
Using EasyCrypt’s Ambient Logic

These slides are an example-based introduction to the use of
EasyCrypt’s ambient logic.

1 / 110

Types

EasyCrypt’s types include basic types like unit (which only has
the single element ()), int, bool and real, as well as product
types t1 * t2 · · · * tn and function types t1 -> t2. * has higher
precedence than ->, and -> is right associative.

Thus, e.g., t1 * t2 -> t3 -> t4 means (t1 * t2) -> (t3 -> t4). A
value of this type is a function that takes in a pair (x,y), where x
has type t1 and y has type t2, and returns a function that takes in
a value z of type t3, and returns a result of type t4.

2 / 110

Operators

EasyCrypt has typed operators (or functions). E.g.,

op f (x y : int) = if 0 < x then x - 2 * y else 1.
op g (a b : bool) = !(a /\ b) /\ (a \/ b).
op h : int -> bool.

Note how we can use conditionals in expressions. The prefix
operator ! is boolean negation, and the infix operatos /\ and \/ are
conjunction and disjunction, respectively. We also have implication
=> and if-and-only-of <=>. f and g have (curried) types:

f : int -> int -> int
g : bool -> bool -> bool

Thus you can say

op p : int -> int = f 4.
op y : int = p 5.

in which case the value of y will be -6.
3 / 110

Operators

If x is a value of type int, then x%r is the corresponding element
of real. Operators in EasyCrypt can be overloaded, so that,
e.g., * is multiplication for both int and real.

We can select a component of a tuple with the .` notation. E.g.,
(1,3,5).`2 is equal to 3.

EasyCrypt has anonymous functions. Then, if we write

op f : int -> bool = fun (x : int) => x = 0.
op h : (int -> bool) -> bool = fun (f : int -> bool) => f 3.
op x : bool = h f.

we have that f is the function that will test if its argument is zero,
and h is the function that takes in an argument f of type int ->

bool, and applies f to 3, returning the boolean result.
Consequently, we have that x evalutes to false.

4 / 110

Operators

EasyCrypt also has let expressions. E.g., you can write

op x : int = let y = 10 in y * y.

This binds y to 10 in the expression y * y, so that the value of x
will then be 100.

5 / 110

Axioms and Lemmas

We can state axioms like

axiom h_ax (x : int) : x <> 0 => h x.

which says that for all non-zero integers x, the result of applying h

to x returns true, i.e., h x holds.

We can state and prove lemmas like

lemma not_or (a b : bool) : !(a \/ b) => !a /\ !b.
proof.
...
qed.

which says that the negation of the disjunction of a and b implies
the conjunction of the negation of a and the negation of b.
Here the ... should consist of a sequence of tactics proving the
lemma.

6 / 110

Theories

EasyCrypt has various theories in its standard library, each of
which contains operators, axioms, lemmas and subtheories. See
the subdirectory theories of the EasyCrypt distribution.

The theory AllCore contains some core theories like Int and
Real—corresponding to the integers and real numbers.

Issuing the command

require import T.

makes the definitions of the theory T available without qualification
(so you can say f instead of T.f). Leaving out import makes
them available, but with qualification.

7 / 110

Printing and Searching

Operators, lemmas and axioms may be printed using the print
command:

print g.
print [!].
print (/\).

Note the special way unary and binary operators are specified.

The search command can be used to search for all lemmas and
axioms involving all of a list of operators. E.g.,

search [!] (\/) (=>).

searches for all lemmas involving all of negation, disjunction and
implication. If an operator is an abbreviation (printing it will tell
you this), you’ll have to search for what it’s defined to be.

8 / 110

Proof Process

At each point of proving a lemma, we have some number of goals,
and are focused on one of them. Goals consist of an ordered set of
assumptions (listed above the horizontal bar) plus a single
conclusion (listed below the bar).

EasyCrypt provides various tactics, which reduce a goal to zero
or more subgoals. When we apply a tactic to the current goal, the
generated subgoals will have to be proved before the other
preexisting goals are proved.

When working on a proof, one may temporarily accept a goal,
without proof, by running the tactic admit.

9 / 110

Basic Tactics

The conclusion of a goal can be logically simplified using the tactic
simplify. E.g., simplify transforms

Type variables: <none>

x: int
y: int
--
!true \/ x < y

into

Type variables: <none>

x: int
y: int
--
x < y

10 / 110

Basic Tactics

The trivial tactic applies a set of basic logical rules, and can
solve certain goals, e.g.:

Type variables: <none>

a: bool
b: bool
--
a => ! (true /\ b) => !true \/ !b

and (because it can establish a contradiction)

Type variables: <none>

a: bool
b: bool
not_and: ! (a /\ b)
a_true: a
b_true: b
--
a /\ b => false

11 / 110

Basic Tactics

simplify and trivial never fail, although they may leave a goal
unchanged, i.e., they may fail to make any progress.

