Getting Started with Typed Functional
Programmang Using Standard ML

Alley Stoughton

Spring 2022

1/49



Standard ML
Standard ML:

«F
2/49



Standard ML

Standard ML:
® is strongly typed, featuring type inference

2/49



Standard ML

Standard ML:
® is strongly typed, featuring type inference

® s statically scoped

2/49



Standard ML

Standard ML:
® is strongly typed, featuring type inference
® s statically scoped

® uses eager evaluation (but lazy evaluation can be simulated)

2/49



Standard ML

Standard ML:
® is strongly typed, featuring type inference
® s statically scoped

® uses eager evaluation (but lazy evaluation can be simulated)
® is mostly functional

2/49



Standard ML

Standard ML:
® is strongly typed, featuring type inference
® s statically scoped
® uses eager evaluation (but lazy evaluation can be simulated)

® is mostly functional
® imperative features, but downplayed

2/49



Standard ML

Standard ML:
® is strongly typed, featuring type inference
® s statically scoped
® uses eager evaluation (but lazy evaluation can be simulated)

® is mostly functional

® imperative features, but downplayed
® data structures immutable, so sharing happens automatically

2/49



Standard ML

Standard ML:
® is strongly typed, featuring type inference
® s statically scoped
® uses eager evaluation (but lazy evaluation can be simulated)

® is mostly functional

® imperative features, but downplayed
® data structures immutable, so sharing happens automatically

® has a powerful module language

2/49



Standard ML

Standard ML:
® is strongly typed, featuring type inference
® s statically scoped
® uses eager evaluation (but lazy evaluation can be simulated)

® is mostly functional

® imperative features, but downplayed
® data structures immutable, so sharing happens automatically

® has a powerful module language

® has moderately good libraries

2/49



Compilers

There are two main compilers available:

3/49



Compilers

There are two main compilers available:
e Standard ML of New Jersey (SML/NJ):

3/49



Compilers

There are two main compilers available:
e Standard ML of New Jersey (SML/NJ):

® interactive front end

3/49



Compilers

There are two main compilers available:
e Standard ML of New Jersey (SML/NJ):

® interactive front end
® excellent support for separate compilation using the
Compilation Manager (CM)

3/49



Compilers

There are two main compilers available:
e Standard ML of New Jersey (SML/NJ):
® interactive front end
® excellent support for separate compilation using the

Compilation Manager (CM)
® generates heap images, which can be loaded into executables

3/49



Compilers

There are two main compilers available:
e Standard ML of New Jersey (SML/NJ):
® interactive front end
® excellent support for separate compilation using the
Compilation Manager (CM)
® generates heap images, which can be loaded into executables

e MLton:

3/49



Compilers

There are two main compilers available:
e Standard ML of New Jersey (SML/NJ):
® interactive front end
® excellent support for separate compilation using the
Compilation Manager (CM)
® generates heap images, which can be loaded into executables

e MLton:

® whole program optimizing compiler

3/49



Compilers

There are two main compilers available:
e Standard ML of New Jersey (SML/NJ):
® interactive front end
® excellent support for separate compilation using the
Compilation Manager (CM)
® generates heap images, which can be loaded into executables
e MLton:
® whole program optimizing compiler
® generates executables

3/49



Compilers

There are two main compilers available:
e Standard ML of New Jersey (SML/NJ):

® interactive front end

® excellent support for separate compilation using the
Compilation Manager (CM)

® generates heap images, which can be loaded into executables

e MLton:
® whole program optimizing compiler
® generates executables
® development normally done using SML/NJ

3/49



Eramples

These slides and the code for my examples—plus links to more
resources on Standard ML—are available on the web at:

https://alleystoughton.us/getting-started-typed-fp-sml

4/49


https://alleystoughton.us/getting-started-typed-fp-sml

Using SML as a Calculator

5/49



Using SML as a Calculator

- 5+ 4;

5/49



Using SML as a Calculator

- 5+ 4;
val it = 9 : int

5/49



Using SML as a Calculator

- 5+ 4;
val it = 9 : int
- if 3 + it < 12

5/49



Using SML as a Calculator

- 5+ 4;
val it = 9 : int
- if 3 + it < 12

5/49



Using SML as a Calculator

- 5+ 4;

val it = 9 : int
- if 3 + it < 12
= then it mod 3

5/49



Using SML as a Calculator

- 5+ 4;

val it = 9 : int
- if 3 + it < 12
then it mod 3

5/49



Using SML as a Calculator

- 5+ 4;
val it

if 3
then
else

=9 : int
+ it < 12
it mod 3

it div 3;

5/49



Using SML as a Calculator

- 5+ 4;

val it = 9 : int
- if 3 + it < 12
= then it mod 3
= else it div 3;
val it = 3 : int

5/49



Using SML as a Calculator

- 5+ 4;

val it = 9 : int
- if 3 + it < 12
= then it mod 3

= else it div 3;
val it = 3 : int
- [1, 2] e [3, 41;

5/49



Using SML as a Calculator

- 5+ 4;

val it = 9 : int

- if 3 + it < 12

= then it mod 3

= else it div 3;

val it = 3 : int

- [1, 2] e [3, 41;

val it = [1,2,3,4] : int list

5/49



Using SML as a Calculator

- 5+ 4;

val it = 9 : int
- if 3 + it < 12
then it mod 3
else it div 3;
val it = 3 : int
- [1, 2] e [3, 41;
val it = [1,2,3,4]
-0 :: it;

5/49



Using SML as a Calculator

- 5+ 4;

val it = 9 : int
- if 3 + it < 12
then it mod 3
else it div 3;
val it = 3 : int
- [1, 2] e [3, 41;
val it = [1,2,3,4]
-0 :: it;

val it = [0,1,2,3,4] :

5/49



Using SML as a Calculator

- 5+ 4;

val it = 9 : int
- if 3 + it < 12
then it mod 3
else it div 3;
val it = 3 : int
- [1, 2] e [3, 41;
val it = [1,2,3,4]
-0 :: it;

val it = [0,1,2,3,4] :

- rev it;

5/49



Using SML as a Calculator

- 5+ 4;

val it = 9 : int
- if 3 + it < 12
then it mod 3
else it div 3;
val it = 3 : int
- [1, 2] e [3, 41;
val it = [1,2,3,4]
-0 :: it;

val it = [0,1,2,3,4]

- rev it;

val it = [4,3,2,1,0] :

: int list

: int list

int list

5/49



Using SML as a Calculator

- 5+ 4;

val it = 9 : int
- if 3 + it < 12
then it mod 3
else it div 3;
val it = 3 : int
- [1, 2] e [3, 41;
val it = [1,2,3,4]
-0 :: it;

val it = [0,1,2,3,4]

- rev it;

val it = [4,3,2,1,0] :

- tl it;

: int list

: int list

int list

5/49



Using SML as a Calculator

- 5+ 4;

val it = 9 : int
- if 3 + it < 12
then it mod 3
else it div 3;
val it = 3 : int
- [1, 2] e [3, 41;
val it = [1,2,3,4]
-0 :: it;

val it = [0,1,2,3,4]
- rev it;

val it = [4,3,2,1,0] :

