library.

It further abstracts the window, drawing, and bitmaps routines of the interface library into

extensible graphical components known as widgets. Widgets come in many different types,

varying from simple widgets (like a button widget) to composite widgets (which encapsulate

10

multiple widgets and can control their position, dimension, and visibility). With the latter

widget type, it becomes possible to create a widget hierarchy, where a set of widgets can

exist at the same time. In order for this widget hierarchy to exist, widgets must adhere to

a basic uniformity to promote, among other things, internal communication4. This internal

communication is made possible using CML’s selective communication and event abstraction

and yields nicely to the creation of a communication handler in each widget. Because this

internal communication in widgets is highly concurrent, it is possible to filter or further

abstract message events at each level of the widget hierarchy. Ultimately, an eXene developer

is able to create highly complex and stable GUIs easily by adding various simple widgets to

a composite widget.

2.4 The Other Libraries

The graph utility and styles libraries both contribute greatly to eXene, albeit in different

ways. The graph utility library provides eXene users with the ability to draw various shapes,

such as ellipses, splines, and rounded rectangles. The styles library interfaces with the X

Resources provided by X and allows for the specification of various attributes5 from multiple

sources, be it the developer or the user. Moreover, the styles library has the ability to resolve

multiple styles to a singular style, based on an internal precedence. Given their collective

functionality, both libraries live in a realm somewhere between the interface library and the

widget library. That is, both the graph utility and styles library use certain functionality

provided by the interface library and are subsequently used by the widget library. For

example, the Ellipse structure present in the graph utility library uses the Geometry and

Drawing structures from the interface library to create a graphical ellipse, which in turn

may be used by the widget library to create an eliptical button.

4This uniformity deals with various attributes and functions that widgets must provide in order to
interact correctly the widget hierarchy. Also, an eXene developer must follow some internal protocols to
actually use widgets, such as making the root widget and attaching a shell widget to the widget heirarchy.

5Currently, eXene only supports styles for widgets’, however, the library is extensible to other high-level
objects.

11

Library

...

signature EXENE_BASE

structure EXeneBase

...

is

lib/sources.cm

(a) (Library) “eXene.cm”

Group (../eXene.cm)

...

signature EXENE_BASE

structure EXeneBase

...

is

lib/base.cm

lib/user/build.sml

(b) (Compilation Unit) “lib/sources.cm”

Figure 2.3: Library and Compilation Unit Comparison

2.5 The Compilation and Library Manager

The compilation and library manager (CM)Blu02 is a tool provided by SML/NJ that helps

a developer structure and compile large projects. Its basic function is to construct libraries

from the SML/NJ source files, compilation units and/or libraries provided to it. The libraries

define a set of visible structures that are available when compiling a .sig or .sml file.

Alternatively, the compilation units provide structure visibility only to the library in which

it is grouped.

Both libraries and compilation units are created using .cm source files. A library is con-

structed using the Library and is keywords, while a compilation unit is constructed using

the Group and is keywords (as seen in Figure 2.3). When creating libraries, the signatures

and structures that will be visible in the library are preceded by the Library keyword, and

the source files, compilation units and/or libraries needed to generate those signatures or

structures are preceded by the is keyword (as seen in Figure 2.3a). Likewise, when creating

compilation units, the signatures and structures that will be visible in the compilation unit

are preceded by the Group keyword, and a collection of source files, compilation units and/or

libraries needed are preceded by the is keyword (as seen in Figure 2.3b). It is important to

note that the compilation units also have the name of the library target directly following

the Group keyword to identify the library to which they belong.

When referencing structures and signatures in CM, compilation units and libraries, as

12

opposed to source files, are handled differently. That is, in a specific library or compila-

tion unit, a source file may only be referenced once throughout the chain of dependency6,

whereas other libraries or compilation unit may be referenced as many times as needed.

Thus, the chain of dependency in compilation units and libraries can be viewed as an in-

complete directed acyclic graph7 (DAG) instead of a standard dependency tree. Ultimately,

the DAG dependency functionality provided by the CM allows for the creation of terse com-

pound libraries with dependencies (libraries and compilation units) that may themselves be

dependent on one another.

2.6 Refactoring eXene

The goal in the redefinition of the eXene structure is to consolidate the physical location

of the four libraries without loss of functionality. The interface library (see Section 2.2)

and the widget library (see Section 2.3) have no overlapping functionality, so it follows that

these two libraries remain separate, both on an abstract and physical level. The graph

utility and styles library (see Section 2.4) are a different matter entirely. These libraries

provide useful functionality to the widget library in the very same way the interface library

provides functionality to the widget library. This similarity in utility forms a link between

the libraries. Additionally, the graph utility library and the styles library are abstracted

in such a way that they could potentially be applicable to another high level library other

than the widget library. Specifically, an improved conceptual model for creating GUIs in

the X window system (besides widgets) could potentially benefit from these libraries. Thus,

one can conclude that these libraries and their sub-parts, should not be encapsulated in the

widget library, but could indeed be tied in some way with the interface library.

It could be argued that the link between the graph and styles libraries and the interface

library warrants the refactorization of eXene. When entering the directory structure it is

6More specifically, if a library or compilation unit directly includes a source file as a dependency, none
of its dependent compilation units or libraries may include that source file.

7The chain of dependency must be considered an incomplete rather than complete directed acyclic graph,
because (as mentioned previously) source files can only be referenced once.

13

easy to assume that any of the supporting functionality for widgets comes from the lib8

directory. It is not readily apparent, however, that the graph-util and styles directories

have supporting functionality for widgets. Therefore, on a purely physical level, it made

sense to move the physical location of the graph-util and styles directories inside the

lib directory (this change in the directory tree of eXene can be seen in Figure 2.4).

As one might expect, the migration is not complete with a simple mv9 of the two di-

rectories. This change must also be reflected in the CM source files. Originally, the graph

utility and the styles libraries were part of their own compilation unit grouped to the overall

eXene library. After the directories were moved to the lib directory, the contents of their

respective CM source files (the signature and structure definitions and the files where they

are defined) needed to be migrated to the lib directory as well. Furthermore, because the

libraries became a part of the lib directory, it was advisable to force their compilation

in the lib/sources.cm compilation unit rather than having them compiled in separate

compilation units.

In addition to the library refactorization, there was a need for further compartmen-

talization of some of the source files present in the graph-util directory. A new xauth

directory was created (seen in Figure 2.4) to house all of the source files that dealt with

X authorization. Previously, the X authorization files were located in graph-util, causing

the directory to become bloated and preventing an eXene developer from finding them eas-

ily. Consequently, moving all of the X authorization files to a directory that was correctly

labeled was advantageous to the developer. It is important to note that again this move

was reflected in the lib/sources.cm file so that everything compiled correctly.

This refactorization of eXene has added a structural benefit to the inner working of

eXene by developing the lib directory into a complete library. In fact, as a product of the

changes, the widgets/sources.cm compilation unit need only include the lib/sources.cm

8The lib directory currently houses the entirety of the interface library.
9mv is a *nix command used for moving files or directories.

14

// basics

// graph-util

// ICCC

// misc

// protocol

// lib // styles

// user

//___
�� _ _ _ _ _ _ ���� ���� _ _ _ _ _ _ ��graph-util

CK
���

���
// util

eXene // xauth

//____
�� _ _ _ ���� ���� _ _ _ ��styles

?G
���������������������������������������

���������������������������������������
// window

// composite

// widget // fancy

// simple

// text

// util

Figure 2.4: eXene directory refactorization
15

compilation unit to compile successfully10. Furthermore, the reorganization of the directory

structure has provided some much needed transparency for the eXene developer. In the re-

cent iterations of eXene, there has been much effort to improve the existing X authorization

problemsDeB05. Now, with the transparency, it will be easier to make additional improve-

ments to X authorization. Overall the refactorization was substantial, but was needed in

order to consolidate the structure of eXene for future development.

2.7 Improving the Abstraction Model

Abstraction, with regard to application development, is always important to consider. It

is the basis for providing modularity in programming, and hiding the inner workings of a

module. In this way, it allows for future revision of the basic structure of a module without

the subsequent loss of functionality. It also decouples the internal relation between various

programming components so that they can be used independently of one another.

2.7.1 The state of eXene’s abstraction model

In the development of eXene, abstraction was a constant consideration. This fact can be seen

in the structure of eXene itself, and also in the initial choice of a functional and concurrent

programming model. That being said, there are areas in the development of eXene where

the usage of abstraction was slightly ignored or deficient.

Like many programming projects, eXene has gone through a period of organic growth.

More specifically, certain extended features were desired on the widget level of eXene, yet

these features did not necessary apply only to the widget level. As a result, when they were

implemented on the widget level, there was a loss of abstraction and potential functionality.

In order to solve this problem, these features needed to be moved to the correct location

both on a physical and abstract level.

10This contrasts with the previous implementation which required the inclusion of both the graph-
util/sources.cm and styles/sources.cm.

16

2.7.2 Widget types

One area for improved abstraction is in the definitions for basic widget types. As mentioned

in Section 2.3, the concept of the widget is derived from the X window. Like windows,

widgets have physical dimensions, alignment, and gravity. Unlike windows, however, widgets

have “widget state”, in which they can be active or inactive11. Yet in eXene, there is no

definition for a window’s basic types, only a widget’s. In fact, the idea that X windows

have basic types is conceptually removed from eXene. Instead the entirety of a window’s

attributes is specified in widget-base.sml (as shown in Figure 2.5). In the event that a new

conceptual model for GUI design is created in eXene, the definition of base widget types

would be completely useless. For this reason, a definition for basic window types was made.

To begin dealing with this problem, a suitable location for the definition of base window

types had to be found. Conveniently, in the newly arranged library there is still a window

directory that seems suitable for the new source file, window-base.sml. Unfortunately, all of

the source files present in the window directory are part of the interface library abstraction,

making window-base.sml the only source file outside of the interface abstraction. To rectify

this problem, it is possible to pull the definition of the base window types behind the interface

abstraction, but this is unnecessary because the base window types are already at a sufficient

level of abstraction. A more reasonable solution, and the one chosen by the author, was

to create a new directory named window-aux which can house the window related library

components that are outside the interface library abstraction.

