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® is mostly functional

® imperative features, but downplayed
® data structures immutable, so sharing happens automatically

® has a powerful module language
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Compilers

There are two main compilers available:
e Standard ML of New Jersey (SML/NJ):

® interactive front end

® excellent support for separate compilation using the
Compilation Manager (CM)

® generates heap images, which can be loaded into executables

e MLton:
® whole program optimizing compiler
® generates executables
® development normally done using SML/NJ
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Eramples

These slides and the code for my examples—plus links to more
resources on Standard ML—are available on the web at:

https://alleystoughton.us/getting-started-typed-fp-sml
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The key to generating primes semi-efficiently is this fact:
Suppose n € N js at least 2. Then n is prime iff there is
no m € N such that

®* m< n,
® n is divisible by m, and
® m is prime.

This holds because every natural number n > 2 can be expressed
(uniquely) as a product of prime numbers (assuming n is not
prime, these prime numbers will be < n).
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So to test whether n > 2 is prime, we can work through the prime
numbers smaller than n, from smallest to largest, rejecting n as
soon as we find a divisor of n.

Furthermore, as soon as we get to a prime m such that m* m > n,
we can stop and accept n, because if n had a prime divisor p such
that m < p < n, then it would also have a prime divisor less-than
m, and so would already have been rejected.
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Primes in C

void gen_primes(int n, int *primes) {
int i, j;
int next = 2; /* next candidate */
for (i = 0; i < n; i++) {
int found = 0O;
while (!found) {
for (j = 0; j < i; j++) {
int p = primes[j];
if (next % p == 0) { break; }
else if (p * p > next) { j = i; break; }
}
if (j == i) { found = 1; }
else { next++; }
}
primes[i] = next++;
}
}
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Primes in SML: I

fun next(ms, 1) =
if List.exists (fnm => 1 mod m = 0) ms

then next(ms, 1 + 1)
else 1

fun prs 0 = nil

| prs 1 = [2]
| prs n =
let val ms = prs(n - 1)
in next(ms, hd ms + 1) :: ms end

fun primes n = rev(prs n)
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Primes in SML: II

fun next(ms, 1) =

if List.exists (fnm => 1 mod m = 0) ms
then next(ms, 1 + 1)

else 1

fun prs(n, i, ms)
if i =n
then rev ms
else prs(n,

fun primes n = if

i + 1, next(ms, hd ms + 1) :: ms)

= 0 then nil else prs(m, 1, [2])
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Primes in SML: 11

false

fun divisible(_, nil)
| divisible(l, m :: ms) =
1 mod m = 0 orelse
(m * m < 1 andalso divisible(1l, ms))

fun next(ms, 1) =
if divisible(1l, ms)
then next(ms, 1 + 1)
else 1

fun prs(n, i, ms, m)
if i =n
then ms
else let val k = next(ms, m + 1)
in prs(n, i + 1, ms @ [k], k) end

fun primes n = if n = 0 then nil else prs(n, 1, [2], 2)
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Primes in SML: IV

fun divisible(_, nil) false
| divisible(l, m :: ms) =
1 mod m = 0 orelse

(m * m < 1 andalso divisible(1l, ms))

fun next(ms, p, 1ls, k) =
let val (ms, p, ls) =
if null 1s orelse p >= k
then (ms, p, 1ls)
else (ms @ rev 1s, hd 1s * hd 1ls, nil)
in if divisible(k, ms)
then next(ms, p, 1ls, k + 1)
else (ms, p, ls, k)
end
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else (ms @ rev 1s, hd 1s * hd 1ls, nil)
in if divisible(k, ms)
then next(ms, p, 1ls, k + 1)
else (ms, p, ls, k)
end