- tl it;
val it = [3,2,1,0]

: int list

: int list

int list

: int list

5/49



Using SML as a Calculator

- 5+ 4;

val it = 9 : int

- if 3 + it < 12

then it mod 3

else it div 3;

val it = 3 : int

- [1, 2] e [3, 41;

val it = [1,2,3,4] : int list
-0 :: it;

val it = [0,1,2,3,4] : int list
- rev it;

val it = [4,3,2,1,0] : int list
- tl it;

val it = [3,2,1,0] : int list

- hd it;

5/49



Using SML as a Calculator

- 5+ 4;

val it = 9 : int

- if 3 + it < 12

then it mod 3

else it div 3;

val it = 3 : int

- [1, 2] e [3, 41;

val it = [1,2,3,4] : int list
-0 :: it;

val it = [0,1,2,3,4] : int list
- rev it;

val it = [4,3,2,1,0] : int list
- tl it;

val it = [3,2,1,0] : int list

- hd it;

val it = 3 : int

5/49



Using SML as a Calculator

6/49



Using SML as a Calculator

- (4 %9, 5<7);

«F
6/49



Using SML as a Calculator

- (4 %9, 5<T7);
val it = (36,true) : int * bool

6/49



Declarations and Local Declarations

«F
7/49



Declarations and Local Declarations

- val x = 4 + 8;

7/49



Declarations and Local Declarations
- val x = 4 + 8;

val x = 12 : int

7/49



Declarations and Local Declarations
- val x = 4 + 8;

val x = 12 : int
- val y = x * X;

7/49



Declarations and Local Declarations

- val x = 4 + 8;
val x = 12 : int
- val y = x * X;
val y = 144 : int

7/49



Declarations and Local Declarations

- val =4 + 8;
12 : int
- val = X * X;
val y = 144 : int

- letval x =x +y

[

val x

Il <

7/49



Declarations and Local Declarations

- val =4 + 8;
12 : int
- val = X * X;
val y = 144 : int

- letval x =x +y

[

val x

Il <

7/49



Declarations and Local Declarations

=4 + 8;

12 : int

- val = X * X;

val y = 144 : int

- letval x =x +y

= in (x, 2 * x, 3 * x) end;

- val
val x

[

Il <

7/49



Declarations and Local Declarations

- val =4 + 8;

12 : int

- val = X * X;

val y = 144 : int

- letval x =x +y

= in (x, 2 * x, 3 * x) end;

val it = (156,312,468) : int * int * int

[

val x

Il <

7/49



Declarations and Local Declarations

- val =4 + 8;

12 : int

- val = X * X;

val y = 144 : int

- letval x =x +y

= in (x, 2 * x, 3 * x) end;

val it = (156,312,468) : int * int * int
- #2 it;

[

val x

Il <

7/49



Declarations and Local Declarations

- val =4 + 8;

12 : int

- val = X * X;

val y = 144 : int

- letval x =x +y

= in (x, 2 * x, 3 * x) end;

val it = (156,312,468) : int * int * int
- #2 it;

val it = 312 : int

[

val x

Il <

7/49



Function Definitions

«F
8/49



Function Definitions

- fun fact n =

«F
8/49



Function Definitions

- fun fact n =

«F
8/49



Function Definitions

- fun fact n =
= if n

I
o

«F
8/49



Function Definitions

- fun fact n =
= if n

I
o

«F
8/49



fun fact n
if n
then

Function Definitions

]
o

8/49



fun fact n
if n
then

Function Definitions

]
o

8/49



fun fact n
if n
then
else

Function Definitions

B o~

* fact(n - 1);

8/49



Function Definitions

fun fact n

= ifn=20
then 1
= else n * fact(n - 1);

val fact = fn : int -> int

8/49



Function Definitions

fun fact n

= ifn=20
then 1
= else n * fact(n - 1);

val fact = fn : int -> int
- fact 6;

8/49



Function Definitions

fun fact n

= ifn=20
then 1
= else n * fact(n - 1);

val fact = fn : int -> int
- fact 6;
val it = 720 : int

8/49



Function Definitions and Pattern Matching

9/49



Function Definitions and Pattern Matching

- fun fact n =

9/49



Function Definitions and Pattern Matching

- fun fact n =

9/49



Function Definitions and Pattern Matching

- fun fact n =

= case n of

9/49



Function Definitions

- fun fact n =

= case n of

and Pattern Matching

9/49



Function Definitions and Pattern Matching

- fun fact n

= case n
= 0 =>1

9/49



Function Definitions and Pattern Matching

- fun fact n =

= case n of
= 0=>1

9/49



Function Definitions and Pattern Matching

- fun fact n

= case n of
= 0=>1
= | n =>n *x fact(n - 1);

9/49



Function Definitions and Pattern Matching

- fun fact n
= case n of
= 0=>1
= | n =>n % fact(n - 1);
val fact = fn : int -> int

9/49



Function Definitions and Pattern Matching

- fun fact n
= case n of
= 0=>1
= | n =>n % fact(n - 1);
val fact = fn : int -> int

- fact 7;

9/49



Function Definitions and Pattern Matching

- fun fact n
= case n of
= 0=>1
= | n =>n % fact(n - 1);
val fact = fn : int -> int

- fact 7;

val it = 5040 : int

9/49



Function Definitions and Pattern Matching

- fun fact n
= case n of
= 0=>1
= | n =>n % fact(n - 1);
val fact = fn : int -> int

- fact 7;

val it = 5040 : int

- fun fact 0 = 1

9/49



Function Definitions and Pattern Matching

- fun fact n
= case n of
= 0=>1
= | n =>n % fact(n - 1);
val fact = fn : int -> int

- fact 7;

val it = 5040 : int

- fun fact 0 = 1

9/49



Function Definitions and Pattern Matching

- fun fact n
= case n of
= 0=>1
= | n =>n % fact(n - 1);
val fact = fn : int -> int

- fact 7;

val it = 5040 : int

- fun fact 0 = 1

= | fact n = n * fact(n - 1);

9/49



Function Definitions and Pattern Matching

- fun fact n
= case n of
= 0=>1
= | n =>n % fact(n - 1);
val fact = fn : int -> int

- fact 7;

val it = 5040 : int

- fun fact 0 = 1

= | fact n = n * fact(n - 1);
val fact = fn : int -> int

9/49



Function Definitions and Pattern Matching

- fun fact n
= case n
= 0

n

- fact 7;

val it = 5040 :

- fun fact 0 =
= | fact n =
val fact = fn
- fact 8;

I
val fact = fn :

of

=> 1

=>n * fact(n - 1);
int -> int

int
1
n * fact(n - 1);

: int -> int

9/49



Function Definitions and Pattern Matching

- fun fact n
= case n
= 0

n

- fact 7;

val it = 5040 :

- fun fact O
= | fact n =

val fact = fn :

- fact 8;

val it = 40320 :

I
val fact = fn :

of

=> 1

=>n * fact(n - 1);
int -> int

int

1

n * fact(n - 1);
int -> int

int

9/49



Tail Recursion

Compilers for functional programming languages translate tail
recursion into loops, not allocating stack frames.