Next, it became necessary to separate the definition of the base window types from the

base widget types. As noted previously, the only type that does not belong to the base

window types is the widget state (or wstate). As a result when migrating the source code,

nearly all of widget-base.sml was moved to window-base.sml, with the exception of the

wstate datatype. To complete the move, the line:

11The concept of a window in X does not include “state”, thus a widget has more functionality than its
predecessor.

17

signature WIDGET_BASE =

sig

...

datatype valign = VCenter | VTop | VBottom

datatype halign = HCenter | HRight | HLeft

datatype gravity = Center | North | South | East | West |

NorthWest | NorthEast | SouthWest | SouthEast

datatype arrow_dir = AD_Up | AD_Down | AD_Left | AD_Right

datatype wstate

= Active of bool (* state may be affected by user actions *)

| Inactive of bool (* state cannot be affected by user actions *)

type shades = ShadeServer.shades

exception BadIncrement

datatype dim = DIM of {

base : int,

incr : int,

min : int,

nat : int,

max : int option

}

type bounds

val mkBounds : { x_dim : dim, y_dim : dim } -> bounds

val fixDim : int -> dim

val flexDim : int -> dim

val natDim : dim -> int

val minDim : dim -> int

val maxDim : dim -> int option

val fixBounds : (int * int) -> bounds

val compatibleDim : dim * int -> bool

val compatibleSize : bounds * G.size -> bool

type win_args

val wrapCreate : (EXeneBase.window * G.rect * win_args) -> EXeneBase.window

val wrapQueue : ’a CML.event -> ’a CML.event

val wrapFlushableQueue : ’a CML.event -> (’a CML.event) * (unit CML.event)

end

Figure 2.5: (widget-base.sml) Initial signature definition for basic widget types
18

include WINDOW_BASE

was added to the widget-base.sml signature and the line:

open WindowBase

was added to the widget-base.sml structure. Finally, window-base.sml was added to

lib/sources.cm and the definition of its signature and structure was added to lib/sources.cm

and eXene.cm for it to become completely visible. In the end, eXene retains the entirety of

its functionality with a greater degree of abstraction.

2.7.3 Widget utilities

A similar area for improved abstraction is found in the widgets/util directory. Within

this directory there are a number of components that aid in the creation of widgets, but are

not technically tied to widgets themselves. One set of components deals with the creation of

image, shade, tile servers. Another set deals with reading and writing bitmaps and drawing

three-dimensional objects. Because these components are clearly not widget-specific, they

do not belong in the widgets library and therefore a new location needed to be found.

On a functional level, the components used for the creation of image, shade, and tile

servers are most similar to the low-level components found in the lib/window directory, but

the components in the lib/window directory remain hidden behind the the interface library

abstraction. The newly created window-aux directory already houses window components

that are not part of the interface abstraction, which made it a good location to put the

image, shade, and tile server components. Alternatively, the components used to read and

write bitmaps, as well as draw three-dimensional graphical objects, are most similar to the

mid-level components found in the now consolidated lib/graph-util directory. Unlike the

previous components in widget/util, these components are at the same level of abstraction

as those with which they are grouped, leaving no ambiguity about the move.

After the migration of the previously mentioned components from widget/util, only

one component, attrs.sml, remains out of place. The source file attrs.sml provides a

19

list of definitions for attributes in widgets and appears to be widget-specific. With the

changes made to widget-base.sml and the creation of window-base.sml, however, these

attributes are no longer widget-specific, and are instead window-specific. Consequently,

after modifying attrs.sml so that it reflects this fact, a more appropriate location for the

component was the lib/styles directory, as a generic attribute list for window descendants.

Lastly, a new definition for widget attributes was declared, namely widget-attrs.sml12,

so that the Style structure created for widgets can still be parameterized by an attribute

set specific to widgets.

After all of the components, previously in widget/util, were physically moved to a

more appropriate place, this migration was also reflected abstractly in the compilation unit

in which they were originally placed and in the compilation unit where they were moved.

2.7.4 The Interact abstraction

The final area of deficiency in the current abstraction model is in the Interact abstraction.

The Interact abstraction provides a structured list of datatypes and functions to keep track

of user input. Previously, Interact internally kept track of user mouse clicks through the

MOUSE_Up and MOUSE_Down types. As a whole, these types kept track of the mouse button

being pressed, the mouse position in window coordinates, the state of the other mouse

buttons, and the time that they were pressed. Although this user information is sufficient

for most eXene applications, it fails to determine if modifier keys (shift, control, etc.) are

depressed when a mouse button is clicked. As a result, it is impossible to issue a shift-click

or control-click command to an eXene widget.

On many levels, the interface abstraction removes a great deal of hardship when dealing

with the X server. However, in the case of mouse clicks, the abstraction is too strict

and actually removes potential functionality. To address this problem, changes must be

made to the lower level components that collect and define user events and also to the

12The definition of attributes in widget-attrs.sml can easily be constructed by opening the structure
present in attrs.sml.

20

Interact abstraction. First, the low-level component, window-env, which specifies the

different types of user events of interest to eXene, needed to be expanded so that modifier

key state was included as a part of the MOUSE_Up and MOUSE_Down definitions. Next, the

toplevel-win.sml, which collects mouse and keyboard events from X server and then wraps

them up as MOUSE_Up and MOUSE_Down types, was altered so that it routes the modifier key

state into the instantiation of the mouse click types. Finally, the Interact abstraction was

changed to reflect the expansion of the mouse click types.

2.7.5 Benefits of the revised abstraction model

On both a low and high level, eXene suffers slightly from problems dealing with lack of

abstraction and over abstraction. However, with the revised abstraction model proposed

by the author, many of these abstraction problems are mitigated. The redefinition of

window-base.sml and the migration of widgets/util strengthens the modularity of eX-

ene and opens up the base functionality eXene to future high-level libraries. Moreover,

the refinement of the Interact abstraction gives an eXene developer the means to interact

more fully with the users of his/her application. Both changes in the abstraction model

strengthen the capabilities of eXene without drastically changing the way eXene is used by

the developer.

2.8 Integrating the Enhancements

As mentioned in Chapter 1, many enhancement have been proposed in eXene. These

enhancements include the introduction of stylesGan95, customizable input focus, and cus-

tomized X resources; as well as the implementation of X selection, and the revision of

X authorizationDeB05. All of these enhancements greatly improved the usability of eXene

in principle. Some, however, require extensive implementation to reap any benefit. The

proposal for input focus is one such enhancement.

With regard to eXene, input focus determines which widget receives the keyboard input

21

structure SimpleEdit : SIMPLEEDIT =

struct

...

fun handleKey (KEY_Press key, me as

{str,selpos=ss,sellen=sl,selrf,selre,wid,ht}) =

(case key of

(KEYSYM(65289),_,xt) => (* tab *)

(send(focChan,S.Next xt); me)

| (KEYSYM(65056),_,xt) => (* shift+tab *)

(send(focChan,S.Previous xt); me)

...

end

...

end

Figure 2.6: (simple-edit.sml) Cycling/Releasing focus in the simple string edit widget

from the user of the X application. By default, the position of the mouse determines which

widget ultimately receives the input. Before the proposal for a customizable input focus,

this behavior could be rather annoying to the user, because he/she would have to move the

mouse over a widget for it to receive a key press. With the proposal, the application would

determine the default widget for the input focus and the application could cycle, release,

and set input focus on particular widgets, based on user input (the Tab key or mouse clicks).

For this addition of customizable input focus, a two-tiered implementation is required.

First, a focus manager must be added to the shell which was accomplished by Dusty De-

BoerDeB05. Next, for every widget to be recognized by the focus manager, two additional

functions are required: the takeFocus function13 and the focusableOf function14. The

widgets must also have a focusable message channel so that they can capture certain key

strokes and relay them to the focus manager.

The latter tier of the implementation remains largely unimplemented. As such, the only

widget that can truly gain and release focus is the TextEdit widget implemented by Dusty

13This function tells the widget to take input focus by sending on the widget’s request channel.
14This function is used by the focus manager to determine the channel on which the widget will commu-

nicate with the focus manager (that is, tell the focus manager that the tab key has be pressed). It also
contains an internal function that tells the focus manager how to make widget take focus.

22

DeBoerDeB05. Moreover, the way in which a widget cycles or releases focus is hard-coded into

widget itself and cannot be modified without making a change to the source code (see Figure

2.6). While providing the ability to control input focus is advantageous to the developers

and users of eXene applications, it must be fully integrated into eXene for the benefits to

be realized.

As a solution, the focusable functionality was added to various widgets that would ben-

efit from its implementation (such as Button widgets and the text editing widgets), in

parallel with a new widget convention for customizing the cycle/release of focus. The new

widget convention establishes two new style attributes among the widgets, KeyFocusNext

and KeyFocusPrev, which are set to the default values of a tab key press and a shift-tab key

press respectively. Ultimately, the developer or user is able to modify how an application

using these select widget cycled/released input focus.

23

Chapter 3

eXene Documentation

Application Programming Interface (API) Documentation has historically been considered

central to the usability and correct application of a programming language and its libraries.

In most cases, it provides essential information about the usage and potential side effects of

various functions and language constructs. Without extensive, up-to-date documentation,

it can be difficult for a developer to use a language and its libraries correctly, as well as find

the functions that are important for the development of his/her specific application.

While the documentation in SML/NJ and CML is extensive and up-to-date, eXene’s

documentation is in a state of disrepair. Originally, two manualsGR93a,GR93b outlined the

basic usage of its interface, widget, and graph utility libraries. At that time, the manuals

were sufficient to describe eXene’s functionality, but as improvements were made to eXene

over the years, these manuals were not updated and currently provide an incomplete list

of eXene’s functions and their usage. Even though additional documents were added to

complementGan95,DeB05,DS05 the existing set, it remains difficult for eXene developers to locate

specific functionality of interest among the documents.

One way to efficiently provide API documentation for a programming language and its

libraries is a documentation generator. A documentation generator has the ability to parse

the source code and comments of a set of files in given programming language and produce

an API of the contents. Although it varies greatly depending on the document generator,

the API can be presented as a plain document (RTF) or as an interactive document (HTML

24

or PDF). Generally, the interactive API documents are preferred over those with plain text,

because they contain a number of hyperlinks that allow a developer to quickly navigate to

related information on different pages of the document.