The reorganization of ms/1s only happens rarely; e.g, when
generating the first 5,000,000 primes, the reorganization only
happens five times (when k is 5, 10, 50, 2210 or 4870850).
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Primes in SML: IV

fun prs(n, i, ms, p, 1s, k) =
if i =n
then ms @ rev ls
else let val (ms, p, 1ls, k) = next(ms, p, 1ls, k + 1)
in prs(n, i + 1, ms, p, k :: 1s, k) end

fun primes n =
if n = O then nil else prs(m, 1, [2], 4, [1, 2)
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Primes in SML: V

signature PRIMES =
sig

val primes : int -> int list

end;
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Primes in SML: V

structure Primes :> PRIMES =

struct
fun divisible(_, nil) = false
| divisible(l, m :: ms) =

1 mod m = 0 orelse
(m * m < 1 andalso divisible(l, ms))

fun next(ms, p, ls, k) =
let val (ms, p, ls) =
if null 1s orelse p >= k
then (ms, p, 1s)
else (ms @ rev 1s, hd 1s * hd 1ls, nil)
in if divisible(k, ms)
then next(ms, p, ls, k + 1)
else (ms, p, 1ls, k)
end
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Primes in SML: V

fun prs(n, i, ms, p, 1s, k) =
if i =n
then ms @ rev ls
else let val (ms, p, 1ls, k) = next(ms, p, 1ls, k + 1)
in prs(n, i + 1, ms, p, k :: 1s, k) end

fun primes n =
if n = O then nil else prs(m, 1, [2], 4, [1, 2)

end;
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Comparison Generating First 5,000,000 Primes

$ time primes-gcc 5000000 > /tmp/primes-gcc

real Om16.989s

user Om16.804s

sys OmO.058s

$ time primes-smlnj 5000000 > /tmp/primes-smlnj

real 1m12.238s

user 1m10.816s

sys Oml.360s

$ time primes-mlton 5000000 > /tmp/primes-mlton

real Om49.371s

user Om48.896s
sys Om0.376s
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Comparison Generating First 5,000,000 Primes

$ cmp /tmp/primes-gcc /tmp/primes-smlnj
$ cmp /tmp/primes-smlnj /tmp/primes-mlton
$ wc -1 /tmp/primes-mlton

5000000 /tmp/primes-mlton

$ tail /tmp/primes-mlton

86027987

86027999

86028011

86028037

86028049

86028053

86028097

86028101

86028113

86028121
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Primes in SML:

signature PRIMES =
sig

type state
val init : state
val next : state -> int * state

end;

VI

31/49



Primes in SML: VI

structure Primes :> PRIMES =
struct

type state = int list * int * int list * int

(* invariant on state of the form (ms, p, 1ls, k):
ms @ rev 1s is the first length ms + length ns
primes in ascending order, ms is nonempty,

p is the square of the last element of ms, and
k is the last element of ms @ rev 1ls *)

val init = ([2], 4, [, 2)

fun divisible(_, nil) = false
| divisible(l, m :: ms) =
1l mod m = 0 orelse
(m * m < 1 andalso divisible(l, ms))
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fun nxt(ms, p, 1ls, k) =
let val (ms, p, ls) =
if null 1s orelse p >= k
then (ms, p, 1s)
else (ms @ rev 1ls, hd 1s * hd 1ls, nil)
in if divisible(k, ms)
then nxt(ms, p, 1s, k + 1)
else (ms, p, ls, k)
end

fun next ((ms, p, 1s, k) : state) : int * state =
(k,
let val (ms, p, ls, k) = nxt(ms, p, 1s, k + 1)
in (ms, p, k :: 1s, k) end)

end;
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val n = 2 : int

val st = - : Primes.state
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val n = 3 : int

val st = - : Primes.state
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- val (n, st) = Primes.next Primes.init;
val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 3 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 5 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 7 : int
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- val (n, st) = Primes.next Primes.init;
val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 3 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 5 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 7 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
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- val (n, st) = Primes.next Primes.init;
val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 3 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 5 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 7 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 11 : int

val st = - : Primes.state
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Streams

Can we create an infinite list (stream) of all (until we have integer
overflow) primes like this?

fun g state =
let (x, state) = Primes.next state
in x :: g state end;

val primes = g Primes.init;
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Streams

Can we create an infinite list (stream) of all (until we have integer
overflow) primes like this?

fun g state =
let (x, state) = Primes.next state
in x :: g state end;

val primes = g Primes.init;

No, only with lazy evaluation, where infinite streams can be
created, and the part of a stream that is visited is memoized.