10/49



Tail Recursion

- fun fact n =

Compilers for functional programming languages translate tail
recursion into loops, not allocating stack frames.

10/49



Tail Recursion

- fun fact n =

Compilers for functional programming languages translate tail
recursion into loops, not allocating stack frames.

10/49



Tail Recursion

- fun fact n =
= let fun fct(0, m) = m

Compilers for functional programming languages translate tail
recursion into loops, not allocating stack frames.

10/49



Tail Recursion

fun fact n =
= let fun fct(0, m) = m

Compilers for functional programming languages translate tail
recursion into loops, not allocating stack frames.

10/49



Tail Recursion

fun fact n =
= let fun fct(0, m) = m
= | fct(n, m) fct(n - 1, n * m)

Compilers for functional programming languages translate tail
recursion into loops, not allocating stack frames.

10/49



Tail Recursion

- fun fact n =
= let fun fct(0, m) = m
= | fct(n, m) fct(n - 1, n * m)

Compilers for functional programming languages translate tail
recursion into loops, not allocating stack frames.

10/49



Tail Recursion

- fun fact n =

= let fun fct(0, m) = m

= | fct(n, m) fct(n - 1, n * m)
= in fct(n, 1) end;

Compilers for functional programming languages translate tail
recursion into loops, not allocating stack frames.

10/49



Tail Recursion

- fun fact n =

= let fun fct(0, m) = m

= | fct(n, m) fct(n - 1, n * m)
= in fct(n, 1) end;

val fact = fn : int -> int

Compilers for functional programming languages translate tail
recursion into loops, not allocating stack frames.

10/49



Tail Recursion

- fun fact n =

= let fun fct(0, m) = m

= | fct(n, m) fct(n - 1, n * m)
= in fct(n, 1) end;

val fact = fn : int -> int

- fact 6;

Compilers for functional programming languages translate tail
recursion into loops, not allocating stack frames.

10/49



Tail Recursion

- fun fact n =

= let fun fct(0, m) = m

= | fct(n, m) fct(n - 1, n * m)
= in fct(n, 1) end;

val fact = fn : int -> int

- fact 6;

val it = 720 : int

Compilers for functional programming languages translate tail
recursion into loops, not allocating stack frames.

10/49



Polymorphism and List Processing Functions

11/49



Polymorphism and List Processing Functions

- fun rev xs =

11/49



Polymorphism and List Processing Functions

- fun rev xs =

11/49



Polymorphism and List Processing Functions

- fun rev xs =
= if null xs

11/49



Polymorphism and List Processing Functions

fun rev xs =
= if null xs

11/49



Polymorphism and List Processing Functions

fun rev xs =
= if null xs
then nil

11/49



Polymorphism and List Processing Functions

fun rev xs =
= if null xs
then nil

11/49



Polymorphism and List Processing Functions

fun rev xs =
= if null xs
then nil
= else rev(tl xs) @ [hd xs];

11/49



Polymorphism and List Processing Functions

- fun rev xs =
= if null xs
then nil
= else rev(tl xs) @ [hd xs];
val rev = fn : ’a list -> ’a list

11/49



Polymorphism and List Processing Functions

- fun rev xs =
= if null xs

then nil
= else rev(tl xs) @ [hd xs];
val rev = fn : ’a list -> ’a list
- rev[l, 3, 5, 71;

11/49



Polymorphism and List Processing Functions

- fun rev xs =
= if null xs

then nil
= else rev(tl xs) @ [hd xs];
val rev = fn : ’a list -> ’a list
- rev[l, 3, 5, 71;
val it = [7,5,3,1] : int list

11/49



Polymorphism and List Processing Functions

- fun rev xs =
= if null xs
then nil
= else rev(tl xs) @ [hd xs];
val rev = fn : ’a list -> ’a list
- rev[l, 3, 5, 71;
val it = [7,5,3,1] : int list
- fun rev nil = nil

11/49



Polymorphism and List Processing Functions

- fun rev xs =
= if null xs
then nil
= else rev(tl xs) @ [hd xs];
val rev = fn : ’a list -> ’a list
- rev[l, 3, 5, 71;
val it = [7,5,3,1] : int list
- fun rev nil = nil

11/49



Polymorphism and List Processing Functions

- fun rev xs =
= if null xs
then nil
= else rev(tl xs) @ [hd xs];
val rev = fn : ’a list -> ’a list
- rev[l, 3, 5, 71;
val it = [7,5,3,1] : int list
- fun rev nil = nil
= | rev (x :: xs) = rev xs @ [x];

11/49



Polymorphism and List Processing Functions

fun rev xs =

= if null xs

= then nil

= else rev(tl xs) @ [hd xs];
val rev = fn : ’a list -> ’a list

- rev[l, 3, 5, 71;

val it = [7,5,3,1] : int list

- fun rev nil = nil

= | rev (x :: xs) = rev xs @ [x];
val rev = fn : ’a list -> ’a list

11/49



Polymorphism and List Processing Functions

fun rev xs =

= if null xs

= then nil

= else rev(tl xs) @ [hd xs];
val rev = fn : ’a list -> ’a list
- rev[l, 3, 5, 71;

val it = [7,5,3,1] : int list

- fun rev nil = nil

= | rev (x :: xs) = rev xs @ [x];
val rev = fn : ’a list -> ’a list
- rev[l, 3, 5, 71;

11/49



Polymorphism and List Processing Functions

fun rev xs =

= if null xs

= then nil

= else rev(tl xs) @ [hd xs];
val rev = fn : ’a list -> ’a list
- rev[l, 3, 5, 71;

val it = [7,5,3,1] : int list

- fun rev nil = nil

= | rev (x :: xs) = rev xs @ [x];
val rev = fn : ’a list -> ’a list
- rev[l, 3, 5, 71;

val it = [7,5,3,1] : int list

11/49



List Processing Functions and Tail Recursion

12 /49



List Processing Functions and Tail Recursion

- fun rev xs =

12 /49



List Processing Functions and Tail Recursion

- fun rev xs =

12 /49



List Processing Functions and Tail Recursion

- fun rev xs =
= let fun rv(nil, ys) = ys

12 /49



List Processing Functions and Tail Recursion

fun rev xs =
= let fun rv(nil, ys) = ys

12 /49



List Processing Functions and Tail Recursion

fun rev xs =
= let fun rv(nil, ys) = ys
= | rv(x :: xs, ys)

rv(xs, x :: ys)

12/49



List Processing Functions and Tail Recursion

fun rev xs =
= let fun rv(nil, ys) = ys
= | rv(x :: xs, ys) = rv(xs, x :: ys)

12/49



List Processing Functions and Tail Recursion

fun rev xs =

= let fun rv(nil, ys) = ys

= | rv(x :: xs, ys) = rv(xs, x :: ys)
= in rv(xs, nil) end;

12/49



List Processing Functions and Tail Recursion

- fun rev xs =

= let fun rv(nil, ys) = ys

= | rv(x :: xs, ys) = rv(xs, x :: ys)
= in rv(xs, nil) end;

val rev = fn : ’a list -> ’a list

12/49



List Processing Functions and Tail Recursion

- fun rev xs =

= let fun rv(nil, ys) = ys

= | rv(x :: xs, ys) = rv(xs, x :: ys)
= in rv(xs, nil) end;

val rev = fn : ’a list -> ’a list

- rev[l, 3, 5, 71;

