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• uses eager evaluation (but lazy evaluation can be simulated)

• is mostly functional
• imperative features, but downplayed
• data structures immutable, so sharing happens automatically

• has a powerful module language

• has moderately good libraries
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• Standard ML of New Jersey (SML/NJ):
• interactive front end
• excellent support for separate compilation using the

Compilation Manager (CM)
• generates heap images, which can be loaded into executables

• MLton:
• whole program optimizing compiler
• generates executables
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Examples

These slides and the code for my examples—plus links to more
resources on Standard ML—are available on the web at:

https://alleystoughton.us/getting-started-typed-fp-sml
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The key to generating primes semi-efficiently is this fact:

Suppose n ∈ N is at least 2. Then n is prime iff there is

no m ∈ N such that

• m < n,
• n is divisible by m, and
• m is prime.

This holds because every natural number n ≥ 2 can be expressed
(uniquely) as a product of prime numbers (assuming n is not
prime, these prime numbers will be < n).
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So to test whether n ≥ 2 is prime, we can work through the prime
numbers smaller than n, from smallest to largest, rejecting n as
soon as we find a divisor of n.

Furthermore, as soon as we get to a prime m such that m ∗m > n,
we can stop and accept n, because if n had a prime divisor p such
that m ≤ p < n, then it would also have a prime divisor less-than
m, and so would already have been rejected.
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Primes in C

void gen_primes(int n, int *primes) {

int i, j;

int next = 2; /* next candidate */

for (i = 0; i < n; i++) {

int found = 0;

while (!found) {

for (j = 0; j < i; j++) {

int p = primes[j];

if (next % p == 0) { break; }

else if (p * p > next) { j = i; break; }

}

if (j == i) { found = 1; }

else { next++; }

}

primes[i] = next++;

}

}
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Primes in SML: I

fun next(ms, l) =

if List.exists (fn m => l mod m = 0) ms

then next(ms, l + 1)

else l

fun prs 0 = nil

| prs 1 = [2]

| prs n =

let val ms = prs(n - 1)

in next(ms, hd ms + 1) :: ms end

fun primes n = rev(prs n)
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Primes in SML: II

fun next(ms, l) =

if List.exists (fn m => l mod m = 0) ms

then next(ms, l + 1)

else l

fun prs(n, i, ms) =

if i = n

then rev ms

else prs(n, i + 1, next(ms, hd ms + 1) :: ms)

fun primes n = if n = 0 then nil else prs(n, 1, [2])
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Primes in SML: III

fun divisible(_, nil) = false

| divisible(l, m :: ms) =

l mod m = 0 orelse

(m * m < l andalso divisible(l, ms))

fun next(ms, l) =

if divisible(l, ms)

then next(ms, l + 1)

else l

fun prs(n, i, ms, m) =

if i = n

then ms

else let val k = next(ms, m + 1)

in prs(n, i + 1, ms @ [k], k) end

fun primes n = if n = 0 then nil else prs(n, 1, [2], 2)
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Primes in SML: IV

fun divisible(_, nil) = false

| divisible(l, m :: ms) =

l mod m = 0 orelse

(m * m < l andalso divisible(l, ms))

fun next(ms, p, ls, k) =

let val (ms, p, ls) =

if null ls orelse p >= k

then (ms, p, ls)

else (ms @ rev ls, hd ls * hd ls, nil)

in if divisible(k, ms)

then next(ms, p, ls, k + 1)

else (ms, p, ls, k)

end
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end

The reorganization of ms/ls only happens rarely; e.g, when
generating the first 5,000,000 primes, the reorganization only
happens five times (when k is 5, 10, 50, 2210 or 4870850).
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Primes in SML: IV

fun prs(n, i, ms, p, ls, k) =

if i = n

then ms @ rev ls

else let val (ms, p, ls, k) = next(ms, p, ls, k + 1)

in prs(n, i + 1, ms, p, k :: ls, k) end

fun primes n =

if n = 0 then nil else prs(n, 1, [2], 4, [], 2)
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Primes in SML: V