12 / 110

SMT Solvers

The smt tactic uses the known SMT solvers to try to solve a goal,
using all known lemmas.

Running smt() means to only use lemmas built-in to the solvers.

One can also list the previously proved lemmas that may be used,
e.g., smt(foo goo).

One can restrict which solvers may be used, e.g.,

prover quorum=2 ["Z3" "Alt-Ergo"].

says that both Z3 and Alt-Ergo must agree on each use of smt.
Removing quorum=2 means smt will succeed if either or both of
the provers solve the goal.

One can customize the timeout (in seconds) before an application
of smt will fail:

timeout 2.

13 / 110

Introduction Patterns: Simple

Introduction patterns may be used to introduce into the goal’s
assumptions universally quantified variables as well as the left sides
of implications. E.g., move => x y z le x y le y z transforms

Type variables: <none>

--
forall (x y z : int), x <= y => y <= z => x <= z

into

Type variables: <none>

x: int
y: int
z: int
le_x_y: x <= y
le_y_z: y <= z
--
x <= z

14 / 110

Introduction Patterns: Simple

If an assumption won’t be needed, one can use _ instead of an
identifier. And already introduced assumptions can be removed
using clear (e.g., clear le y x.).

E.g., move => x y z le x y transforms

Type variables: <none>

--
forall (x y z : int),
x <= y => y <= z => x + 1 <= y + 1

into

Type variables: <none>

x: int
y: int
z: int
le_x_y: x <= y
--
x + 1 <= y + 1

15 / 110

Introduction Patterns: Elimination

Introduction patterns may be used to eliminate disjunctions,
existentially quantified formulas, and conjunctions on the left sides
of implications. E.g., move => [] transforms

Type variables: <none>

a: bool
b: bool
--
a \/ b => a

into

16 / 110

Introduction Patterns: Elimination

Type variables: <none>

a: bool
b: bool
--
a => a

and

Type variables: <none>

a: bool
b: bool
--
b => a

(The latter goal won’t be provable.)

17 / 110

Introduction Patterns: Elimination

And we may give different introduction patterns for the disjuncts.
E.g., move => [a true | b true] transforms

Type variables: <none>

a: bool
b: bool
--
a \/ b => a

into

18 / 110

Introduction Patterns: Elimination

Type variables: <none>

a: bool
b: bool
a_true: a
--
a

and

Type variables: <none>

a: bool
b: bool
b_true: b
--
a

19 / 110

Introduction Patterns: Elimination

And move => [] transforms

Type variables: <none>

y: int
--
(exists (x : int), y = x * 2 + 1) =>
exists (z : int), y - 3 = z * 2

into

Type variables: <none>

y: int
--
forall (x : int),
y = x * 2 + 1 =>
exists (z : int), y - 3 = z * 2

20 / 110

Introduction Patterns: Elimination

And move => [x y eq] transforms

Type variables: <none>

y: int
--
(exists (x : int), y = x * 2 + 1) =>
exists (z : int), y - 3 = z * 2

into

Type variables: <none>

y: int
x: int
y_eq: y = x * 2 + 1
--
exists (z : int), y - 3 = z * 2

21 / 110

Introduction Patterns: Elimination

And move => [] transforms

Type variables: <none>

a: bool
b: bool
--
a /\ b => a

into

Type variables: <none>

a: bool
b: bool
--
a => b => a

22 / 110

Introduction Patterns: Elimination

And move => [a true b true] transforms

Type variables: <none>

a: bool
b: bool
--
a /\ b => a

into

Type variables: <none>

a: bool
b: bool
a_true: a
b_true: b
--
a

23 / 110

Elimination

One can do elimination of an assumption using elim. E.g.,

elim H.

transforms

Type variables: <none>

a: bool
b: bool
H: a \/ b
--
a

into

24 / 110

Elimination

Type variables: <none>

a: bool
b: bool
--
a => a

and

Type variables: <none>

a: bool
b: bool
--
b => a

25 / 110

Introduction Patterns Following Arbitrary Tactic

Any tactic may be followed by an introduction pattern, which
applies to the subgoals created by running the tactic. And one may
specify different introduction patterns for different subgoals. E.g.,

elim H => [a_true | b_true].

transforms

Type variables: <none>

a: bool
b: bool
H: a \/ b
--
a

into

26 / 110

Introduction Patterns Following Arbitrary Tactic

Type variables: <none>

a: bool
b: bool
a_true: a
--
a

and

Type variables: <none>

a: bool
b: bool
b_true: b
--
a

27 / 110

Case Analysis

The case tactic can be used to do case analysis. E.g.,

case a.