12/49



List Processing Functions and Tail Recursion

- fun rev xs =

= let fun rv(nil, ys) = ys

= | rv(x :: xs, ys) = rv(xs, x :: ys)
= in rv(xs, nil) end;

val rev = fn : ’a list -> ’a list

- rev[l, 3, 5, 71;

val it = [7,5,3,1] : int list

12/49



Anonymous and Higher-order Functions

«F
13/49



Anonymous and Higher-order Functions

- fn x => x + 1;

13 /49



Anonymous and Higher-order Functions
- fn x => x + 1;

val it = fn : int -> int

13 /49



Anonymous and Higher-order Functions
- fn x => x + 1;

val it = fn : int -> int
- it (3 + 4);

13 /49



Anonymous and Higher-order Functions

- fn x
val it
- it (3
val it

=>x + 1;

= fn : int -> int
+ 4);

=8 : int

13/49



Anonymous and Higher-order Functions

- fn x
val it
- it (3
val it
- map;

=>x + 1;

= fn : int -> int
+ 4);

=8 : int

13/49



Anonymous and Higher-order Functions

- fn x
val it
- it (3
val it
- map;
val it

=>x + 1;

= fn : int -> int
+ 4);

=8 : int

=fn : (’a -> ’b) -> ’a list -> ’b list

13/49



Anonymous and Higher-order Functions

- fn x
val it
- it (3
val it
- map;
val it

=>x + 1;

= fn : int -> int

+ 4);

= 8 : int

=fn : (’a -> ’b) -> ’a list -> ’b list

- map (fn x => x + 1) [1, 3, 5];

13/49



Anonymous and Higher-order Functions

- fn x
val it
- it (3
val it
- map;
val it

=>x + 1;

= fn : int -> int

+ 4);

= 8 : int

=fn : (’a -> ’b) -> ’a list -> ’b list

- map (fn x => x + 1) [1, 3, 5];

val it

= [2,4,6] : int list

13/49



Anonymous and Higher-order Functions

«F
14 /49



Anonymous and Higher-order Functions

- List.exists;

14 /49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool

14/49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool
- List.exists

14/49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool
- List.exists

14/49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool
- List.exists

= (fn x => x mod 2 = 0)

14/49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool
- List.exists

(fn x => x mod 2 = 0)

14/49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool
- List.exists

(fn x => x mod 2 = 0)

(1, 2, 3, 4, 5, 6, 71;

14/49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool
- List.exists

(fn x => x mod 2 = 0)

(1, 2, 3, 4, 5, 6, 71;

val it = true : bool

14/49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool
- List.exists

(fn x => x mod 2 = 0)

(1, 2, 3, 4, 5, 6, 71;

val it = true : bool

- List.filter;

14/49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool

- List.exists

(fn x => x mod 2 = 0)

(1, 2, 3, 4, 5, 6, 71;

val it = true : bool

- List.filter;

val it = fn : (’a -> bool) -> ’a list -> ’a list

14/49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool
- List.exists

(fn x => x mod 2 = 0)

(1, 2, 3, 4, 5, 6, 71;

val it = true : bool

- List.filter;

val it = fn : (’a -> bool) -> ’a list -> ’a list
- List.filter

14/49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool
- List.exists

(fn x => x mod 2 = 0)

(1, 2, 3, 4, 5, 6, 71;

val it = true : bool

- List.filter;

val it = fn : (’a -> bool) -> ’a list -> ’a list
- List.filter

14/49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool
- List.exists

(fn x => x mod 2 = 0)

(1, 2, 3, 4, 5, 6, 71;

val it = true : bool

- List.filter;

val it = fn : (’a -> bool) -> ’a list -> ’a list
- List.filter

= (fn x => x mod 2 = 0)

14/49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool
- List.exists

(fn x => x mod 2 = 0)

(1, 2, 3, 4, 5, 6, 71;

val it = true : bool

- List.filter;

val it = fn : (’a -> bool) -> ’a list -> ’a list
List.filter

(fn x => x mod 2 = 0)

14/49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool
- List.exists

(fn x => x mod 2 = 0)

(1, 2, 3, 4, 5, 6, 71;

val it = true : bool

- List.filter;

val it = fn : (’a -> bool) -> ’a list -> ’a list
List.filter

(fn x => x mod 2 = 0)

(1, 2, 3, 4, 5, 6, 71;

14/49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool
- List.exists

(fn x => x mod 2 = 0)

(1, 2, 3, 4, 5, 6, 71;

val it = true : bool

- List.filter;

val it = fn : (’a -> bool) -> ’a list -> ’a list
List.filter

(fn x => x mod 2 = 0)

(1, 2, 3, 4, 5, 6, 71;

val it = [2,4,6] : int list

14/49



Option Types

15/49



Option Types

- NONE;

«F
15/49



Option Types

- NONE;
val it = NONE : ’a option

15/49



Option Types
- NONE;

val it = NONE : ’a option
- SOME 5;

15/49



Option Types

- NONE;

val it = NONE : ’a option

- SOME 5;

val it = SOME 5 : int option

15/49



Option Types

- NONE;

val it = NONE : ’a option

- SOME 5;

val it = SOME 5 : int option
- SOME true;

15/49



Option Types

- NONE;

val it = NONE : ’a option

- SOME 5;

val it = SOME 5 : int option
- SOME true;

val it = SOME true : bool option

15/49



Option Types

- NONE;

val it = NONE : ’a option

- SOME 5;

val it = SOME 5 : int option
- SOME true;

val it = SOME true : bool option
- valOf (SOME false);

15/49



Option Types

- NONE;

val it = NONE : ’a option

- SOME 5;

val it = SOME 5 : int option
- SOME true;

val it = SOME true : bool option
- valOf (SOME false);
val it = false : bool

15/49



Option Types

16 /49



Option Types

- fun firstPos(f, ys) =

«F
16 /49



Option Types

- fun firstPos(f, ys) =

«F
16 /49



Option Types

- fun firstPos(f, ys) =
= let fun first(_, nil) = NONE

16/49



Option Types

fun firstPos(f, ys) =
let fun first(_, nil)

= NONE

16/49



Option Types

fun firstPos(f, ys) =
let fun first(_, nil)
| first(i, y :: ys)

NONE

16/49



Option Types

fun firstPos(f, ys) =
let fun first(_, nil)
| first(i, y :: ys)

NONE

16/49



Option Types

fun firstPos(f, ys) =
let fun first(_, nil)
| first(i, y :: ys)
if £y

NONE

16/49



Option Types

fun firstPos(f, ys) =
let fun first(_, nil)
| first(i, y :: ys)
if £y

NONE

16/49



Option Types

fun firstPos(f, ys) =
let fun first(_, nil)
| first(i, y :: ys)
if £y
then SOME i

NONE

16/49



Option Types

fun firstPos(f, ys) =
let fun first(_, nil)
| first(i, y :: ys)
if £y
then SOME i