By the virtue of design, documentation generators help keep an API up-to-date. Because

API documentation is derived from the latest version of the source code, any changes in

the structure of the source files are automatically reflected in the most recently generated

documentation. This has an added benefit to developers providing comments to the APIs

because they are no longer required to mirror their source code comments in an external

API document. Instead, the API document is generated automatically from the comments

already present in the source code.

3.1 An interactive documentation solution for eXene

ML-DocRep07 is a documentation generator for SML that can create an interactive API

document. It has been used to generate the API documentation for both the SML/NJ basis

library and CML. As such, it can also be used with eXene to produce an interactive API

document.

Unlike some documentation generators, ML-Doc does not create the API document

directly from the SML/NJ .sig and .sml source files and their comments. Instead, it

generates the documentation from intermediate ML-Doc (.mldoc) files, implemented in the

Standard Generalized Markup Language (SGML). This creates a problem of consistency

because the signatures in the eXene source files and the .mldoc files can be edited indepen-

dently. While this inherent dissonance in the design of ML-Doc can potentially keep the

documentation out-of-date, it is unavoidable given the functional nature of SML/NJ, and

the expanded hyperlink functionality available in ML-Doc.

It is possible, however, to eliminate this dissonance between the signatures and the

.mldoc files in eXene. While it is not possible to make the continued generation of .mldoc

file dependent on the file containing the definition of a signature, the reverse is entirely

25

possible. That is, ML-Doc files contain sufficient information to completely generate the

signature of an SML/NJ component. In fact, the extract-sig function provided by ML-

Doc can be used to create a signature from an ML-Doc file. This process is explained in

more detail in Section 3.4. It is important to note, however, that forcing the dependency

and removing the previously mentioned dissonance is not without side-effects. It requires

that all future developers of eXene’s API become proficient in editing .mldoc files, in view

of the fact that they will no longer be able to directly edit the .sig files containing the

eXene signatures.

3.2 Setting up ML-Doc

In order to use ML-Doc with eXene several changes needed to be made to the structure of

eXene and the host development environment. First, in order to use ML-Doc, a developer

must add an SGML parser1 and ML-Doc2 to their development environment. Following

the installation of ML-Doc, the eXene directory tree was modified to hold the .mldoc files,

the configuration files, and the generated document. At the root level of eXene a manual

directory was created. Within this directory, the HTML, Info, and Sigs directories was

created. These directories hold the .html, .info, and .sig files repectively, which are

generated from the .mldoc files in eXene. An ML-Doc directory was also be created to hold

all of the .mldoc files present in eXene.

With the new directory tree in place, it was necessary to create the configuration

files which ML-Doc uses to generate the API document. The configuration files include:

Config.cfg (the document’s configuration file), CATALOG (the document’s catalog), and

Entities.sgml (a list of the document specific components). Initially, a mostly empty

Entities.sgml file was created to house all of the references to components that will

be in the finished document. Next, the CATALOG was created that includes a path to

1The defacto SGML parser and validator can be retrieved at http://sourceforge.net/projects/
openjade/files/opensp/OpenSP-1.5.1.tar.gz/download

2ML-Doc can be retrieved at http://people.cs.uchicago.edu/~jhr/tools/downloads/ml-doc.tgz

26

http://sourceforge.net/projects/openjade/files/opensp/OpenSP-1.5.1.tar.gz/download
http://sourceforge.net/projects/openjade/files/opensp/OpenSP-1.5.1.tar.gz/download
http://people.cs.uchicago.edu/~jhr/tools/downloads/ml-doc.tgz

the Entities.sgml and to the ML-Doc catalog. Finally, the standard template for the

Config.cfg file was usedRep00, with additional definitions for the location of the CATALOG

and the path to the SGML parser.

For ML-Doc to function correctly the CATALOG and Config.cfg must include hard paths

to ML-Doc catalog and the SGML parser. This fact can be slightly inconvenient if multiple

developers are working on eXene at the same time, because eXene is under version control,

specifically subversion. As it is, the hard paths prevent development from being workstation

independent. To fix this problem a script (see Appendix A) was created for eXene that

generates the CATALOG and a symbolic link to the location of the SGML parser so they do

not have to be under version control. With the generation of these files it is possible for

eXene to specify the hard paths required by ML-Doc and remain workstation independent.

3.3 Creating ML-Doc files

In order to begin the construction of the eXene API document, .mldoc files were created.

To do this it was necessary to use the ML-Doc command mkdoc with a file containing an

SML/NJ signature as an argument. After an .mldoc file is created, it was moved to the

newly create ML-Doc directory. The ML-Doc documentation generator is not currently able

recognize a directory structure in the ML-Doc directory so all of the .mldoc files must exist

together and cannot be grouped in directory structure similar to their ancestors. Finally,

for each .mldoc file created, the line:

<!ENTITY NAME SDATA "name.sig">

was added to Entities.sgml where the NAME was replaced with the component’s signature

and the name.sig was replaced with the component’s signature file.

This process can be a difficult to remember and must be done for each new component

created in eXene. So, a script, mkdoc-tool (see Appendix B), was created to expedite

the process. To run the script one need only provide it with a .sig or .sml file where the

27

signature is defined3. After receiving the file as an argument, it makes the .mldoc file, moves

it to the manual/ML-Doc directory, and adds the appropriate entry into Entities.sgml.

For the benefit of compilation, the script also creates a symbolic link to the .mldoc in the

directory where signature is located.

3.4 ML-Doc and CM

As mentioned previously, the way in which the CM compiles eXene must be changed. That

is, the CM must be made aware that the signatures in eXene are generated from .mldoc

files. To accomplish this, two separate tasks was completed. First, a script to generate the

signature (from the .mldoc file)4 and subsequently moves it to the correct location, was

constructed. Second, the script was registered to the CM so that the CM can use it during

compilation.

The script, mldoc-tool, is fairly straight forward in its construction, but in order for the

compilation to proceed correctly, a symbolic link was made in each directory where there is

a compilation unit or library (.cm files). In CM, it is also possible to register simple shell

commands with the Tools library. Using CM’s Tool library, the mldoc-tool.sml source file

was created, which registers and runs the mldoc-tool during compilation. As a result it is

possible to replace all of the references to files (which provide the definition of a signature) in

the compilation units with .mldoc files (as show in Figure 3.1). When considering the CM

source files, the eXene developer can view the .mldoc files as a definition of the signature

for a component and the .sml files as a definition of the structure for a component.

At this point, any further changes that need to made to the signature of a component

should only be made to the .mldoc file which now defines the signature. Although this

requires eXene API developers to learn how to use SGML as it relates to ML-Doc5, it

strengthens the documentation of eXene overall.

3One must also call the script from the directory where the signature file is located.
4To generate the signature the extract-sig tool is used which is provided by ML-Doc
5A more verbose coverage of ML-DocRB07 is available at http://www.cse.unsw.edu.au/~tbourke/

software/ml-doc.1.html

28

http://www.cse.unsw.edu.au/~tbourke/software/ml-doc.1.html
http://www.cse.unsw.edu.au/~tbourke/software/ml-doc.1.html

Group (../sources.cm)

...

is

...

bitmap-io-sig.sml

bitmap-io.sml

ellipse-sig.sml

ellipse.sml

...

(a) (Previous) “lib/graph-util/sources.cm”

Group (../sources.cm)

...

is

...

bitmap-io.mldoc

bitmap-io.sml

ellipse.mldoc

ellipse.sml

...

(b) (Current) “lib/graph-util/sources.cm”

Figure 3.1: Previous and current versions of “lib/graph-util/sources.cm”

3.5 Populating the eXene Documentation

Using the functionality provided by ML-Doc and the tools constructed in this thesis, it

became possible to create an interactive API document for eXene. All that was left to do

was edit the skeleton .mldoc files such that they included a brief description of each of

the eXene modules as well as an explanation of the individual functions provided by the

modules.

To accomplish this task a number of sources were referenced and their information was

consolidated into the appropriate .mldoc files. These sources included the libraryGR93a and

widgetGR93b manuals, Dusty DeBoer’s thesisDeB05, and the source files themselves along with

their comments. When the information in the sources was contradictory, precedence was

generally given to the most recent documents as well as to the comments or functionality

in the source files over the documents themselves. It is important to note that some of the

functionality provided by eXene had little to no initial documentation. In these instances,

the source code was analyzed and an appropriate description was given.

In all cases, the author strived to make the descriptions of the modules and explanations

of the functions as terse and meaningful as possible. Additionally, where applicable, an

X resources attribute table was included in the widget descriptions which summarized the

resources parameterization of the widget. In the end, with the population of the .mldoc

29

files completed, the subsequently generated interactive API document was both usable and

comprehensive, containing nearly all of the information needed by the eXene developer.

30

Chapter 4

New eXene Widgets

Of the four libraries in eXene, the widget library is the most useful to developers attempting

to create a GUI for a SML/NJ application. The widget library provides a set of high-

level components (widgets) that can be used in tandem to create complex GUIs. While

eXene’s functional and concurrent nature may spark interest in application developers, the

utility provided by the widget library determines whether it is viable for a particular GUI

application. As a result, the number, variety, and usefulness of the widgets provided in the

widget library ultimately affect the overall appeal of eXene.

Currently, eXene contains many of the basic widgets needed for GUI development. Its

simple widget collection consists of a highly configurable button1, a drawing canvas, an

item list, a text list, a colored rectangle, and a scrollbar widget, as well as various label

and message widgets. The composite widget collection contains several widgets that can be

used to encapsulate other widgets, create a scroll port around a widget layout, and make a

simple menu. EXene also provides a set of additional text widgets for text editing.

Some of these widgets are extensible and can serve many different functions. For example,

the simple menu widget can easily be configured as a tooltip for other widgets. Many

widgets, however, are either less versatile or deficient in some way. Consequently, it is

necessary to improve existing widgets, or even add new widgets in the widget library.

1The button widget can be configured as a labeled or toggle button; as well as take the form of a variety
of different shapes.

31

4.1 Selectable List

One widget that has a significant deficiency is the text list widget. The text list is an

extension of the item list widget, which maintains a set of items using widget state. In

general, the text list widget is useful to a developer attempting to represent a toggle-able

text list in his/her GUI. The text list, however, is very limited in its ability to toggle the

items it represents. Using the text list it is only possible to toggle a single item on or off

using a mouse click; there is no way to select or deselect several items using a shift-click

or control-click. Since selecting and deselecting multiple items in a text list is a common

feature in modern GUI toolkits, it would be beneficial to have a text list widget in eXene

with expanded selection capabilities. The creation of the selectable list was an attempt by

the author to solve this problem.