transforms

Type variables: <none>

a: bool
b: bool
--
! (a /\ b) => !a \/ !b

into

28 / 110

Case Analysis

Type variables: <none>

a: bool
b: bool
--
a => ! (true /\ b) => !true \/ !b

and

Type variables: <none>

a: bool
b: bool
--
!a => ! (false /\ b) => !false \/ !b

29 / 110

Introduction Patterns: Simplify and Trivial

Including /= (resp., //, /#) in an introduction pattern means
apply simplify (resp., trivial, smt()) to all the goals
generated by applying the preceding parts of the introduction
pattern to the tactic at hand. E.g.,

case a => //.

solves the goal

Type variables: <none>

a: bool
b: bool
--
! (a /\ b) => !a \/ !b

30 / 110

The by Tactic

If t is a tactic, then

by t

means apply trivial to all of the goals (if any) generated by t,
and succeed if and only all of those goals are solved by trivial.

E.g.,

by case a.

solves the goal

Type variables: <none>

a: bool
b: bool
--
! (a /\ b) => !a \/ !b

31 / 110

Splitting Conjunctions

When a goal’s conclusion is a conjunction, if-and-only-if or equality
of tuples, it may be split into multiple subgoals using split. E.g.,
split transforms the goal

Type variables: <none>

a: bool
b: bool
not_or: ! (a \/ b)
--
!a /\ !b

into

32 / 110

Splitting Conjunctions

Type variables: <none>

a: bool
b: bool
not_or: ! (a \/ b)
--
!a

and

Type variables: <none>

a: bool
b: bool
not_or: ! (a \/ b)
--
!b

33 / 110

Splitting Conjunctions

And split transforms the goal

Type variables: <none>

a: bool
b: bool
--
! (a \/ b) <=> !a /\ !b

into

34 / 110

Splitting Conjunctions

Type variables: <none>

a: bool
b: bool
--
! (a \/ b) => !a /\ !b

and

Type variables: <none>

a: bool
b: bool
--
!a /\ !b => ! (a \/ b)

35 / 110

Splitting Conjunctions

And split transforms the goal

Type variables: <none>

x: int
x’: int
y: bool
y’: bool
eq_x_x’: x = x’
eq_y_y’: y = y’
--
(x, y) = (x’, y’)

into

36 / 110

Splitting Conjunctions

Type variables: <none>

x: int
x’: int
y: bool
y’: bool
eq_x_x’: x = x’
eq_y_y’: y = y’
--
x = x’

and

Type variables: <none>

x: int
x’: int
y: bool
y’: bool
eq_x_x’: x = x’
eq_y_y’: y = y’
--
y = y’ 37 / 110

Proving Disjunctions

The tactics left and right can be used to prove disjunctions.
E.g., left transforms the goal

Type variables: <none>

a: bool
b: bool
a_true: a
--
a \/ b

into

Type variables: <none>

a: bool
b: bool
a_true: a
--
a

38 / 110

Proving Disjunctions

And right transforms the goal

Type variables: <none>

a: bool
b: bool
b_true: b
--
a \/ b

into

Type variables: <none>

a: bool
b: bool
b_true: b
--
b

39 / 110

Proving Existentially Quantified Formulas

The tactic exists can be used to prove existentially quantified
formulas. E.g., exists (x - 1) transforms the goal

Type variables: <none>

y: int
x: int
y_eq: y = x * 2 + 1
--
exists (z : int), y - 3 = z * 2

into

Type variables: <none>

y: int
x: int
y_eq: y = x * 2 + 1
--
y - 3 = (x - 1) * 2

40 / 110

Proving Sublemmas

When working on proving a goal, one may prove and then use a
sublemma using the tactic have. E.g.,

have : a \/ b.

transforms the goal

Type variables: <none>

a: bool
b: bool
not_or: ! (a \/ b)
a_true: a
--
false

into the two subgoals

41 / 110

Proving Sublemmas

Type variables: <none>

a: bool
b: bool
not_or: ! (a \/ b)
a_true: a
--
a \/ b

and

Type variables: <none>

a: bool
b: bool
not_or: ! (a \/ b)
a_true: a
--
a \/ b => false

42 / 110

Proving Sublemmas

What comes before have is an arbitrary introduction pattern to be
applied to the second subgoal. E.g.,

have contrad : a \/ b.

transforms the goal

Type variables: <none>

a: bool
b: bool
not_or: ! (a \/ b)
a_true: a
--
false

into the two subgoals

43 / 110

Proving Sublemmas

Type variables: <none>

a: bool
b: bool
not_or: ! (a \/ b)
a_true: a
--
a \/ b

and

Type variables: <none>

a: bool
b: bool
not_or: ! (a \/ b)
a_true: a
contrad: a \/ b
--
false

44 / 110

Proving Sublemmas

When the proof of a sublemma has the form by t, where t is a
tactic, the dot at the end of the have can be omitted. E.g.,

have lt_1_3 : 1 < 3.
by trivial.