NONE

16/49



Option Types

fun firstPos(f, ys) =
let fun first(_, nil)
| first(i, y :: ys)
if £y
then SOME i
else first(i + 1, ys)

NONE

16/49



Option Types

fun firstPos(f, ys) =
let fun first(_, nil)
| first(i, y :: ys)
if £y
then SOME i
else first(i + 1, ys)

NONE

16/49



Option Types

fun firstPos(f, ys) =
let fun first(_, nil)
| first(i, y :: ys)
if £y
then SOME i
else first(i + 1, ys)
in first(0, ys) end;

NONE

16/49



Option Types

- fun firstPos(f, ys) =
= let fun first(_, nil)
= | first(i, y :: ys)
= if £y
= then SOME i
= else first(i + 1, ys)
= in first(0, ys) end;
val firstPos = fn :
(’a -> bool) * ’a list -> int option

NONE

16/49



Option Types

- fun firstPos(f, ys) =
= let fun first(_, nil)
= | first(i, y :: ys)
= if £y
= then SOME i
= else first(i + 1, ys)
= in first(0, ys) end;
val firstPos = fn :
(’a -> bool) * ’a list -> int option
- firstPos(fn x => x =4, [1, 3, 4, 5, 4, 71);

NONE

16/49



Option Types

- fun firstPos(f, ys) =
= let fun first(_, nil)
= | first(i, y :: ys)
= if £y
= then SOME i
= else first(i + 1, ys)
= in first(0, ys) end;
val firstPos = fn :
(’a -> bool) * ’a list -> int option
- firstPos(fn x => x =4, [1, 3, 4, 5, 4, 71);
val it = SOME 2 : int option

NONE

16/49



Option Types

- fun firstPos(f, ys) =
= let fun first(_, nil)
= | first(i, y :: ys)
= if £y
= then SOME i
= else first(i + 1, ys)
= in first(0, ys) end;
val firstPos = fn :
(’a -> bool) * ’a list -> int option

NONE

- firstPos(fn x => x =4, [1, 3, 4, 5, 4, 71);

val it = SOME 2 : int option
- firstPos(fn x => x > 7, [1, 3, 2, 71);

16/49



Option Types

- fun firstPos(f, ys) =
= let fun first(_, nil)
= | first(i, y :: ys)
= if £y
= then SOME i
= else first(i + 1, ys)
= in first(0, ys) end;
val firstPos = fn :
(’a -> bool) * ’a list -> int option
- firstPos(fn x => x = 4, [1, 3, 4, 5, 4,
val it = SOME 2 : int option
- firstPos(fn x => x > 7, [1, 3, 2, 71);
val it = NONE : int option

NONE

71);

16/49



Datatypes

«F
17/49



Datatypes

- datatype tree =

«F
17/49



Datatypes

- datatype tree =

«F
17/49



Datatypes

- datatype tree =
= Leaf of int

«F
17/49



Datatypes

- datatype tree =
= Leaf of int

«F
17/49



Datatypes

datatype tree =
Leaf of int
| Node of bool * tree * tree;

17/49



Datatypes
- datatype tree =
= Leaf of int
| Node of bool * tree * tree;

datatype tree
= Leaf of int | Node of bool * tree * tree

17/49



Datatypes

- datatype tree =
= Leaf of int
= | Node of bool * tree * tree;

datatype tree
= Leaf of int | Node of bool * tree * tree

- val tr =

17/49



Datatypes

- datatype tree =
= Leaf of int
= | Node of bool * tree * tree;
datatype tree
= Leaf of int | Node of bool * tree * tree

- val tr =

17/49



Datatypes

- datatype tree =
= Leaf of int
= | Node of bool * tree * tree;
datatype tree

= Leaf of int | Node of bool * tree * tree
- val tr =
= Node(false,

17/49



Datatypes

- datatype tree =
= Leaf of int
= | Node of bool * tree * tree;
datatype tree
= Leaf of int | Node of bool * tree * tree
val tr =

Node(false,

17/49



Datatypes

- datatype tree =
= Leaf of int
= | Node of bool * tree * tree;
datatype tree
= Leaf of int | Node of bool * tree * tree
val tr =
Node(false,
= Node(true, Leaf 0, Leaf 1),

17/49



Datatypes

- datatype tree =
= Leaf of int
= | Node of bool * tree * tree;
datatype tree
= Leaf of int | Node of bool * tree * tree
val tr =
Node(false,
= Node(true, Leaf 0, Leaf 1),

17/49



Datatypes

- datatype tree =
= Leaf of int
= | Node of bool * tree * tree;
datatype tree
= Leaf of int | Node of bool * tree * tree
val tr =
Node(false,
= Node(true, Leaf 0, Leaf 1),
= Leaf 2);

17/49



Datatypes

- datatype tree =
= Leaf of int
= | Node of bool * tree * tree;
datatype tree
= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),
= Leaf 2);

val tr =

Node (false,Node (true,Leaf 0,Leaf 1),Leaf 2)
tree

17/49



Datatypes

- datatype tree =
= Leaf of int
= | Node of bool * tree * tree;
datatype tree
= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),
= Leaf 2);

val tr =

Node (false,Node (true,Leaf 0,Leaf 1),Leaf 2)
tree
- fun size(Leaf _) =1

17/49



Datatypes

- datatype tree =
= Leaf of int
= | Node of bool * tree * tree;
datatype tree
= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),
= Leaf 2);

val tr =

Node (false,Node (true,Leaf 0,Leaf 1),Leaf 2)
tree
- fun size(Leaf _) =1

17/49



Datatypes

- datatype tree =
= Leaf of int
= | Node of bool * tree * tree;
datatype tree
= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),
= Leaf 2);

val tr =

Node (false,Node (true,Leaf 0,Leaf 1),Leaf 2)
tree

- fun size(Leaf _) =1

= | size(Node(_, trl, tr2))

17/49



Datatypes

- datatype tree =
= Leaf of int
= | Node of bool * tree * tree;
datatype tree
= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),
= Leaf 2);

val tr =

Node (false,Node (true,Leaf 0,Leaf 1),Leaf 2)
tree

- fun size(Leaf _) =1

| size(Node(_, trl, tr2))

17/49



Datatypes

- datatype tree =
= Leaf of int
= | Node of bool * tree * tree;
datatype tree
= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),
= Leaf 2);

val tr =

Node (false,Node (true,Leaf 0,Leaf 1),Leaf 2)
tree

- fun size(Leaf _) =1

| size(Node(_, trl, tr2)) =

= 1 + size trl + size tr2;

17/49



Datatypes

- datatype tree =
= Leaf of int
= | Node of bool * tree * tree;
datatype tree
= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),
= Leaf 2);

val tr =

Node (false,Node (true,Leaf 0,Leaf 1),Leaf 2)
tree

- fun size(Leaf _) =1

= | size(Node(_, trl, tr2)) =

= 1 + size trl + size tr2;

val size = fn : tree -> int

17/49



Datatypes

- datatype tree =
= Leaf of int
= | Node of bool * tree * tree;
datatype tree
= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),
= Leaf 2);

val tr =

Node (false,Node (true,Leaf 0,Leaf 1),Leaf 2)
tree

- fun size(Leaf _) =1

= | size(Node(_, trl, tr2)) =

= 1 + size trl + size tr2;

val size = fn : tree -> int

- size tr;

17/49



Datatypes

- datatype tree =
= Leaf of int
= | Node of bool * tree * tree;
datatype tree
= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),
= Leaf 2);

val tr =

Node (false,Node (true,Leaf 0,Leaf 1),Leaf 2)

tree
- fun size(Leaf _) =1
= | size(Node(_, trl, tr2)) =
= 1 + size trl + size tr2;
val size = fn : tree -> int
- size tr;
val it = 5 : int

17 /49



Extended FExample: Generating Primes

Let's consider the problem of generating the first n prime numbers.