Structurally, the selectable list is much different from the text list. Instead of using the

item list as its basis, the selectable list uses an internal mechanism to maintain the list of

items. The internal mechanism also has expanded functionality to handle multiple selection2.

Additionally, the selectable list makes use of the toggle button widget parameterized with

a specialized list view3. This allows for a significant amount of code reuse (not present in

the original text list), because the selectable list does not need its own realize and draw

functions, and uses the toggle button’s realize and draw functions instead.

It is important to note that the selectable list would not have been possible without the

modified Interact abstraction outlined in the latter part of Section 2.7. These changes to

the Interact abstraction allowed for the identification of modifier key state on ButtonUp

events in the toggle button. As a result, it became possible to tell if the user depressed a

shift or control key while issuing a mouse click to the toggle button.

The selectable list has three different methods of selection: SingleSelect, SelectRange,

2Although it may have been possible to modify the item list widget with this expanded functionality,
the author initially believed that the expanded functionality was structurally divergent from the original
construction of the item list widget.

3The list view was created by the author.

32

Name Type Default Semantics
background color white background color of widget’s window
foreground color black foreground color of widget’s window
selectBackground color grey selected background color of widget’s window
selectForeground color white selected foreground color of widget’s window
font font 9x15 font of widget’s window
borderWidth int NoValue borderWidth surrounding text
halign HAlign Left horizonal alignment of the text items
hpad int 5 horizonal justification for text (includes borderWidth)
vpad int 0 (pixels) inter-button padding

Table 4.1: Attribute List for Selectable List

ToggleSelect. SingleSelect is activated using a single mouse click. It selects only the

item which received the click, deselecting all other in the selectable list. SelectRange, is

activated using a single mouse click while the shift key is depressed. It selects all of the

items which are in between the previous mouse click and the current mouse click. Lastly,

SelectToggle is activated using a single mouse click while the control key is depressed. It

toggles the selection of the item being clicked without altering the state of the other items

in the selectable list. With regard to multiple modifier keys being depressed when a mouse

click occurs, the shift key (or SelectRange) maintains precedence.

The selectable list uses Styles to add parameterization to the widget. With the Styles

it is possible to set all of the values outlined in Table 4.1. The selectable list also provides

two modes which can be specified by the developer. If the application using the selectable

list does not warrant multiple items being selected at once, the developer can specify the

SingleSelect mode. Therefore, when using this mode it is only possible to select singular

files. This mode declaration was intentionally left out of Styles parameters because it

seemed more intuitive to declare the pivot aspect of the selectable list’s functionality with

the widget’s creation.

The selectable list represents a significant improvement over its predecessor. While

the primary advantage is clear through the selection scheme, it also abides by most of

the new widget conventionsDeB05 and provides extensive parameterization. In combination,

33

these factors provide the user with familiar functionality and the developer with a highly

configurable widget.

4.2 File Chooser

Any GUI application that deals with file input and output (IO) generally has need of a file

chooser. A file chooser allows users to graphically open directories and select file(s) for IO

operations. They are constructed from several low-level widgets, such as buttons, labels,

selectable lists, text fields, and scroll bars. Typically, file choosers are considered stand alone

widgets, i.e., they are not used as a component in another high-level widget. That being

said, file chooser widgets have widespread usage in application development and would be

a welcome addition to eXene.

Along with their standard functionality, modern file chooser implementations often come

coupled with a file action. That is, the file chooser allows for the selection of files and a

button to Open, Save, or Delete said files. In this case, the developer need only parameterize

the instantiation of the file chooser with the file action. The eXene file chooser, however,

was created with modularity in mind and does not implement a parameterized file action.

As a result, the eXene file chooser maintains its purity and can only navigate the file system

and select files. It is the duty of the developer to couple the file chooser with a file action.

The file chooser implemented by the author has a layout consisting of three tiers and

several different widget components. The first tier is the directory navigation tier. It

contains a text edit widget (of the directory path)4, an Update button5, a Home button6,

and a Parent Button7. The second tier is a selectable list wrapped in a scroll port. The

selectable list contains a vertical list of all of the names of the sub-directories and files in

the current directory. Finally, the third tier consists of a text edit widget (listing all of the

selected files), an unlabeled file action button (the contents of which are specified by the

4The text edit widget reveals the current directory path by default
5The Update button will attempt to navigate to a new directory if one is specified in the text edit widget
6The Home button will navigate to the home directory
7The Parent button will navigate to the parent directory of the current directory

34

Figure 4.1: eXene file chooser screen shot

Name Type Default Semantics
background color pink background color of widget’s window
foreground color black foreground color of widget’s window
hdir string OS.FileSys.getDir() Home Directory of the Widget

Table 4.2: Attribute List for File Chooser

developer or parent widget) and a error label. Together these components allow for the full

navigation of the host’s file system and selection of files. Additionally, the unlabeled file

action button is supplied to the developer for customization.

As with the selectable list, the file chooser uses Styles to add parameterization to the

widget. While the parameterization of the background and foreground of a widget are

standard (shown in Table 4.2), the file chooser has a special attribute hdir. The hdir

specifies what the widget will consider the home directory. It is useful to allow both the

developer and the user to potentially specify the home directory because it enhances the

usability of the file chooser with no foreseeable side-effects.

Since no functional alternative exists, the file chooser widget is clearly a boon to eXene’s

35

widget library. It allows user to graphically navigate the file system, select files, and perform

developer defined file actions. It may not be as simple to use as file choosers from other

GUI toolkits, but it maintains a high level of modularity and takes advantage of eXene’s

functional nature.

4.3 Box Layout

Any application that contains more than one widget requires the use of a layout widget.

Layout widgets are composite widgets, which facilitate the organization and visual dimen-

sions of several widgets grouped within it. The primary layout widget used in eXene is the

box_layout widget. The box_layout widget can organize a set of widgets utilizing the

recursively defined datatype box_item (shown in Figure 4.2). The box_item can be used to

encapsulate a widget and represent empty space, as well as vertically or horizontally align a

list of box_item widgets. This datatype is extremely powerful and allows the box_layout

widget to align widgets in almost every conceivable way.

There are, however, some deficiencies in the current implementation of the box_layout

widget. In its initial construction, the box_layout widget had the ability to insert, append,

delete, and map/unmap within the box_layout. However, these functions only allowed for

the modification of widgets on the top-level of the box_layout. That is, if the box_layout

consisted of a set of widgets contained as a list of box_items within a list of box_items,

it became impossible to perform modifications on the encapsulated set of widgets8. Addi-

tionally, the functionality of the box_layout widget has long been sparsely documented,

making the inner workings of the box_layout widget9 largely unknown to developers.

To rectify these problems, a new box_layout widget was created by Jonathan Hoag.

While interfacing completely with the functionality of the original box_layout, the new

box_layout emphasizes transparency in the computation of resizing the layout and complete

8In this case, the only modifications that can be made are to the box item list which encapsulated them.
9Specifically, the calculations which determine the dimensions of the widget during a resize event are

difficult to understand.

36

datatype box_item =

G of (bounds)

| W of (widget * (bounds option) ref)

| HB of (halign * box_item list)

| VB of (halign * box_item list)

Figure 4.2: Box Item datatype

customization of the layout after it is realizedHoa06. In the improved version, the layout is

represented as a tree rather than a list. Consequently, modification operations, such as

mapping/unmapping, are applicable to individual widgets on any level of the layout rather

than just the top level. Moreover, the way in which the box_layout widget resizes itself

and its children can no longer be viewed as arbitrary. Instead, the specifications for resizing

the dimensions of the layout widget are all stated and documented explicitlyHoa06.

The improved box_layout widget brings new life to the construction of complex appli-

cations. Along with an improved understanding of how the box_layout widget functions

internally, eXene developers will have functional control over all of the widgets encapsulated

in the layout. Overall, the improved box_layout widget is a much needed advancement in

eXene.

37

Chapter 5

Conclusion

With its unique design, eXene maintains many advantages over the standard UIMS toolkit.

It provides a highly concurrent and computationally effective UIMS toolkit that blends

perfectly with SML, a feature rich, higher order, functional language. Nevertheless, many

developers may forego the natural advantages gained by using eXene for a seemingly simple

and familiar UIMS toolkit. After becoming familiar with the elegance of selective commu-

nication and event abstraction in CML, however, one could argue that eXene is far more

practical given its harmony with the functional paradigm. Yet, with all its benefits, eX-

ene continues to suffers from a number of deficiencies which have limited its functionality,

crippled its usability, and reduced its extensibility. These continued deficiencies give true

legitimacy to using eXene alternatives for GUI construction in SML. Therefore, it has been

the goal of this thesis to transform eXene into an increasingly functional, highly usable, and

extensible UIMS by mitigating the deficiencies present.

The physical structure of a UIMS toolkit can have profound effects on its usage; eXene

is no exception. In the design of a directory structure, certain expectations are made by

developers about the location and placement of components. Because of the developer’s

expectations, it is important to group components based on their utility, as well as maintain

a level of transparency on each level of the directory tree. Therefore, to improve the physical

structure of eXene, it was necessary to consolidate the low level components in the lib

directory and move various other components to more appropriate and intuitive locations

38

within the directory structure. Although the changes were minimal, they made meaningful

contributions to the usability and extensibility of eXene.

The design of the abstraction model can also greatly impact the utility of eXene. Be-

cause it defines the API, the abstraction model can either enhance or detract from overall

functionality of the toolkit. To provide the best possible development environment, the ab-

straction model must always resolve to the highest level of modularity and should not remove

functionality for simplicity. To improve the abstraction model in eXene, several components

that were historically placed in the widget library were modified and moved to more appro-

priate libraries. Additionally, the Interact structure and its sub-components were modified

to expand the capabilities stifled in the previous abstraction model. With these changes to

the abstraction model, eXene has become increasingly extensible and functional.

With regard to its previous enhancements, another important aspect in the development

of eXene is integration. While enhancements that expand functionality can be helpful, some

of their benefit cannot be realized without complete integration. As such, the widget focus

concept, developed previously, was fully integrated into eXene. Consequently, eXene has

gained a substantial amount of hidden functionality.