...

can be contracted to

have lt_1_3 : 1 < 3 by trivial.
...

45 / 110

Applying Lemmas

We can apply an already proven lemma using the apply tactic; it
can also be used to apply an assumption. E.g., if we’ve already
proved

lemma not_or_imp (a b : bool) : !(a \/ b) => !a /\ !b.

then running

apply (not_or_imp (x < y) (y < x)).

solves the goal

Type variables: <none>

x: int
y: int
--
! (x < y \/ y < x) => ! x < y /\ ! y < x

46 / 110

Applying Lemmas

And EasyCrypt can often infer the instantiations of the applied
lemma’s parameters. E.g., running

apply not_or_imp.

solves the goal

Type variables: <none>

x: int
y: int
--
! (x < y \/ y < x) => ! x < y /\ ! y < x

Parameters that EasyCrypt should be able to infer can be
written as _, and only instantiating some of the parameters may
sometimes suffice.

47 / 110

Applying Lemmas

Furthermore, if we’ve proved an if-and-only-iff lemma, we can
apply it in place of either the left-to-right or right-to-left
implications. E.g., if we have

lemma not_or_iff (a b : bool) : !(a \/ b) <=> !a /\ !b.

then running

apply not_or_iff.

solves the goal

Type variables: <none>

x: int
y: int
--
! (x < y \/ y < x) => ! x < y /\ ! y < x

48 / 110

Applying Lemmas

We can also apply a lemma to a goal when the conclusion of the
lemma matches the goal’s conclusion. E.g., if we have

lemma goo (x : int) :
0 <= x => x <= 10 => 0 <= 2 * x /\ 2 * x <= 20.

then

apply goo

reduces the goal

Type variables: <none>

x: int
y: int
H1: 2 <= x + y + 2
H2: x + y + 2 <= 12
--
0 <= 2 * (x + y) /\ 2 * (x + y) <= 20

to the goals
49 / 110

Applying Lemmas

Type variables: <none>

x: int
y: int
H1: 2 <= x + y + 2
H2: x + y + 2 <= 12
--
0 <= x + y

and

Type variables: <none>

x: int
y: int
H1: 2 <= x + y + 2
H2: x + y + 2 <= 12
--
x + y <= 10

50 / 110

Rewriting Equational Lemmas

If we have equational lemmas like

lemma f_eq (x : int) : f x = x + 1

where the operator f has type int -> int, we can rewrite them
in formulas using the rewrite tactic. We can also use rewrite
with assumptions that are equations.

E.g., the tactic

rewrite (f_eq x).

transforms the goal

Type variables: <none>

x: int
y: int
--
f (f x * f y) = (x + 1) * (y + 1) + 1

into
51 / 110

Rewriting Equational Lemmas

Type variables: <none>

x: int
y: int
--
f ((x + 1) * f y) = (x + 1) * (y + 1) + 1

52 / 110

Rewriting Equational Lemmas

And the tactic

rewrite (f_eq y).

transforms the goal

Type variables: <none>

x: int
y: int
--
f ((x + 1) * f y) = (x + 1) * (y + 1) + 1

into

Type variables: <none>

x: int
y: int
--
f ((x + 1) * (y + 1)) = (x + 1) * (y + 1) + 1

53 / 110

Rewriting Equational Lemmas

And the tactic

f_eq ((x + 1) * (y + 1)).

transforms the goal

Type variables: <none>

x: int
y: int
--
f ((x + 1) * (y + 1)) = (x + 1) * (y + 1) + 1

into

Type variables: <none>

x: int
y: int
--
(x + 1) * (y + 1) + 1 = (x + 1) * (y + 1) + 1

54 / 110

Rewriting Equational Lemmas

As with apply, rewrite can often infer the parameters of the
equational lemma. We can also do rewriting from right-to-left by
prepending a -. And we can combine multiple rewritings into a
single application of rewrite.

E.g., the tactic

rewrite -f_eq -f_eq -f_eq.

transforms the goal

Type variables: <none>

x: int
y: int
--
f (f x * f y) = (x + 1) * (y + 1) + 1

into

55 / 110

Rewriting Equational Lemmas

Type variables: <none>

x: int
y: int
--
f (f x * f y) = f (f x * f y)

56 / 110

Rewriting Equational Lemmas

We can also use rewrite to rewrite an if-and-only-if lemma or
assumption either forward or backward, treating it like an equation.

E.g., suppose we have proved the lemma

lemma foo (x y : int) :
x < y <=> x + 1 < y + 1.