18/49



FEzxtended Example: Generating Primes

Let's consider the problem of generating the first n prime numbers.

The key to generating primes semi-efficiently is this fact:
Suppose n € N js at least 2. Then n is prime iff there is
no m € N such that

®* m< n,
® n is divisible by m, and

18/49



FEzxtended Example: Generating Primes

Let's consider the problem of generating the first n prime numbers.
The key to generating primes semi-efficiently is this fact:
Suppose n € N js at least 2. Then n is prime iff there is
no m € N such that
®* m< n,
® n is divisible by m, and
® m is prime.

18/49



FEzxtended Example: Generating Primes

Let's consider the problem of generating the first n prime numbers.

The key to generating primes semi-efficiently is this fact:
Suppose n € N js at least 2. Then n is prime iff there is
no m € N such that

®* m< n,
® n is divisible by m, and
® m is prime.

This holds because every natural number n > 2 can be expressed
(uniquely) as a product of prime numbers (assuming n is not
prime, these prime numbers will be < n).

18/49



FEzxtended Example: Generating Primes

So to test whether n > 2 is prime, we can work through the prime
numbers smaller than n, from to , rejecting n as
soon as we find a divisor of n.

19/49



FEzxtended Example: Generating Primes

So to test whether n > 2 is prime, we can work through the prime
numbers smaller than n, from smallest to , rejecting n as
soon as we find a divisor of n.

19/49



FEzxtended Example: Generating Primes

So to test whether n > 2 is prime, we can work through the prime
numbers smaller than n, from smallest to largest, rejecting n as
soon as we find a divisor of n.

19/49



FEzxtended Example: Generating Primes

So to test whether n > 2 is prime, we can work through the prime
numbers smaller than n, from smallest to largest, rejecting n as
soon as we find a divisor of n.

Furthermore, as soon as we get to a prime m such that

we can stop and accept n, because if n had a prime divisor p such
that m < p < n, then it would also have a prime divisor less-than
m, and so would already have been rejected.

19/49



FEzxtended Example: Generating Primes

So to test whether n > 2 is prime, we can work through the prime
numbers smaller than n, from smallest to largest, rejecting n as
soon as we find a divisor of n.

Furthermore, as soon as we get to a prime m such that m* m > n,
we can stop and accept n, because if n had a prime divisor p such
that m < p < n, then it would also have a prime divisor less-than
m, and so would already have been rejected.

19/49



Primes in C

void gen_primes(int n, int *primes) {
int i, j;
int next = 2; /* next candidate */
for (i = 0; i < n; i++) {
int found = 0O;
while (!found) {
for (j = 0; j < i; j++) {
int p = primes[j];
if (next % p == 0) { break; }
else if (p * p > next) { j = i; break; }
}
if (j == i) { found = 1; }
else { next++; }
}
primes[i] = next++;
}
}

20 /49



Primes in SML: I

fun next(ms, 1) =
if List.exists (fnm => 1 mod m = 0) ms

then next(ms, 1 + 1)
else 1

fun prs 0 = nil

| prs 1 = [2]
| prs n =
let val ms = prs(n - 1)
in next(ms, hd ms + 1) :: ms end

fun primes n = rev(prs n)

21/49



Primes in SML: II

fun next(ms, 1) =

if List.exists (fnm => 1 mod m = 0) ms
then next(ms, 1 + 1)

else 1

fun prs(n, i, ms)
if i =n
then rev ms
else prs(n,

fun primes n = if

i + 1, next(ms, hd ms + 1) :: ms)

= 0 then nil else prs(m, 1, [2])

22 /49



Primes in SML: 11

false

fun divisible(_, nil)
| divisible(l, m :: ms) =
1 mod m = 0 orelse
(m * m < 1 andalso divisible(1l, ms))

fun next(ms, 1) =
if divisible(1l, ms)
then next(ms, 1 + 1)
else 1

fun prs(n, i, ms, m)
if i =n
then ms
else let val k = next(ms, m + 1)
in prs(n, i + 1, ms @ [k], k) end

fun primes n = if n = 0 then nil else prs(n, 1, [2], 2)

23 /49



Primes in SML: IV

fun divisible(_, nil) false
| divisible(l, m :: ms) =
1 mod m = 0 orelse

(m * m < 1 andalso divisible(1l, ms))

fun next(ms, p, 1ls, k) =
let val (ms, p, ls) =
if null 1s orelse p >= k
then (ms, p, 1ls)
else (ms @ rev 1s, hd 1s * hd 1ls, nil)
in if divisible(k, ms)
then next(ms, p, 1ls, k + 1)
else (ms, p, ls, k)
end

24 /49



Primes in SML: IV

fun divisible(_, nil) false
| divisible(l, m :: ms) =
1 mod m = 0 orelse

(m * m < 1 andalso divisible(1l, ms))

fun next(ms, p, 1ls, k) =
let val (ms, p, ls) =
if null 1s orelse p >= k
then (ms, p, 1ls)
else (ms @ rev 1s, hd 1s * hd 1ls, nil)
in if divisible(k, ms)
then next(ms, p, 1ls, k + 1)
else (ms, p, ls, k)
end

The reorganization of ms/1s only happens rarely; e.g, when
generating the first 5,000,000 primes, the reorganization only
happens

24 /49



Primes in SML: IV

fun divisible(_, nil) false
| divisible(l, m :: ms) =
1 mod m = 0 orelse

(m * m < 1 andalso divisible(1l, ms))

fun next(ms, p, 1ls, k) =
let val (ms, p, ls) =
if null 1s orelse p >= k
then (ms, p, 1ls)
else (ms @ rev 1s, hd 1s * hd 1ls, nil)
in if divisible(k, ms)
then next(ms, p, 1ls, k + 1)
else (ms, p, ls, k)
end

The reorganization of ms/1s only happens rarely; e.g, when
generating the first 5,000,000 primes, the reorganization only
happens five times (when k is 5, 10, 50, 2210 or 4870850).