For the every UIMS, documentation is a pivotal concern. Even as functionality was

added to eXene, the lack of documentation rendered it useless to the developer. That is,

without extensive, up-to-date documentation, grave mistakes can be made in the design and

application of widgets in a GUI application. This can leave a developer disenchanted and

thus with a motive to seek an alternative UIMS. To improve the documentation in eXene, an

interactive API document was created and populated using ML-Doc. In addition, various

scripts were made to keep the documentation and source files consistent with each other.

More so than any other change made to eXene, the improved documentation significantly

increases its usability and subsequent appeal to the developer.

Finally, from a developer’s standpoint, eXene is only as useful as the widgets that it

provides. Thus, improvements made to the widget library will undoubtably enhance the

39

usefulness of eXene. With a revised selectable list and layout manager, as well as a new file

chooser, eXene has become more functional.

There is no question that much remains to be done to enhance eXene’s viability. With

further development, eXene’s inherent advantages will become even more apparent to devel-

opers. With the improvements outlined in this thesis, however, eXene has achieved a level

of functionality, usability, and extensibility that is on par with any other UIMS toolkits

available for SML and is indeed fully featured. As such, the need for using other UIMS

toolkits is drastically reduced and eXene is one step closer to widespread use.

40

Bibliography

[Blu02] M. Blume. The SML/NJ Compilation and Library Manager. Lucent Technologies,

Bell Labs, 2002.

[DeB05] D. B. DeBoer. Enhancements to exene. Master’s thesis, Kansas State University,

2005.

[DS05] D. DeBoer and A. Stoughton. On the future of exene. http://www.cis.ksu.

edu/~stough/eXene/future.pdf, 2005.

[Gan95] E. M. Gansner. Notes on the new exene widgets. Included as part of version 1.0

of the eXene distribution, 1995.

[GR93a] E. M. Gansner and J. H. Reppy. The eXene library manual. AT&T Bell Labora-

tories, February 1993.

[GR93b] E. M. Gansner and J. H. Reppy. The eXene widgets manual. AT&T Bell Labo-

ratories, February 1993.

[Hoa06] J. Hoag. Exene’s layout widget. 2006.

[LN01] K. Larsen and H. Niss. mgtk, sml bindings for gtk+. http://mgtk.sourceforge.

net/, 2001.

[LW04] C. Luth and B. Wolff. sml tk. http://www.informatik.uni-bremen.de/~cxl/

sml_tk/, 2004.

[Nye90] A. Nye. X Protocol Reference Manual, volume 0. O’Reilly & Associates, Inc.,

1990.

[RB07] J. H. Reppy and T. Bourke. ML-Doc man page. FreeBSD, 2007.

41

http://www.cis.ksu.edu/~stough/eXene/future.pdf
http://www.cis.ksu.edu/~stough/eXene/future.pdf
http://mgtk.sourceforge.net/
http://mgtk.sourceforge.net/
http://www.informatik.uni-bremen.de/~cxl/sml_tk/
http://www.informatik.uni-bremen.de/~cxl/sml_tk/

[Rep99] J. H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.

[Rep00] J. H. Reppy. ML-Doc README. Lucent Technologies, Bell Labs, 2000.

[Rep07] J. H. Reppy. ML-DOC, 2007. http://people.cs.uchicago.edu/~jhr/tools/

ml-doc.html.

[RMM97] R. Harper R. Milner, M. Tofte and D. MacQueen. The Definition of Standard

ML (Revised). The MIT Press, 1997.

42

http://people.cs.uchicago.edu/~jhr/tools/ml-doc.html
http://people.cs.uchicago.edu/~jhr/tools/ml-doc.html

Appendix A

linkToMLDOC source code

!/bin/bash

Script to find and link locations of ml-doc/lib/catalog and nsgmls/onsgmls

echo "Locating for ml-doc/lib/catalog"

catalog=‘locate /ml-doc/lib/catalog‘

echo $catalog

if [-n $catalog]

then

echo "ml-doc/lib/catalog found"

else

echo "Error: ml-doc/lib/catalog not found; you may need to install ml-doc"; exit

fi

echo "Determining if CATALOG exists"

if [-f CATALOG]

then

echo "CATALOG found... editing file to add correct catalog entry"

sed -i "" -e ’/^CATALOG[]*\"/ c\

CATALOG \"’$catalog’\"

’ CATALOG

else

echo "CATALOG not found; creating from scratch"

Create from scratch

echo "-- Catalog for eXene --" > CATALOG

echo "ENTITY %document-entities \"Entities.sgml\"" >> CATALOG

echo "CATALOG \"$catalog\"" >> CATALOG

echo "-- Catalog for eXene 2.0 --" >> CATALOG

fi

echo "Determining if nsgmls.source exists"

if [-f nsgmls.source]

then

echo "nsgmls.source does exist... doing nothing"

else

echo "nsgmls.source does not exist... making link file"

nsgmls=‘which onsgmls || which nsgmls‘

if [-n $nsgmls]

then ln -s $nsgmls nsgmls.source

else echo "Error: Can’t find nsgmls or onsgmls; One of the two are need for ML-Doc"

fi

fi

43

Appendix B

mkdoc-tool source code

#!/bin/bash

script to generate a MLDoc skeleton file

and create a symbolic link to said file in original directory

pwd=$PWD

base=${1%\.*}

eXeneDir=‘dirname $0‘

echo "making $base.mldoc from $1"

rm -f $base.mldoc

cd $eXeneDir/manual

if mkdoc $pwd/$1 > ML-Doc/$base.mldoc;

then chmod 774 ML-Doc/$base.mldoc;

ln -s $eXeneDir/manual/ML-Doc/$base.mldoc $pwd/$base.mldoc;

else exit 1;

fi;

echo "Attempting to write entry into Entities.sgml"

sigID=‘grep ’SIGBODY SIGID’ ML-Doc/$base.mldoc | sed -e ’s/.*FILE=//’ -e ’s/>.*//’‘

if grep $base.sig Entities.sgml;

then echo "Entities.sgml contains an entry for $base.sig";

else if grep SIGID ML-Doc/$base.mldoc;

then echo "<!ENTITY $sigID SDATA \"$base.sig\">" >> Entities.sgml; echo "Entity added"

else echo "SIGID not present";

fi;

fi;

44

Appendix C

Selectable List source code

(* selectable-list.sml

The Selectable list Widget is a slight modification of the button bar

that uses the button abstraction to simulate the selection of one or

more items (or buttons) from a list of buttons

*)

signature SELECTABLE_LIST =

sig

structure W: WIDGET

type selectable_list

(* creates a selectable_list widget with items labeled by the supplied strings;

a boolean value is also required to identify whether or not the selectable

list will operate in "single select" mode; if the mode is set to true, then

then only one item from the list can be selected at a time; any type of

interaction with the list will result in one and only one selection;

otherwise if the mode is set to false, the items in the list may be

selected by there different methods:

SINGLE_CLICK: An item will be selected and all of the previously

selected items will become unselected;

SINGLE_CLICK

WITH SHIFT: A range of items will be selected starting from the last click

to the present click ADDING to the current selection;

SINGLE_CLICK

WITH CNTRL: A item will be toggled from the currently selected list; that

is, if an item is currently selected it will become unselected

and if it is unselected int will become selected;

the widget may be customized using the following resource attributes:

Name Type Default Semantics

--

background color white background color of widget’s window

foreground color black foreground color of widget’s window

selectBackground color grey selected background color of widget’s window

selectForeground color white selected foreground color of widget’s window

font font 9x15 font of widget’s window

borderWidth int NoValue borderWidth surrounding text

hpad int 5 horizonal justification for text (includes borderWidth)

vpad int 0 (pixels) inter-button padding *)

45

val selectableList : (W.root * W.view * W.arg list) -> (string list * bool) -> selectable_list

(* returns the widget of a selectable list *)

val widgetOf : selectable_list -> W.widget

val selEvtOf : selectable_list -> (int * string) list CML.event

(* getSelectedList returns a tuple list of the strings and their corresponding index which

are currently selected by the widget; the index is constructed based on the initial

order of the supplied string list *)

val getSelectedList : unit -> (int * string) list

end

structure SelectableList =

struct

open CML

(* This is a unique Toggle Button that is not constructed in the Toggle structure it uses

a view that was previously unavailable *)

structure SpecialTextToggle = ToggleCtrl (ListView)

(* Structures used more than once requiring a short hand *)

structure A = Attrs

structure TT = ToggleType

structure Q = Quark

structure SV = SyncVar

structure W = Widget

structure I = Interact

val attr_hpad = Q.quark "hpad"

val attr_vpad = Q.quark "vpad"

(*attributes used specifically for this widget*)

val nativeAttrs =

[([], attr_vpad, A.AT_Int, A.AV_Int 0)]

(*attributes used for each individual list item*)

val passedAttrs =

[([], A.attr_background, A.AT_Color, A.AV_Str "white"),

([], A.attr_foreground, A.AT_Color, A.AV_Str "black"),

([], A.attr_font, A.AT_Font, A.AV_Str "9x15"),

([], attr_hpad, A.AT_Int, A.AV_Int 5),

([], A.attr_halign, A.AT_HAlign,A.AV_HAlign W.HLeft),

([], A.attr_selectBackground, A.AT_Color, A.AV_Str "grey"),

([], A.attr_selectForeground, A.AT_Color, A.AV_Str "blue")

]

(*the type of actions that will modify the selected list*)

datatype clickType = SingleSelect | SingleToggle | AddMulti

(*identity for the type and operation of a selectable list *)

type selectable_list =

{widget : W.widget,

selEvt : (int * string) list event,

getSelected : unit -> (int*string) list}

(*varialbe constructor for a selectable list *)

fun selectableList (root, view as (name, style), args) (names, mode) =

let

(*modified view such that new W.findAttr will works properly *)

val conView = (Styles.extendView (name, "selectable-list"),style)