Then

rewrite foo.

transforms the goal

Type variables: <none>

x: int
y: int
H: x + 1 + 1 < y + 1
--
x + 1 < y \/ y < x

into
57 / 110

Rewriting Equational Lemmas

Type variables: <none>

x: int
y: int
H: x + 1 + 1 < y + 1
--
x + 1 + 1 < y + 1 \/ y < x

and then

rewrite -foo.

transforms that goal back into

58 / 110

Rewriting Equational Lemmas

Type variables: <none>

x: int
y: int
H: x + 1 + 1 < y + 1
--
x + 1 < y \/ y < x

59 / 110

Rewriting Equational Lemmas

The rewrite tactic can also be used with conditional equational
lemmas like

lemma f_eq (x : int) :
0 <= x => f x = x + 1

In this case,

rewrite f_eq.

transforms the goal

Type variables: <none>

x: int
y: int
ge0_x: 0 <= x
ge0_y: 0 <= y
--
f (x + y) = x + y + 1

into
60 / 110

Rewriting Equational Lemmas

Type variables: <none>

x: int
y: int
ge0_x: 0 <= x
ge0_y: 0 <= y
--
0 <= x + y

and

Type variables: <none>

x: int
y: int
ge0_x: 0 <= x
ge0_y: 0 <= y
--
x + y + 1 = x + y + 1

61 / 110

Rewriting Equational Lemmas

We can say, e.g.,

rewrite {3}l.

to rewrite l in the current goal’s conclusion in only the third
applicable position.

We can say, e.g.,

rewrite 2!l.

to rewrite l twice. This will only be necessary when the second
opportunity for using l is exposed by the first one, or different type
variable instantiation is involved.

62 / 110

Rewriting Equational Lemmas

We can also say

rewrite l in H.

to rewrite l is the assumption H. If l is also an assumption, this
will only be allowed if l appears before H is the list of assumptions.

63 / 110

Rewriting Equational Lemmas

If an operator f has a concrete definition, e.g.,

op f(x : int) = x * 2 - 1.

Then rewrite /f substitutes f’s argument for its parameter(s) in
its body (x * 2 - 1 in this case). If f isn’t applied to arguments,
it will be replaced by the anonymous function corresponding to its
defintion. E.g., running

rewrite /f

reduces the goal

Type variables: <none>

x: int
x_eq: x = 10
--
f (x + 1) = 21

to the goal
64 / 110

Rewriting Equational Lemmas

Type variables: <none>

x: int
x_eq: x = 10
--
(x + 1) * 2 - 1 = 21

which is solved by running

by rewrite x_eq.

65 / 110

Rewriting Nonequational Lemmas

Forward rewriting can also be used with non-equational lemmas,
rewriting the conclusion of the lemma (what we get after
introducing all universally quantified variables and left sides of
implications) to true. E.g., if we have

axiom f_ax (x : int) : 3 <= x => f x.

then rewrite f ax transforms

Type variables: <none>

x: int
y: int
lt_x_y: x < y
le_3_x: 3 <= x
--
f x /\ x < y + 1

into

66 / 110

Rewriting Nonequational Lemmas

Type variables: <none>

x: int
y: int
lt_x_y: x < y
le_3_x: 3 <= x
--
3 <= x

and

Type variables: <none>

x: int
y: int
lt_x_y: x < y
le_3_x: 3 <= x
--
true /\ x < y + 1

If rewriting results in the conclusion true, then the goal is solved.
67 / 110

Rewriting Nonequational Lemmas

If, instead, the conclusion of the lemma is a negation, then the
negated formula is replaced by false in the goal’s conclusion. E.g,
if we have

axiom f_ax (x : int) : 3 <= x => ! f x.

then rewrite f ax transforms

Type variables: <none>

x: int
y: int
lt_x_y: x < y
le_3_x: 3 <= x
--
f x /\ x < y + 1

into

68 / 110

Rewriting Nonequational Lemmas

Type variables: <none>

x: int
y: int
lt_x_y: x < y
le_3_x: 3 <= x
--
3 <= x

and

Type variables: <none>

x: int
y: int
lt_x_y: x < y
le_3_x: 3 <= x
--
false \/ x < y + 1

69 / 110

Combining Conditional Rewritings

If we combine conditional lemmas l1 and l2 in a single use of
rewrite, then l2 is rewritten in the conclusion of every subgoal
generated by the rewriting of l1 in the conclusion of the original
goal.

If we only want to apply l2 to, say, the first subgoal generated by
l1, we can use

rewrite l1 1:l2.

This generalizes to a sequence of more then two rewritings, with
subsequent rewritings being applied to all unsolved goals of the
previous steps.

We can include //, /= and /# in rewriting, to apply trivial,
simplify and smt(), respectively, to all the goals generated by
previous rewriting steps.