24 /49



Primes in SML: IV

fun prs(n, i, ms, p, 1s, k) =
if i =n
then ms @ rev ls
else let val (ms, p, 1ls, k) = next(ms, p, 1ls, k + 1)
in prs(n, i + 1, ms, p, k :: 1s, k) end

fun primes n =
if n = O then nil else prs(m, 1, [2], 4, [1, 2)

25 /49



Primes in SML: V

signature PRIMES =
sig

val primes : int -> int list

end;

26 /49



Primes in SML: V

structure Primes :> PRIMES =

struct
fun divisible(_, nil) = false
| divisible(l, m :: ms) =

1 mod m = 0 orelse
(m * m < 1 andalso divisible(l, ms))

fun next(ms, p, ls, k) =
let val (ms, p, ls) =
if null 1s orelse p >= k
then (ms, p, 1s)
else (ms @ rev 1s, hd 1s * hd 1ls, nil)
in if divisible(k, ms)
then next(ms, p, ls, k + 1)
else (ms, p, 1ls, k)
end

27 /49



Primes in SML: V

fun prs(n, i, ms, p, 1s, k) =
if i =n
then ms @ rev ls
else let val (ms, p, 1ls, k) = next(ms, p, 1ls, k + 1)
in prs(n, i + 1, ms, p, k :: 1s, k) end

fun primes n =
if n = O then nil else prs(m, 1, [2], 4, [1, 2)

end;

28 /49



Comparison Generating First 5,000,000 Primes

$ time primes-gcc 5000000 > /tmp/primes-gcc

real Om16.989s

user Om16.804s

sys OmO.058s

$ time primes-smlnj 5000000 > /tmp/primes-smlnj

real 1m12.238s

user 1m10.816s

sys Oml.360s

$ time primes-mlton 5000000 > /tmp/primes-mlton

real Om49.371s

user Om48.896s
sys Om0.376s

29 /49



Comparison Generating First 5,000,000 Primes

$ cmp /tmp/primes-gcc /tmp/primes-smlnj
$ cmp /tmp/primes-smlnj /tmp/primes-mlton
$ wc -1 /tmp/primes-mlton

5000000 /tmp/primes-mlton

$ tail /tmp/primes-mlton

86027987

86027999

86028011

86028037

86028049

86028053

86028097

86028101

86028113

86028121

30 /49



Primes in SML:

signature PRIMES =
sig

type state
val init : state
val next : state -> int * state

end;

VI

31/49



Primes in SML: VI

structure Primes :> PRIMES =
struct

type state = int list * int * int list * int

(* invariant on state of the form (ms, p, 1ls, k):
ms @ rev 1s is the first length ms + length ns
primes in ascending order, ms is nonempty,

p is the square of the last element of ms, and
k is the last element of ms @ rev 1ls *)

val init = ([2], 4, [, 2)

fun divisible(_, nil) = false
| divisible(l, m :: ms) =
1l mod m = 0 orelse
(m * m < 1 andalso divisible(l, ms))

32/49



Primes in SML: VI

fun nxt(ms, p, 1ls, k) =
let val (ms, p, ls) =
if null 1s orelse p >= k
then (ms, p, 1s)
else (ms @ rev 1ls, hd 1s * hd 1ls, nil)
in if divisible(k, ms)
then nxt(ms, p, 1s, k + 1)
else (ms, p, ls, k)
end

fun next ((ms, p, 1s, k) : state) : int * state =
(k,
let val (ms, p, ls, k) = nxt(ms, p, 1s, k + 1)
in (ms, p, k :: 1s, k) end)

end;

33 /49



Primes in SML: VI

34/49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;

34/49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;
val n = 2 : int
val st = - : Primes.state

34/49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;
val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

34/49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;
val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 3 : int

val st = - : Primes.state

34/49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;
val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 3 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

34/49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;
val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 3 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 5 : int

val st = - : Primes.state

34/49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;
val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 3 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 5 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

34/49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;
val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 3 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 5 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 7 : int

val st = - : Primes.state

34/49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;
val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 3 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 5 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 7 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

34/49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;
val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 3 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 5 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 7 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;
val n = 11 : int

val st = - : Primes.state

34/49



Streams

Can we create an infinite list (stream) of all (until we have integer
overflow) primes like this?

fun g state =
let (x, state) = Primes.next state
in x :: g state end;

val primes = g Primes.init;

35 /49



Streams

Can we create an infinite list (stream) of all (until we have integer
overflow) primes like this?

fun g state =
let (x, state) = Primes.next state
in x :: g state end;

val primes = g Primes.init;

No, only with lazy evaluation, where infinite streams can be
created, and the part of a stream that is visited is memoized.

35 /49



Streams

Can we create an infinite list (stream) of all (until we have integer
overflow) primes like this?

fun g state =
let (x, state) = Primes.next state
in x :: g state end;

val primes = g Primes.init;

No, only with lazy evaluation, where infinite streams can be
created, and the part of a stream that is visited is memoized.

We can simulate lazy evaluation in SML using thunks and
references.

35 /49



Suspensions

signature SUSP =
sig

type ’a susp
val delay : (unit -> ’a) -> ’a susp
val force : ’a susp -> ’a

end

The only value of type unit is ().

36 /49



References

type ’a ref

val ref : ’a -> ’a ref

val ! : aref > ’a

val := : ’a ref * ’a -> unit

37/49



References

«F
38 /49



References

- val r = ref 10;

«F
38 /49



References

- val r = ref 10;
val r = ref 10 : int ref

Lr |

O
:

10

38 /49



References

- val r = ref 10;
val r = ref 10 : int ref
- Ir;

Lr |

O
:

10

38 /49



References

- val r = ref 10;

val r = ref 10 : int ref
- Ir;

val it = 10 : int

Lr |

O
:

10

38 /49



References

- val r = ref 10;

val r = ref 10 : int ref
- Ir;

val it = 10 : int

- r = lIr + 1;

Lr |

O
:

10

38 /49



References

- val r = ref 10;

val r = ref 10 : int ref
- Ir;

val it = 10 : int

- r = lIr + 1;

val it = () : unit

Lr |

O
:

38 /49



References

- val r = ref 10;
val r = ref 10 : int ref

- Ir;

val it = 10 : int
- r = lIr + 1;

val it = () : unit
- Ir;

Lr |

O
:

38 /49



- val r

References

= ref 10;
ref 10 : int ref

= 10 : int
'r + 1;

= () : unit
=11 : int

Lr |

O
:

38 /49



Suspensions

structure Susp :> SUSP =
struct

datatype ’a delay = Value of ’a
| Delay of unit -> ’a

type ’a susp = ’a delay ref

fun delay f = ref(Delay f)

]
»

fun force(ref (Value x))
| force(r as ref(Delay f))
let val x = f()
in r := Value x; x end

end;

39 /49



Streams

signature STREAM =
sig

type ’a stream

val make : ’a * (’a -> ’b * ’a) -> ’b stream

val get : ’a stream -> ’a * ’a stream

val takeTolList : ’a stream * int -> ’a list

val drop : ’a stream * int -> ’a stream

val rangeTolList : ’a stream * int * int -> ’a list
end;