We can simulate lazy evaluation in SML using thunks and
references.
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Suspensions

signature SUSP =
sig

type ’a susp
val delay : (unit -> ’a) -> ’a susp
val force : ’a susp -> ’a

end

The only value of type unit is ().
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References

type ’a ref

val ref : ’a -> ’a ref

val ! : aref > ’a

val := : ’a ref * ’a -> unit
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- val r

References

= ref 10;
ref 10 : int ref

= 10 : int
'r + 1;

= () : unit
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Suspensions

structure Susp :> SUSP =
struct

datatype ’a delay = Value of ’a
| Delay of unit -> ’a

type ’a susp = ’a delay ref

fun delay f = ref(Delay f)

]
»

fun force(ref (Value x))
| force(r as ref(Delay f))
let val x = f()
in r := Value x; x end

end;
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Streams

signature STREAM =
sig

type ’a stream

val make : ’a * (’a -> ’b * ’a) -> ’b stream

val get : ’a stream -> ’a * ’a stream

val takeTolList : ’a stream * int -> ’a list

val drop : ’a stream * int -> ’a stream

val rangeTolList : ’a stream * int * int -> ’a list
end;
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Streams

Stream O

Value(xo, Stream O ) ‘

—

Value(x , Stream O ) ‘

—

Delay(fn() =>---) ‘
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Streams

structure Stream :> STREAM =
struct

datatype ’a stream = Stream of (’a * ’a stream)Susp.susp

fun make(state, f)
let fun g state =

Stream
(Susp.delay
(fn O =

let val (x, state) = f state
in (x, g state) end))
in g state end

fun get(Stream x) = Susp.force x
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Streams

fun takeToList(stm, n) =
let fun tke(stm, n, xs) =
if n <= 0
then rev xs

else let val (x, stm) = get stm

in tke(stm, n -
in tke(stm, n, nil) end

fun drop(stm, n) =
if n <=0
then stm
else let val (_, stm) = get stm
in drop(stm, n - 1) end

1, x

:: xs) end
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Streams

fun rangeToList(stm, n, m) =
if n <= 0 orelse m < n
then nil
else takeTolList(drop(stm, n - 1), m - n + 1)

end;
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- Stream.rangeToList(primes, 1, 10);

val it = [2,3,5,7,11,13,17,19,23,29] : int list

- Stream.rangeToList(primes, 50000, 50010) ;

val it =
[611953,611957,611969,611977,611993,611999,612011,
612023,612037,612041,612043] : int list

- Stream.rangeToList(primes, 40000, 40010);

val it =
[479909,479939,479951,479953,479957,479971,480013,
480017,480019,480023,480043] : int list
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Twin primes are primes that are separated by 2, like 3/5, 5/7 and
11/13. We can write a stream transformer that turns the stream
of all primes into the stream of all twin pairs:
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Twin primes are primes that are separated by 2, like 3/5, 5/7 and
11/13. We can write a stream transformer that turns the stream
of all primes into the stream of all twin pairs:

signature TWINS =
sig

val twins : int Stream.stream -> (int * int) Stream.stream

end;
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Primes in SML: VI

structure Twins :> TWINS =
struct

fun twins stm =
let val init : int * int Stream.stream =

Stream.get stm

fun next (n, stm) =
let val (m, stm) = Stream.get stm
in ifm=n + 2
then ((n, m), (m, stm))
else next (m, stm)
end
in Stream.make(init, next) end

end;
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(int * int) list
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- val twins = Twins.twins primes;

val twins = - : (int * int) Stream.stream
- Stream.rangeToList(twins, 1, 10);
val it =

[(3,5),(5,7),(11,13),(17,19),(29,31), (41,43),
(59,61),(71,73),(101,103),(107,109)] :
(int * int) list
- Stream.rangeToList(twins, 10000, 10010);
val it =
[(1260989,1260991), (1261079, 1261081),
(1261259,1261261), (1261487,1261489) ,
(1261697,1261699) , (1261829, 1261831) ,
(1261889,1261891) , (1262081, 1262083) ,
(1262099,1262101), (1262291, 1262293) ,
(1262621,1262623)] : (int * int) list
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