46

val attrs = W.findAttr(W.attrs(conView, passedAttrs, []))

val bg = A.getColor(attrs A.attr_background)

val fg = A.getColor(attrs A.attr_foreground)

val font = A.getFont(attrs A.attr_font)

val hpad = A.getInt(attrs attr_hpad)

val sel_bg = A.getColor(attrs A.attr_selectBackground)

val sel_fg = A.getColor(attrs A.attr_selectForeground)

val halign = A.getHAlign(attrs A.attr_halign)

val nativeAttrs = W.findAttr(W.attrs(conView, nativeAttrs, []))

val vpad = A.getInt(nativeAttrs attr_vpad)

val padGlue = Box.Glue{nat = vpad, min = vpad, max = SOME vpad}

(*findClickType unrolls the ToggleType.Toggle datatype and classifies it as a clickType *)

fun findClickType (TT.Toggle(_,SOME(TT.BtnUp (mbut, modkeys)))) : clickType option =

if mode

then SOME SingleSelect

else

if I.shiftIsSet modkeys

then SOME AddMulti

else

if I.cntrlIsSet modkeys

then SOME SingleToggle

else SOME SingleSelect

| findClickType _ = NONE

(*isToggle unrolls the ToggleType.Toggle datatype and determines if there is a BtnUp msg*)

fun isToggle (TT.Toggle (_,SOME(TT.BtnUp _))) = true

| isToggle _ = false

(*item_data is the internal representation for each of the labeled toggle buttons

each item has a label containing its name, a item which is the event itself and

a upEvt which recieves the button click information*)

type item_data =

{ lab : string,

item : TT.toggle,

upEvt : TT.toggle_act event}

(*makeItem given a string constructs an instance of an item_data*)

val makeItem : string -> item_data =

fn lab =>

let val itemArgs =

[([], A.attr_label, A.AV_Str lab),

([], A.attr_background, A.AV_Color bg),

([], A.attr_foreground, A.AV_Color fg),

([], A.attr_selectBackground, A.AV_Color sel_bg),

([], A.attr_selectForeground, A.AV_Color sel_fg),

([], A.attr_font, A.AV_Font font),

([], A.attr_halign, A.AV_HAlign halign),

([], attr_hpad, A.AV_Int hpad)

]

val item = SpecialTextToggle.toggle (root, view, itemArgs)

(* the flushEvt is currently not used by this widget *)

val (valEvt, flushEvt) = FilterEvt.filterEvt isToggle (TT.evtOf item)

val itemData = {lab = lab,

item = item,

upEvt = valEvt}

in itemData

end

(*itemsToBoxes : item_data list -> Box.WBox list

takes in a list of items and constructs a vertical list of widgets*)

fun itemsToBoxes nil = nil

47

| itemsToBoxes [b] =

[Box.WBox(TT.widgetOf b)]

| itemsToBoxes (b :: bs) =

Box.WBox(TT.widgetOf b) :: padGlue :: itemsToBoxes bs

val itemDatas = map makeItem names

val items = map #item itemDatas

val box = Box.VtLeft(itemsToBoxes items)

val layout = Box.layout(root, view, args) box

val widget = Box.widgetOf layout

val selCh : (int * string) list chan = channel()

(* the rqstChan is used to to make requests to the server thread *)

val rqstChan: ((int list) SV.ivar)chan = channel()

(* indexedData constructs (int * item_data) list effectively indexing the already

constructed itemDatas *)

val indexedDatas = let

fun makeIndex (num, []) = []

| makeIndex (num, item::tl) = [num] @ makeIndex (num+1, tl)

in ListPair.zip(makeIndex (0,itemDatas), itemDatas)

end

(* doSingleToggle: (selList: int list * index: int) -> int list

doSingleToggle adds the index to selList if it is not present and removes

it if it is present *)

fun doSingleToggle (selList,index) =

if (List.exists (fn x => x=index) selList)

then (List.filter (fn x => not(x=index)) selList)

else ([index]@selList)

(* doSingleSelect: (index:int)-> int list *)

fun doSingleSelect (index) =

[index]

(* makeMultiList: (last: int option * index : int) -> int list *)

fun makeMultiList (NONE, index) = [index]

| makeMultiList (SOME(last), index) =

let

fun makeIndex top bottom =

if top >= bottom

then (makeIndex (top-1) bottom)@[top]

else []

in

if index >= last

then makeIndex index last

else makeIndex last index

end

(* doAddMulti: (last: int option * selList: int list * index: int) -> int list *)

fun doAddMulti (last, selList, index) =

let

val addList = makeMultiList (last, index)

fun addUniqueItemsToList [] = []

| addUniqueItemsToList(h::tl) =

if (List.exists (fn x => x=h) selList)

then addUniqueItemsToList tl

else [h]@(addUniqueItemsToList tl)

in

selList@(addUniqueItemsToList addList)

end

48

(* greaterThan : (int * int) -> bool *)

val greaterThan = fn (x, y) => x > y

(* doAction: (clickType option * int option * int list * int) -> int list *)

fun doAction (NONE,last, selList, index) = selList

| doAction (SOME(SingleToggle), last, selList, index) =

ListMergeSort.sort greaterThan (doSingleToggle (selList, index))

| doAction (SOME(SingleSelect), last, selList,index) = doSingleSelect (index)

| doAction (SOME(AddMulti), last, selList, index) =

ListMergeSort.sort greaterThan (doAddMulti (last,selList, index))

fun getIndexedItem num =

let

fun grab [] = []

| grab ((index,{lab,...}:item_data)::tl) =

if num = index

then [(num,lab)]

else grab tl

in grab indexedDatas

end

fun getIndexedItems [] = []

| getIndexedItems (hd::tl) = (getIndexedItem hd)@(getIndexedItems tl)

(* unCoverClickAndServ (int option * int list * ()*)

fun unCoverClickAndServ (last,selList, serv,(index,{upEvt, ...}:item_data)) =

[wrap(upEvt, fn click =>

let

val selList’ = (doAction((findClickType click),

last,

selList,

index

)

)

val evt = sendEvt(selCh, getIndexedItems(selList’))

fun loop () =

select

[wrap(evt, fn () => serv (SOME(index)) selList’)]

in loop ()(*serv (SOME(index)) selList’*)

end

)

]

fun makeSelect (last,selList,serv,[]) = []

| makeSelect (last,selList,serv,indexedData::tl) =

(unCoverClickAndServ (last,selList,serv,indexedData))

@ (makeSelect (last,selList,serv,tl))

fun syncButtonStateWithList selList =

let

fun syncList [] = ()

| syncList ((index,{item,...}:item_data)::tl) =

if (List.exists (fn x => x = index) selList)

then (TT.setState(item,true) ; syncList tl)

else (TT.setState(item,false); syncList tl)

in

syncList indexedDatas

end

fun server last selList = (syncButtonStateWithList selList;

select ([wrap(recvEvt rqstChan, fn iVar => (SV.iPut(iVar, selList);

server last selList))]@

(makeSelect (last,selList,server,indexedDatas))

)

49

)

fun getSelectedList () =

let

val iVar : (int list) SV.ivar = SV.iVar()

in send (rqstChan, iVar); getIndexedItems (SV.iGet iVar)

end

in

spawn(fn () => server NONE []);

{widget = widget,

selEvt = recvEvt selCh,

getSelected = getSelectedList}

end

fun widgetOf({widget,...}:selectable_list) = widget

fun selEvtOf({selEvt,...}:selectable_list) = selEvt

fun getSelectedList({getSelected,...}:selectable_list) = getSelected ()

end;

50

Appendix D

File Chooser source code

(*fchooser.sml*)

signature FILE_CHOOSER =

sig

structure W: WIDGET

type filechooser

(* a filechooser widget allows you to browse through the file system and

perform operations on that file system. It is always in an active mode.

It requires a root, view, and args list as well as a button that will

provide the primary operation for the file chooser and a boolean value

that specifies the selection mode (true - Single Selection

false - Multiple Selection).

The widget may be customized using the following resource attributes:

Name Type Default Semantics

background color pink background color of widget’s window

foreground color black foreground color of widget’s window

hdir string OS.FileSys.getDir() Home Directory of the Widget

*)

val fileChooser : (W.root * W.view * W.arg list) -> (Button.button * bool) -> filechooser

(*returns widget of a filechooser*)

val widgetOf : filechooser -> W.widget

(*getCurrentDirectory returns the current Directory of the filechooser*)

val getCurrentDirectory : filechooser -> string

(*getCurrentText returns the current text (the selected files and anything that

the user has typed in*)

val getCurrentText : filechooser -> string

(*getCurrentSelection returns a list of the currently selected files and

with a corresponding directory identifier. i.e. true -> directory

false -> file *)

val getCurrentSelection : filechooser -> (string*bool) list

(*setDirectory is a function that takes in a string and attempts to

sets the filechooser’s current directory to that string*)

val setDirectory : filechooser -> string -> unit

51

(*setError is a function that takes in a string and sets the text of the

error label to the string *)

val setError : filechooser -> string -> unit

end

structure FileChooser =

struct

open CML Widget Geometry Interact

structure Q = Quark

structure A = Attrs

structure W = Widget

structure SV = SyncVar

val attr_hDir = Q.quark "hDir"

val homeDir = OS.FileSys.getDir()

val attrs =

[([], A.attr_background, A.AT_Color, A.AV_Str "white"),

([], A.attr_foreground, A.AT_Color, A.AV_Str "black"),

([], attr_hDir, A.AT_Str, A.AV_Str homeDir)]

datatype setRequest = SetDirectory of string

| SetError of string

(*internal state consists of a directory list, a file list, the current

SelectableList and the current navigational directory*)

type state = {dirList : string list,

fileList : string list,

selList : SelectableList.selectable_list,

currentDir : string}

(*the filechooser type consist of a widget, and 5 functions that allow for

informational retrieval and state modification*)

type filechooser = {widget : W.widget,

currentDirectory : unit -> string,

currentText : unit -> string,

currentSelection : unit -> (string*bool) list,

setDirectory : string -> unit,

setError : string -> unit}

fun fileChooser(root, (name, style), args) (actionBttn, selectMode) =

let val view = (Styles.extendView (name, "file-chooser"), style)

val attrs = W.findAttr(W.attrs(view,attrs,[]))

val bg = A.getColor(attrs A.attr_background)

val fg = A.getColor(attrs A.attr_foreground)

val hDir = A.getString(attrs attr_hDir)

val focusMgr = FocusMgr.mkFocusMgr ()

(*Widget Construction*)

val dirPath = TextView.textView (root, view, [([], A.attr_maxLines, A.AV_Int 1),

([], A.attr_rows, A.AV_Int 1)])