40 /49



Streams

Stream O

Value(xo, Stream O ) ‘

—

Value(x , Stream O ) ‘

—

Delay(fn() =>---) ‘

41/49



Streams

structure Stream :> STREAM =
struct

datatype ’a stream = Stream of (’a * ’a stream)Susp.susp

fun make(state, f)
let fun g state =

Stream
(Susp.delay
(fn O =

let val (x, state) = f state
in (x, g state) end))
in g state end

fun get(Stream x) = Susp.force x

42/49



Streams

fun takeToList(stm, n) =
let fun tke(stm, n, xs) =
if n <= 0
then rev xs

else let val (x, stm) = get stm

in tke(stm, n -
in tke(stm, n, nil) end

fun drop(stm, n) =
if n <=0
then stm
else let val (_, stm) = get stm
in drop(stm, n - 1) end

1, x

:: xs) end

43 /49



Streams

fun rangeToList(stm, n, m) =
if n <= 0 orelse m < n
then nil
else takeTolList(drop(stm, n - 1), m - n + 1)

end;

44/49



Primes in SML: VI

45 /49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

45 /49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);
val primes = - : int Stream.stream

45 /49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);
val primes = - : int Stream.stream
- val stm = primes;

45 /49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

val primes = - : int Stream.stream
- val stm = primes;
val stm = - : int Stream.stream

45 /49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

val primes = - : int Stream.stream
- val stm = primes;
val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

45 /49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

val primes = - : int Stream.stream
- val stm = primes;
val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;
val x = 2 : int
val stm = - : int Stream.stream

45 /49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

val primes = - : int Stream.stream
- val stm = primes;
val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;
val x = 2 : int

val stm = - : int Stream.stream
- val (x, stm) = Stream.get stm;

45 /49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

val primes = - : int Stream.stream
- val stm = primes;
val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;
val x = 2 : int
val stm = - : int Stream.stream
- val (x, stm) = Stream.get stm;
val x = 3 : int
val stm = - : int Stream.stream

45 /49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

val primes = - : int Stream.stream
- val stm = primes;
val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;
val x = 2 : int

val stm = - : int Stream.stream
- val (x, stm) = Stream.get stm;
val x = 3 : int

val stm = - : int Stream.stream
- val (x, stm) = Stream.get stm;

45 /49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);
val primes = - : int Stream.stream
- val stm = primes;

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;
val x = 2 : int

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;
val x = 3 : int

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;
val x = 5 : int

val stm = - : int Stream.stream

45 /49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);
val primes = - : int Stream.stream
- val stm = primes;

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;
val x = 2 : int

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;
val x = 3 : int

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;
val x = 5 : int

val stm = - : int Stream.stream

- val (x, _) = Stream.get primes;

45 /49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

val primes = - : int Stream.stream
- val stm = primes;
val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;
val x = 2 : int

val stm = - : int Stream.stream
- val (x, stm) = Stream.get stm;
val x = 3 : int

val stm = - : int Stream.stream
- val (x, stm) = Stream.get stm;
val x = 5 : int

val stm = - : int Stream.stream
- val (x, _) = Stream.get primes;
val x = 2 : int

45 /49



Primes in SML: VI

46 /49



Primes in SML: VI

- Stream.rangeToList(primes, 1, 10);

46 /49



Primes in SML: VI

- Stream.rangeToList(primes, 1, 10);
val it = [2,3,5,7,11,13,17,19,23,29] : int list

46 /49



Primes in SML: VI

- Stream.rangeToList(primes, 1, 10);
val it = [2,3,5,7,11,13,17,19,23,29] : int list

- Stream.rangeToList(primes, 50000, 50010) ;

46 /49



Primes in SML: VI

- Stream.rangeToList(primes, 1, 10);
val it = [2,3,5,7,11,13,17,19,23,29] : int list
- Stream.rangeToList(primes, 50000, 50010) ;

val it =
[611953,611957,611969,611977,611993,611999,612011,
612023,612037,612041,612043] : int list

46 /49



Primes in SML: VI

- Stream.rangeToList(primes, 1, 10);

val it = [2,3,5,7,11,13,17,19,23,29] : int list

- Stream.rangeToList(primes, 50000, 50010) ;

val it =
[611953,611957,611969,611977,611993,611999,612011,
612023,612037,612041,612043] : int list

- Stream.rangeToList(primes, 40000, 40010);

46 /49



Primes in SML: VI

- Stream.rangeToList(primes, 1, 10);

val it = [2,3,5,7,11,13,17,19,23,29] : int list

- Stream.rangeToList(primes, 50000, 50010) ;

val it =
[611953,611957,611969,611977,611993,611999,612011,
612023,612037,612041,612043] : int list

- Stream.rangeToList(primes, 40000, 40010);

val it =
[479909,479939,479951,479953,479957,479971,480013,
480017,480019,480023,480043] : int list

46 /49



Primes in SML: VI

Twin primes are primes that are separated by 2, like 3/5, 5/7 and
11/13. We can write a stream transformer that turns the stream
of all primes into the stream of all twin pairs:

47 /49



Primes in SML: VI

Twin primes are primes that are separated by 2, like 3/5, 5/7 and
11/13. We can write a stream transformer that turns the stream
of all primes into the stream of all twin pairs:

signature TWINS =
sig

val twins : int Stream.stream -> (int * int) Stream.stream

end;

47/49



Primes in SML: VI

structure Twins :> TWINS =
struct

fun twins stm =
let val init : int * int Stream.stream =

Stream.get stm

fun next (n, stm) =
let val (m, stm) = Stream.get stm
in ifm=n + 2
then ((n, m), (m, stm))
else next (m, stm)
end
in Stream.make(init, next) end

end;

48 /49



Primes in SML: VI

49/49



Primes in SML: VI

- val twins = Twins.twins primes;

49 /49



Primes in SML: VI

- val twins = Twins.twins primes;
val twins = - : (int * int) Stream.stream

49 /49



Primes in SML: VI

- val twins = Twins.twins primes;
val twins = - : (int * int) Stream.stream
- Stream.rangeToList(twins, 1, 10);

49 /49



Primes in SML: VI

- val twins = Twins.twins primes;

val twins = - : (int * int) Stream.stream
- Stream.rangeToList(twins, 1, 10);
val it =

[(3,5),(5,7),(11,13),(17,19), (29,31), (41,43),
(59,61),(71,73),(101,103), (107,109)] :
(int * int) list

49 /49



Primes in SML: VI

- val twins = Twins.twins primes;

val twins = - : (int * int) Stream.stream
- Stream.rangeToList(twins, 1, 10);
val it =

[(3,5),(5,7),(11,13),(17,19),(29,31), (41,43),
(59,61),(71,73),(101,103),(107,109)] :
(int * int) list
- Stream.rangeToList(twins, 10000, 10010);

49 /49



Primes in SML: VI

- val twins = Twins.twins primes;

val twins = - : (int * int) Stream.stream
- Stream.rangeToList(twins, 1, 10);
val it =

[(3,5),(5,7),(11,13),(17,19),(29,31), (41,43),
(59,61),(71,73),(101,103),(107,109)] :
(int * int) list
- Stream.rangeToList(twins, 10000, 10010);
val it =
[(1260989,1260991), (1261079, 1261081),
(1261259,1261261), (1261487,1261489) ,
(1261697,1261699) , (1261829, 1261831) ,
(1261889,1261891) , (1262081, 1262083) ,
(1262099,1262101), (1262291, 1262293) ,
(1262621,1262623)] : (int * int) list

49 /49