signature PRIMES =

sig

val primes : int -> int list

end;
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Primes in SML: V

structure Primes :> PRIMES =

struct

fun divisible(_, nil) = false

| divisible(l, m :: ms) =

l mod m = 0 orelse

(m * m < l andalso divisible(l, ms))

fun next(ms, p, ls, k) =

let val (ms, p, ls) =

if null ls orelse p >= k

then (ms, p, ls)

else (ms @ rev ls, hd ls * hd ls, nil)

in if divisible(k, ms)

then next(ms, p, ls, k + 1)

else (ms, p, ls, k)

end
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Primes in SML: V

fun prs(n, i, ms, p, ls, k) =

if i = n

then ms @ rev ls

else let val (ms, p, ls, k) = next(ms, p, ls, k + 1)

in prs(n, i + 1, ms, p, k :: ls, k) end

fun primes n =

if n = 0 then nil else prs(n, 1, [2], 4, [], 2)

end;
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Comparison Generating First 5,000,000 Primes

$ time primes-gcc 5000000 > /tmp/primes-gcc

real 0m16.989s

user 0m16.804s

sys 0m0.058s

$ time primes-smlnj 5000000 > /tmp/primes-smlnj

real 1m12.238s

user 1m10.816s

sys 0m1.360s

$ time primes-mlton 5000000 > /tmp/primes-mlton

real 0m49.371s

user 0m48.896s

sys 0m0.376s
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Comparison Generating First 5,000,000 Primes

$ cmp /tmp/primes-gcc /tmp/primes-smlnj

$ cmp /tmp/primes-smlnj /tmp/primes-mlton

$ wc -l /tmp/primes-mlton

5000000 /tmp/primes-mlton

$ tail /tmp/primes-mlton

86027987

86027999

86028011

86028037

86028049

86028053

86028097

86028101

86028113

86028121
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Primes in SML: VI

signature PRIMES =

sig

type state

val init : state

val next : state -> int * state

end;
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Primes in SML: VI

structure Primes :> PRIMES =

struct

type state = int list * int * int list * int

(* invariant on state of the form (ms, p, ls, k):

ms @ rev ls is the first length ms + length ns

primes in ascending order, ms is nonempty,

p is the square of the last element of ms, and

k is the last element of ms @ rev ls *)

val init = ([2], 4, [], 2)

fun divisible(_, nil) = false

| divisible(l, m :: ms) =

l mod m = 0 orelse

(m * m < l andalso divisible(l, ms))
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Primes in SML: VI

fun nxt(ms, p, ls, k) =

let val (ms, p, ls) =

if null ls orelse p >= k

then (ms, p, ls)

else (ms @ rev ls, hd ls * hd ls, nil)

in if divisible(k, ms)

then nxt(ms, p, ls, k + 1)

else (ms, p, ls, k)

end

fun next ((ms, p, ls, k) : state) : int * state =

(k,

let val (ms, p, ls, k) = nxt(ms, p, ls, k + 1)

in (ms, p, k :: ls, k) end)

end;
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-
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- val (n, st) = Primes.next Primes.init;
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- val (n, st) = Primes.next Primes.init;

val n = 2 : int
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- val (n, st) = Primes.next Primes.init;

val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 3 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 5 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
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Primes in SML: VI

- val (n, st) = Primes.next Primes.init;

val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 3 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 5 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 7 : int

val st = - : Primes.state
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Primes in SML: VI

- val (n, st) = Primes.next Primes.init;

val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 3 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 5 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 7 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 11 : int

val st = - : Primes.state
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Streams

Can we create an infinite list (stream) of all (until we have integer
overflow) primes like this?

fun g state =

let (x, state) = Primes.next state

in x :: g state end;

val primes = g Primes.init;
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Streams

Can we create an infinite list (stream) of all (until we have integer
overflow) primes like this?

fun g state =

let (x, state) = Primes.next state

in x :: g state end;

val primes = g Primes.init;

No, only with lazy evaluation, where infinite streams can be
created, and the part of a stream that is visited is memoized.