70 / 110

Combining Conditional Rewritings

For example, running

rewrite H3.

reduces the goal

Type variables: <none>

a: bool
b: bool
c: bool
d: bool
H1: b
H2: a
H3: c => a => d
H4: b => c
--
d

to the goals

71 / 110

Combining Conditional Rewritings

Type variables: <none>

a: bool
b: bool
c: bool
d: bool
H1: b
H2: a
H3: c => a => d
H4: b => c
--
c

and

72 / 110

Combining Conditional Rewritings

Type variables: <none>

a: bool
b: bool
c: bool
d: bool
H1: b
H2: a
H3: c => a => d
H4: b => c
--
a

73 / 110

Combining Conditional Rewritings

Because rewrite H4 is only applicable to the first of these
subgoals, the following rewriting won’t work:

rewrite H3 H4.

On the other hand

rewrite H3 1:H4.

works, as it only applies rewrite H4 to the first subgoal generated
by rewrite H3.

74 / 110

Rewriting Via an Introduction Pattern

We can use -> and <- in an introduction pattern when a goal’s
conclusion is an implication whose left-hand-side is an equation, to
be rewritten in the right-hand-side of the implication. The
equation is rewritten in the forward direction with ->, and in the
backward direction with <-.

E.g., move => -> transforms

Type variables: <none>

x: int
y: int
--
x = y + 1 => x + 1 = y + 2

into

75 / 110

Rewriting Via an Introduction Pattern

Type variables: <none>

x: int
y: int
--
y + 1 + 1 = y + 2

Using, e.g., {2}-> or {3}<- allows us to say which occurrences we
want to rewrite.

76 / 110

Rewriting Via an Introduction Pattern

And we can also use -> for non-equational rewriting, rewriting the
left-hand-side of an implication to true, or—in the case when the
left-hand-side is a negated formula—rewriting the formula to
false.

77 / 110

Rewriting Via an Introduction Pattern

E.g.,

move => ->.

transforms

Type variables: <none>

a: bool
b: bool
--
a => a \/ b

into

Type variables: <none>

a: bool
b: bool
--
true \/ b

78 / 110

Rewriting Via an Introduction Pattern

And

move => ->.

transforms

Type variables: <none>

a: bool
b: bool
--
!a => a => b

into

Type variables: <none>

a: bool
b: bool
--
false => b

79 / 110

Progress

The progress tactic uses other tactics like application of
introduction patterns and split to reduce the current goal to one
of more subgoals. E.g., progress reduces

Type variables: <none>

k’: int
n’: int
n: int
r: int
k: int
--
(0 < k’ /\ n’ ^ k’ * r = n ^ k) /\ 1 < k’ /\ f k’ =>
0 < g k’ 2 /\ (n’ * n’) ^ g k’ 2 * r = n ^ k

to the two subgoals

80 / 110

Progress

Type variables: <none>

k’: int
n’: int
n: int
r: int
k: int
H: 0 < k’
H0: n’ ^ k’ * r = n ^ k
H1: 1 < k’
H2: f k’
--
0 < g k’ 2

and

81 / 110

Progress

Type variables: <none>

k’: int
n’: int
n: int
r: int
k: int
H: 0 < k’
H0: n’ ^ k’ * r = n ^ k
H1: 1 < k’
H2: f k’
--
(n’ * n’) ^ g k’ 2 * r = n ^ k

It sometimes happens that one or more of the subgoals generated
by progress is not solvable, even though the original goal was
solvable by another approach. Furthermore, if you want progress
to treat concrete operators as opague (i.e., not to replace them by
their definitions), you can run progress [-delta].

82 / 110

Crush

An alternative to progress is to use the introduction pattern />,
which is pronouced “crush” (there is also a version that treats
concrete operators as opaque: |>). Instead of generating multiple
goals, it always give us a single one, which is solvable
if-and-only-iff the original goal was.

E.g., move => /> reduces

Type variables: <none>

k’: int
n’: int
n: int
r: int
k: int
--
0 < k’ /\ n’ ^ k’ * r = n ^ k =>
1 < k’ /\ f k’ =>
0 < g k’ 2 /\ (n’ * n’) ^ g k’ 2 * r = n ^ k

to the goal
83 / 110

Crush

Type variables: <none>

k’: int
n’: int
n: int
r: int
k: int
--
0 < k’ =>
n’ ^ k’ * r = n ^ k =>
1 < k’ =>
f k’ =>
0 < g k’ 2 /\ (n’ * n’) ^ g k’ 2 * r = n ^ k

84 / 110

Eliminating Multiple Conjunctions

There is also an introduction pattern [#] which simply eliminates
multiple conjunctions in the left side of the implication being
proved. E.g., move => [#] reduces

Type variables: <none>

k’: int
n’: int
n: int
r: int
k: int
--
(0 < k’ /\ n’ ^ k’ * r = n ^ k) /\ 1 < k’ /\ f k’ =>
0 < g k’ 2 /\ (n’ * n’) ^ g k’ 2 * r = n ^ k

to the goal

85 / 110

Eliminating Multiple Conjunctions

Type variables: <none>

k’: int
n’: int
n: int
r: int
k: int
--
0 < k’ =>
n’ ^ k’ * r = n ^ k =>
1 < k’ =>
f k’ =>
0 < g k’ 2 /\ (n’ * n’) ^ g k’ 2 * r = n ^ k

You can also use [#] when the assumption is the equality between
a pair of tuples.