("")

val _ = TextView.tvSetShowScrollbars (dirPath) (false)

val dirPathFF = FocusFrame.focusframe (root, view, [])

((TextView.widgetOf dirPath),(TextView.focusableOf dirPath))

(* val _ = FocusMgr.addFocusable focusMgr (FocusFrame.focusableOf dirPathFF)*)

val updArgs =

[([], A.attr_label,A.AV_Str "Update"),

52

([], A.attr_borderWidth,A.AV_Int 5)]

val updBttn = Button.textBtn(root,view, updArgs)

val updEvt = Button.evtOf updBttn

val homeArgs =

[([], A.attr_label, A.AV_Str " Home "),

([], A.attr_borderWidth,A.AV_Int 5)]

val homeBttn = Button.textBtn(root, view, homeArgs)

val homeEvt = Button.evtOf homeBttn

val prevArgs =

[([], A.attr_label, A.AV_Str "Parent"),

([], A.attr_borderWidth,A.AV_Int 5)]

val prevBttn = Button.textBtn(root, view, prevArgs)

val prevEvt = Button.evtOf prevBttn

(*The "error label" is actually a button with no border width.

it was implemented as such to circumvent the problems of rigidity

caused by the label widget*)

val errArgs =

[([], A.attr_label, A.AV_Str "Error Message Output"),

([], A.attr_borderWidth,A.AV_Int 0),

([], A.attr_halign, A.AV_HAlign W.HLeft)]

val errorLabel = Button.textBtn(root, view, errArgs)

val listLayout = Box.layout (root, view, [])

(Box.VtLeft[Box.Glue{nat=100,min=100,max=SOME(100)}])

val scrollSelList = ScrollLayout.mkSBLayout root

{ widget = (Box.widgetOf listLayout),

hsb = NONE,

vsb = SOME {sb=(Scrollbar.widgetOf (Scrollbar.mkVScrollbar root {color=NONE, sz=16})), pad=0, left=false}}

val scrollLayout = Box.layout (root, view, [])

(Box.VtLeft[Box.WBox(ScrollLayout.widgetOf scrollSelList)])

val fileList = TextView.textView (root, view, [([], A.attr_maxLines, A.AV_Int 1),

([], A.attr_rows, A.AV_Int 1)])

("")

val _ = TextView.tvSetShowScrollbars (fileList) (false)

val fileListFF = FocusFrame.focusframe (root, view, [])

((TextView.widgetOf fileList),(TextView.focusableOf fileList))

(*val _ = FocusMgr.addFocusable focusMgr (FocusFrame.focusableOf fileListFF)*)

val dividerArgs = [([], A.attr_color, A.AV_Str "black"),

([], A.attr_width, A.AV_Int 3)]

(*horzDivider: unit -> W.widget

used to make all of the horizonal divider in the widget construction*)

fun horzDivider () = Divider.horzDivider(root,view,dividerArgs)

val padGlue = Box.Glue{nat = 10,min = 10, max = SOME(10)}

val topSect = Box.layout (root, view, [])

(Box.HzCenter[Box.WBox(FocusFrame.widgetOf dirPathFF),

padGlue,

Box.WBox(Shape.mkRigid(Button.widgetOf updBttn)),

padGlue,

Box.WBox(Shape.mkRigid(Button.widgetOf homeBttn)),

padGlue,

Box.WBox(Shape.mkRigid(Button.widgetOf prevBttn))])

53

val midSect = Box.layout (root, view, [])

(Box.HzCenter[Box.WBox(Box.widgetOf(scrollLayout))])

val btmSect = Box.layout (root, view, [])

(Box.HzCenter[Box.WBox(FocusFrame.widgetOf fileListFF),

padGlue,

Box.WBox(Shape.mkRigid(Button.widgetOf actionBttn))])

val errSect = Box.layout (root, view, [])

(Box.VtLeft[Box.WBox(Button.widgetOf errorLabel)])

val padGlue = Box.Glue{nat = 4,min = 4, max = SOME(4)}

val overall = Box.layout (root, view, [])

(Box.VtLeft [padGlue,

Box.WBox(Box.widgetOf(topSect)),

padGlue,

Box.WBox(horzDivider ()),

padGlue,

Box.WBox(Box.widgetOf(midSect)),

padGlue,

Box.WBox(horzDivider ()),

padGlue,

Box.WBox(Box.widgetOf(btmSect)),

padGlue,

Box.WBox(horzDivider ()),

padGlue,

Box.WBox(Box.widgetOf(errSect))])

val widget = (Box.widgetOf(overall))

(*end widget construction*)

(*racErrorLabel: string -> unit

racErrorLabel stands for remove and create error label

since it is impossible to change the text of a button racErrorLabel

recreates the button with a new message*)

fun racErrorLabel msg =

let val errArgs =

[([], A.attr_label, A.AV_Str msg),

([], A.attr_borderWidth,A.AV_Int 0),

([], A.attr_halign, A.AV_HAlign W.HLeft)]

val errorLabel = Button.textBtn(root, view, errArgs)

in

(Box.delete errSect [0];

Box.insert errSect (0, [Box.WBox(Button.widgetOf errorLabel)]);

Box.mapBox errSect [0])

end

(*racDF: state -> state

racDF stands for remove and create Directorys and Files

racDF takes in the internal state and attempts to open and read

the currentDir. Once that is complete its reconstructs the

selectable list and remounts it on the list layout*)

fun racDF(state:state) =

let

val _ = OS.FileSys.chDir (#currentDir state)

val dirStream = OS.FileSys.openDir(#currentDir state)

val fileAndDirList =

let

fun createList dList fList =

(case OS.FileSys.readDir(dirStream) of

NONE => (dList, fList)

54

| SOME file => if (OS.FileSys.isDir(file))

then (createList (dList@[(file)]) fList)

else (createList dList (fList@[(file)])))

in createList [] []

end

(* createSelectableList: (string list * string list) -> state

*)

fun createSelectableList(dList, fList) =

let

val _ = OS.FileSys.closeDir (dirStream)

val selectableList = SelectableList.selectableList (root,view,[])

(dList@fList,selectMode)

(*val scrollSelList = ScrollLayout.mkSBLayout root

{ widget = (SelectableList.widgetOf selectableList),

hsb = NONE,

vsb = SOME {sb=(Scrollbar.widgetOf

(Scrollbar.mkVScrollbar root

{color=NONE,

sz=16}

)),

pad=0,

left=false

}

}*)

(*fun sleep n = CML.sync(CML.timeOutEvt(Time.fromMilliseconds n))*)

in

((if (List.null((#dirList state)@(#fileList state)))

then ()

else (Box.delete listLayout [0](*; sleep 100*)));

Box.insert listLayout (0, [Box.WBox(SelectableList.widgetOf selectableList)]);

Box.mapBox listLayout [0];

racErrorLabel "Error Message Output";

TextView.setString dirPath (#currentDir state);

TextView.setString fileList "";

{currentDir = #currentDir state,

dirList = dList,

fileList = fList,

selList = selectableList})

end

in

createSelectableList(fileAndDirList)

end

(*channel for getting the selection from the selectable list*)

val getSelChan : ((string*bool) list SV.ivar) chan = channel ();

(*channel for getting the current directory from the state*)

val getDirChan : (string SV.ivar) chan = channel ();

(*channel for getting the current text from the text edit widget*)

val getTexChan : (string SV.ivar) chan = channel ();

(*channel for setting the directory and setting the error message *)

val setReqChan : (setRequest) chan = channel ();

(*loop: state -> unit

main loop*)

fun loop(state:state) =

let

val _ = OS.FileSys.chDir (hDir)

val parentDir = OS.Path.getParent (OS.Path.toUnixPath(#currentDir state))

val updateDir = TextView.getString dirPath

55

val selEvt = SelectableList.selEvtOf (#selList state)

(*function used to extract the file/directory names and identify their corresponding types*)

fun extract ((x,m)::tl) = ([(m,OS.FileSys.isDir ((#currentDir state)^"/"^m))] @ (extract tl))

| extract [] = []

(*handle the press of the home button

change the current directory to the home directory*)

fun handleHome (Button.BtnUp _) = let

val state’ = {currentDir = hDir,

dirList = #dirList state,

fileList = #fileList state,

selList = #selList state}

in

loop(racDF(state’))

end

| handleHome _ = loop(state)

(*handle the press of the parent button

attempts to change the directory to the parent directory

failure to do so raises an error message

*)

fun handleParent (Button.BtnUp _) = ((let

val state’ = {currentDir = parentDir,

dirList = #dirList state,

fileList = #fileList state,

selList = #selList state}

in

loop(racDF(state’))

end)

handle OS.SysErr (msg1, msg2) =>

(racErrorLabel msg1;

loop(state)))

| handleParent _ = loop(state)

(*handle the press of the update button

attempts to change the directory to the text in the dirPath

failure to do so raises an error message

*)

fun handleUpdate (Button.BtnUp _) =((let

val state’ = {currentDir = updateDir,

dirList = #dirList state,

fileList = #fileList state,

selList = #selList state}

in

loop(racDF(state’))

end)

handle OS.SysErr (msg1,msg2) =>

(racErrorLabel msg1;

loop (state)))

| handleUpdate _ = loop(state)

(*handle a selection made on the selectable list

*)

fun handleSelect selection =(let (*unpack:(int*string) list -> string

unpack constructs a string of the list of

files selected and set them as the text of

the fileList widget*)

fun unpack [] = ""

| unpack ((_,hd)::[]) = hd

56

| unpack ((_,hd)::tl) = hd^", "^(unpack tl)

val sel = unpack selection

in

(TextView.setString fileList sel;

loop(state))

end)