We can simulate lazy evaluation in SML using thunks and
references.
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Suspensions

signature SUSP =

sig

type ’a susp

val delay : (unit -> ’a) -> ’a susp

val force : ’a susp -> ’a

end

The only value of type unit is ().
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References

type ’a ref

val ref : ’a -> ’a ref

val ! : ’a ref -> ’a

val := : ’a ref * ’a -> unit
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Suspensions

structure Susp :> SUSP =

struct

datatype ’a delay = Value of ’a

| Delay of unit -> ’a

type ’a susp = ’a delay ref

fun delay f = ref(Delay f)

fun force(ref(Value x)) = x

| force(r as ref(Delay f)) =

let val x = f()

in r := Value x; x end

end;
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Streams

signature STREAM =

sig

type ’a stream

val make : ’a * (’a -> ’b * ’a) -> ’b stream

val get : ’a stream -> ’a * ’a stream

val takeToList : ’a stream * int -> ’a list

val drop : ’a stream * int -> ’a stream

val rangeToList : ’a stream * int * int -> ’a list

end;
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Streams

)

Stream

Delay(fn () => · · · )

Value(x1, Stream )

Value(x0, Stream
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Streams

structure Stream :> STREAM =

struct

datatype ’a stream = Stream of (’a * ’a stream)Susp.susp

fun make(state, f) =

let fun g state =

Stream

(Susp.delay

(fn () =>

let val (x, state) = f state

in (x, g state) end))

in g state end

fun get(Stream x) = Susp.force x
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Streams

fun takeToList(stm, n) =

let fun tke(stm, n, xs) =

if n <= 0

then rev xs

else let val (x, stm) = get stm

in tke(stm, n - 1, x :: xs) end

in tke(stm, n, nil) end

fun drop(stm, n) =

if n <= 0

then stm

else let val (_, stm) = get stm

in drop(stm, n - 1) end
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Streams

fun rangeToList(stm, n, m) =

if n <= 0 orelse m < n

then nil

else takeToList(drop(stm, n - 1), m - n + 1)

end;
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- Stream.rangeToList(primes, 1, 10);

val it = [2,3,5,7,11,13,17,19,23,29] : int list

- Stream.rangeToList(primes, 50000, 50010);

val it =

[611953,611957,611969,611977,611993,611999,612011,

612023,612037,612041,612043] : int list

- Stream.rangeToList(primes, 40000, 40010);

val it =

[479909,479939,479951,479953,479957,479971,480013,

480017,480019,480023,480043] : int list
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Primes in SML: VI

Twin primes are primes that are separated by 2, like 3/5, 5/7 and
11/13. We can write a stream transformer that turns the stream
of all primes into the stream of all twin pairs:
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Twin primes are primes that are separated by 2, like 3/5, 5/7 and
11/13. We can write a stream transformer that turns the stream
of all primes into the stream of all twin pairs:

signature TWINS =

sig

val twins : int Stream.stream -> (int * int) Stream.stream

end;
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Primes in SML: VI

structure Twins :> TWINS =

struct

fun twins stm =

let val init : int * int Stream.stream =

Stream.get stm

fun next (n, stm) =

let val (m, stm) = Stream.get stm

in if m = n + 2

then ((n, m), (m, stm))

else next (m, stm)

end

in Stream.make(init, next) end

end;
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- Stream.rangeToList(twins, 1, 10);

val it =
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Primes in SML: VI

- val twins = Twins.twins primes;

val twins = - : (int * int) Stream.stream

- Stream.rangeToList(twins, 1, 10);

val it =

[(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),

(59,61),(71,73),(101,103),(107,109)] :

(int * int) list

- Stream.rangeToList(twins, 10000, 10010);

val it =

[(1260989,1260991),(1261079,1261081),

(1261259,1261261),(1261487,1261489),

(1261697,1261699),(1261829,1261831),

(1261889,1261891),(1262081,1262083),

(1262099,1262101),(1262291,1262293),

(1262621,1262623)] : (int * int) list
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