86 / 110

Sequencing Tactics

If t1 and t2 are tactics, then t1;t2 applies t2 to all the subgoals
(if any) generated by running t1. This will fail if running t2 on
even one of those subgoals fails. Sequencing groups to the left, so
that t1;t2;t3 means (t1;t2);t3.

E.g., t;trivial applies trivial to every subgoal generated by
running t. Because trivial never fails, this is always safe.

If we need to run different tactics on each of the subgoals
generated by t1, this is also possible. E.g., suppose it generates
three subgoals, and we want to run t2,1 on the first subgoal, t2,2
on the second subgoal, and t2,3 on the third subgoal, we can write
t1; [t2,1 | t2,2 | t2,3].

And idtac is the identity tactic, which does nothing—which is
useful when we don’t want to apply any tactic to one of the
subgoals.

87 / 110

Sequencing Tactics

For example, running

apply H; [apply a_true | apply b_true].

solves the goal

Type variables: <none>

a: bool
b: bool
c: bool
H: a => b => c
a_true: a
b_true: b
--
c

88 / 110

Case Analysis on Structured Data

The case tactic can also be used to do case analysis on structured
data, like tuples. E.g., running

case x.

transforms the goal

Type variables: <none>

x: int * int * int
--
f x = 0 => x.‘1 = 0 \/ x.‘2 = 0 \/ x.‘3 = 0

to the goal

Type variables: <none>

--
forall (x1 x2 x3 : int),
f (x1, x2, x3) = 0 =>
(x1, x2, x3).‘1 = 0 \/
(x1, x2, x3).‘2 = 0 \/ (x1, x2, x3).‘3 = 0

89 / 110

Case Analysis on Structured Data

from which running

move => x1 x2 x3.

gives us the goal

Type variables: <none>

x1: int
x2: int
x3: int
--
f (x1, x2, x3) = 0 =>
(x1, x2, x3).‘1 = 0 \/
(x1, x2, x3).‘2 = 0 \/ (x1, x2, x3).‘3 = 0

90 / 110

Moving Assumptions back to the Goal’s Conclusion

Sometimes it’s useful to move assumptions back to the goal’s
conclusion. E.g., if we are trying to prove

Type variables: <none>

x: int
y: int
z: int
ge0_y: 0 <= y
ge0_z: 0 <= z
--
x ^ (y + z) = x ^ y * x ^ z

We can run

move : y ge0_y

to get the goal

91 / 110

Moving Assumptions back to the Goal’s Conclusion

Type variables: <none>

x: int
z: int
ge0_z: 0 <= z
--
forall (y : int),
0 <= y => x ^ (y + z) = x ^ y * x ^ z

This is now in the right form to prove by mathematical induction,
given that z need not be varied in the induction.

92 / 110

Using Induction Principles

Various EasyCrypt theories provide induction principles. E.g.,
Int gives the principle of mathematical induction in the form of
the lemma:

lemma intind (p : int -> bool) :
p 0 =>
(forall (i : int), 0 <= i => p i => p (i + 1)) =>
forall (i : int), 0 <= i => p i.

To apply intind, our goal’s conclusion must have the form

forall (i : int), 0 <= i => p i.

for some instantiation of p and i. Thus we may first need to
massage our actual goal into this form.

93 / 110

Using Induction Principles

For example, if we run the tactic

elim /intind.

this will reduce the goal

Type variables: <none>

x: int
z: int
ge0_z: 0 <= z
--
forall (y : int),
0 <= y => x ^ (y + z) = x ^ y * x ^ z

into the goals

94 / 110

Using Induction Principles

Type variables: <none>

x: int
z: int
ge0_z: 0 <= z
--
x ^ (0 + z) = x ^ 0 * x ^ z

(the basis step) and

95 / 110

Using Induction Principles

Type variables: <none>

x: int
z: int
ge0_z: 0 <= z
--
forall (i : int),
0 <= i =>
x ^ (i + z) = x ^ i * x ^ z =>
x ^ (i + 1 + z) = x ^ (i + 1) * x ^ z

(the inductive step). When proving the inductive step, we run

move => i ge0_i IH.

to get the goal

96 / 110

Using Induction Principles

Type variables: <none>

x: int
z: int
ge0_z: 0 <= z
i: int
ge0_i: 0 <= i
IH: x ^ (i + z) = x ^ i * x ^ z
--
x ^ (i + 1 + z) = x ^ (i + 1) * x ^ z

Here IH is the inductive hypothesis.