(**)

fun handleChangeDir name =((let

val state’ = {currentDir = name,

dirList = #dirList state,

fileList = #fileList state,

selList = #selList state}

in

loop(racDF(state’))

end)

handle OS.SysErr (msg1,msg2) =>

(racErrorLabel msg1;

loop (state)))

fun handleGetSelection (iVar) = (SV.iPut(iVar, extract (SelectableList.getSelectedList (#selList state)));

loop(state))

fun handleGetDirectory (iVar) = (SV.iPut(iVar,(#currentDir state));

loop(state))

fun handleGetText (iVar) = (SV.iPut(iVar,(TextView.getString fileList));

loop(state))

fun handleSetRequest (req) = (case req of

SetDirectory x =>

((let

val state’ = {currentDir = x,

dirList = #dirList state,

fileList = #fileList state,

selList = #selList state}

in

loop(racDF(state’))

end)

handle OS.SysErr (msg1,msg2) =>

(racErrorLabel msg1;

loop (state)))

| SetError x =>

(racErrorLabel x; loop(state)))

in select

[wrap(homeEvt, handleHome),

wrap(prevEvt, handleParent),

wrap(updEvt, handleUpdate),

wrap(selEvt, handleSelect),

wrap(recvEvt getDirChan, handleGetDirectory),

wrap(recvEvt getTexChan, handleGetText),

wrap(recvEvt getSelChan, handleGetSelection),

wrap(recvEvt setReqChan, handleSetRequest)]

end

fun getCurrentDirectory() =

let val iVar : string SV.ivar = SV.iVar ()

in (send(getDirChan, (iVar));

(SV.iGet iVar))

57

end

fun getCurrentText() =

let val iVar : string SV.ivar = SV.iVar ()

in (send(getTexChan, (iVar));

(SV.iGet iVar))

end

fun getCurrentSelection() =

let val iVar : (string * bool) list SV.ivar = SV.iVar ()

in (send(getSelChan, (iVar));

(SV.iGet iVar))

end

fun setDirectory s = send(setReqChan, (SetDirectory(s)))

fun setError s = send(setReqChan, (SetError(s)))

in

spawn(fn () => loop(racDF{currentDir = hDir,

dirList = [],

fileList = [],

selList = SelectableList.selectableList (root,view,[]) ([],false)}));

{widget = widget,

currentDirectory = getCurrentDirectory,

currentText = getCurrentText,

currentSelection = getCurrentSelection,

setDirectory = setDirectory,

setError = setError}

end

fun widgetOf({widget,...} : filechooser) = widget

fun getCurrentDirectory({currentDirectory,...} : filechooser) = currentDirectory ()

fun getCurrentText({currentText,...} : filechooser) = currentText ()

fun getCurrentSelection({currentSelection,...} : filechooser) = currentSelection ()

fun setDirectory({setDirectory,...} : filechooser) = setDirectory

fun setError({setError,...} : filechooser) = setError

end

58

Appendix E

File Chooser Demo source code

(*

* Matt Hoag, Kansas State University.

*

* Based on basicwin.sml, (C) 1990 J.H. Reppy; and goodbye.sml, (C) 1990 AT&T.

*)

structure FCDemo : sig

val doit : string option * string list -> OS.Process.status

val main : (string * string list) -> OS.Process.status

end = struct

structure EXB = EXeneBase

structure S = Styles

structure A = Attrs

(* set up the option spec table. *)

val optSpec =

[(S.OPT_NAMED("help"), "-help", S.OPT_NOARG("on"), A.AT_Bool),

(S.OPT_NAMED("help"), "-nohelp", S.OPT_NOARG("off"), A.AT_Bool),

(S.OPT_NAMED("res"), "-res", S.OPT_RESARG, A.AT_Str),

(S.OPT_NAMED("skip"), "-skip", S.OPT_SKIPARG, A.AT_Str),

(S.OPT_NAMED("ign"), "-ignore", S.OPT_SKIPLINE, A.AT_Str),

(S.OPT_RESSPEC("*background"), "-bg", S.OPT_SEPARG, A.AT_Str),

(S.OPT_RESSPEC("*foreground"), "-fg", S.OPT_SEPARG, A.AT_Str),

(S.OPT_RESSPEC("*borderColor"),"-bc", S.OPT_SEPARG, A.AT_Str)]

(* set up application resource defaults. *)

val appResources =

["*background: white",

"*foreground: black"]

fun init (dpyOpt,args) =

let

val root = Widget.mkRoot(GetDpy.getDpy(dpyOpt))

handle EXB.BadAddr s =>

(TextIO.print s; RunCML.shutdown OS.Process.failure)

(* parse the command line arguments using the option spec table. *)

val (optDb,unargs) = Widget.parseCommand (optSpec) args

(* obtain the value of a named argument.

* note that in this case we let the last argument (the head of the returned list)

* override any previous arguments. *)

val help = (case (Widget.findNamedOpt optDb (Styles.OPT_NAMED("help")) root) of

59

[] => false (* application must supply default here. *)

| Attrs.AV_Bool(b)::_ => b) (* let the last argument override. *)

(* create a style from the application default resource table. *)

val appStyle = Widget.styleFromStrings(root,appResources)

handle Styles.BadSpec (n,s) =>

(TextIO.print "bad resource specification: ";

TextIO.print(Int.toString n); TextIO.print (":"^s^"\n");

Widget.delRoot root; RunCML.shutdown OS.Process.failure)

(* create a style from the properties stored by xrdb. *)

val xrdStyle = Widget.styleFromXRDB(root)

handle Styles.BadSpec (n,s) =>

(TextIO.print "bad resource specification: ";

TextIO.print(Int.toString n); TextIO.print (":"^s^"\n");

Widget.delRoot root; RunCML.shutdown OS.Process.failure)

(* create a style from the resource options in the option db. *)

val argStyle = Widget.styleFromOptDb(root,optDb)

handle Styles.BadSpec (n,s) =>

(TextIO.print "bad resource specification: ";

TextIO.print(Int.toString n); TextIO.print (":"^s^"\n");

Widget.delRoot root; RunCML.shutdown OS.Process.failure)

(* Merge: xrdb strings with app style, overwriting any conflicting app styles.

* Then merge arg style with the result, giving priority to runtime args. *)

val mainStyle = Widget.mergeStyles(argStyle,Widget.mergeStyles(xrdStyle,appStyle))

val styleView = Styles.mkView{name = Styles.styleName["demores"],aliases = nil}

val view = (styleView, mainStyle)

(* widget setup. *)

fun quit () = (Widget.delRoot root; RunCML.shutdown OS.Process.success)

val quitBttn = Button.textBtn (root, view, [([], Attrs.attr_label, Attrs.AV_Str "Quit"),

([], Attrs.attr_borderWidth, Attrs.AV_Int 5)])

val quitEvt = Button.evtOf quitBttn

val openBttn = Button.textBtn (root, view, [([], Attrs.attr_label, Attrs.AV_Str "Open"),

([], Attrs.attr_borderWidth, Attrs.AV_Int 5)])

val openEvt = Button.evtOf openBttn

val attr_singleSelect = Quark.quark "singleselect"

val fileChooser = FileChooser.fileChooser (root, view, []) (openBttn, false)

val layout =

Box.layout (root, view, []) (Box.VtCenter[

Box.WBox(Button.widgetOf quitBttn),

Box.WBox(FileChooser.widgetOf fileChooser)

])

val shellArgs =

[([], Attrs.attr_title, Attrs.AV_Str "SelectableText Widget Demo"),

([], Attrs.attr_iconName, Attrs.AV_Str "demo-res")]

val shell = Shell.shell (root, view, shellArgs) (Box.widgetOf layout)

val hints = Shell.mkHints{size_hints=[],wm_hints=[ICCC.HINT_Input(true)]}

val _ = Shell.setWMHints shell hints

val cmEvt = Shell.deletionEvent shell

fun printList [] = (TextIO.print "\n")

| printList ((hd,_)::[]) = (TextIO.print (hd); printList [])

| printList ((hd,_)::tl) = (TextIO.print (hd^", "); printList tl)

60

fun findNumOfFD selection =

let

fun aux ([],(dir,fil)) = (dir,fil)

| aux ((_,t)::tl,(dir,fil)) = aux (tl,(if t then (dir+1,fil) else (dir,fil+1)))

in

aux (selection,(0,0))

end

fun openFiles selection = (TextIO.print "Opening Files\n";printList selection)

fun openDirs [] = FileChooser.setError fileChooser "No Directory to Open"

| openDirs ((selection,_)::[]) = FileChooser.setDirectory fileChooser

((FileChooser.getCurrentDirectory fileChooser)

^"/"^selection

)

| openDirs (selection::tl) = (FileChooser.setError fileChooser "Cannot open multiple directories")

fun openDirOrFile selection =

let val (dir,fil) = findNumOfFD selection

fun choose (0,n) = openFiles selection

| choose (n,0) = openDirs selection

| choose _ = (FileChooser.setError fileChooser "Cannot select directories AND files")

in choose (dir,fil)

end

fun loop():unit =

let

fun handleOpen (Button.BtnUp _) = (openDirOrFile (FileChooser.getCurrentSelection fileChooser); loop ())

| handleOpen (_) = loop()

fun handleQuit (Button.BtnUp _) = (TextIO.print " [demo-res quitting]\n"; quit())

| handleQuit (_) = (loop())

in CML.select

[CML.wrap(openEvt, handleOpen),

CML.wrap(quitEvt, handleQuit),

CML.wrap(cmEvt, quit)

]

end

in

Shell.init shell;

loop()

end

fun doit (dpyOpt,args) =

(RunCML.doit (fn () => (init (dpyOpt,args)), NONE))

fun main (prog, "-display"::(server::args)) =

((TextIO.print ("display="^server)); doit(SOME server,args))

| main (prog, args) = doit(NONE,args)

end

61

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Standard ML
	Concurrent ML
	EXene
	Advantages of eXene
	The Current State of eXene
	EXene's Competition
	The Fully Featured UIMS Toolkit
	Functionality
	Usability
	Extensibility

	The Revitalization of eXene

	Restructuring eXene
	The X Window System
	eXene's Interface Library
	The Widget Library
	The Other Libraries
	The Compilation and Library Manager
	Refactoring eXene
	Improving the Abstraction Model
	The state of eXene's abstraction model
	Widget types
	Widget utilities
	The Interact abstraction
	Benefits of the revised abstraction model

	Integrating the Enhancements

	eXene Documentation
	An interactive documentation solution for eXene
	Setting up ML-Doc
	Creating ML-Doc files
	ML-Doc and CM
	Populating the eXene Documentation

	New eXene Widgets
	Selectable List
	File Chooser
	Box Layout

	Conclusion
	Bibliography
	linkToMLDOC source code
	mkdoc-tool source code
	Selectable List source code
	File Chooser source code
	File Chooser Demo source code