97 / 110

Abstract Types

EasyCrypt lets us define abstract types and operators over those
types, and to state axioms involving those operators and types.
E.g., we can say

type t.
op f : t -> t.
axiom ax (x : t) :
f x = f (f x).

Lemmas that we then prove will be valid for any instantiation of
the types and operators that satisfy the axioms.

98 / 110

Concrete Datatypes

We can also define concrete datatypes, by listing their
constructors. E.g., we can define a datatype of binary trees whose
leaves are labeled by values of type ’a and internal nodes are
labeled by values of type ’b:

type (’a, ’b) tree = [
| Leaf of ’a
| Node of ’b * (’a, ’b) tree * (’a, ’b) tree].

Then

op x = Node 3 (Leaf false) (Node 2 (Leaf true) (Leaf false)).

is a (bool, int) tree whose root node is labeled by 3, with a
left child consisting of a leaf labeled by false, and where the right
child is a tree whose root node is labeled by 2, and with left and
right children consisting of leaves labeled by true and false,
respectively.

99 / 110

Concrete Datatypes

We can then recursively define the size of a tree by

op size (tr : (’a, ’b) tree) : int =
with tr = Leaf x => 1
with tr = Node y tr1 tr2 => size tr1 + size tr2.

Because x and y are not used, they could be replaced by the
wildcard .

EasyCrypt gives us a structural induction principle for our
datatype for free. E.g., given the goal

Type variables: ’a, ’b

--
forall (tr : (’a, ’b) tree), 0 <= size tr

running

elim.

gives us the goals
100 / 110

Concrete Datatypes

Type variables: ’a, ’b

--
forall (x : ’a), 0 <= size (Leaf x)

(which can be solved using trivial) and

101 / 110

Concrete Datatypes

Type variables: ’a, ’b

--
forall (x : ’b) (t t0 : (’a, ’b) tree),
0 <= size t =>
0 <= size t0 => 0 <= size (Node x t t0)

The proof of this second goal can begin with running

move => x tr1 tr2 IH_tr1 IH_tr2.

which gives us the goal

102 / 110

Concrete Datatypes

Type variables: ’a, ’b

x: ’b
tr1: (’a, ’b) tree
tr2: (’a, ’b) tree
IH_tr1: 0 <= size tr1
IH_tr2: 0 <= size tr2
--
0 <= size (Node x tr1 tr2)

The next step should be

simplify.

which will give us the goal

103 / 110

Concrete Datatypes

Type variables: ’a, ’b

x: ’b
tr1: (’a, ’b) tree
tr2: (’a, ’b) tree
IH_tr1: 0 <= size tr1
IH_tr2: 0 <= size tr2
--
0 <= size tr1 + size tr2

The goal could then be solved, e.g., by running

smt().

104 / 110

Concrete Datatypes

Given goal

Type variables: ’a, ’b

tr: (’a, ’b) tree
--
0 <= size tr

we don’t need to first run

move : x.

Instead, we can directly run

elim tr.

105 / 110

Combining Multiple Inequalities and Using && and ||

We can chain together multiple occurrences of < and <=, as in

x < y <= z < w

which is logically equivalent to

x < y /\ y <= z /\ z < w

Actually, it’s an abbreviation for

x < y && y <= z && z < w

These alternative conjunctions are equivalent to the usual ones
(and we also have the alternative disjuction ||), but
EasyCrypt’s tactics treat them slightly differently.

When proving a && b using split, we get a goal for proving a as
usual. But the goal for proving b gives us a as an assumption to
help us.

106 / 110

Combining Multiple Inequalities and Using && and ||

For example, running

move => [lt_x_y lt_y_z].

transforms the goal

Type variables: <none>

x: int
y: int
z: int
--
x < y && y < z => x + 1 < y + 1 && y + 1 <= z

into

107 / 110

Combining Multiple Inequalities and Using && and ||

Type variables: <none>

x: int
y: int
z: int
lt_x_y: x < y
lt_y_z: y < z
--
x + 1 < y + 1 && y + 1 <= z

from which running

split.

gives us the goals

108 / 110

Combining Multiple Inequalities and Using && and ||

Type variables: <none>

x: int
y: int
z: int
lt_x_y: x < y
lt_y_z: y < z
--
x + 1 < y + 1

and

109 / 110

Combining Multiple Inequalities and Using && and ||

Type variables: <none>

x: int
y: int
z: int
lt_x_y: x < y
lt_y_z: y < z
--
x + 1 < y + 1 => y + 1 <= z

(in this case the left-hand-side of the implication doesn’t help us
prove the right-hand-side).

The following lemmas let us go back and forth between the
alternative conjunction and disjunction and the standard ones:

lemma oraE : forall (a b : bool), a || b <=> a \/ b.
lemma andaE : forall (a b : bool), a && b <=> a /\ b.

110 / 110

