
Getting Started with Typed Functional

Programming Using Standard ML

Alley Stoughton

Spring 2022

1 / 49



Standard ML

Standard ML:

2 / 49



Standard ML

Standard ML:

• is strongly typed, featuring type inference

2 / 49



Standard ML

Standard ML:

• is strongly typed, featuring type inference

• is statically scoped

2 / 49



Standard ML

Standard ML:

• is strongly typed, featuring type inference

• is statically scoped

• uses eager evaluation (but lazy evaluation can be simulated)

2 / 49



Standard ML

Standard ML:

• is strongly typed, featuring type inference

• is statically scoped

• uses eager evaluation (but lazy evaluation can be simulated)

• is mostly functional

2 / 49



Standard ML

Standard ML:

• is strongly typed, featuring type inference

• is statically scoped

• uses eager evaluation (but lazy evaluation can be simulated)

• is mostly functional
• imperative features, but downplayed

2 / 49



Standard ML

Standard ML:

• is strongly typed, featuring type inference

• is statically scoped

• uses eager evaluation (but lazy evaluation can be simulated)

• is mostly functional
• imperative features, but downplayed
• data structures immutable, so sharing happens automatically

2 / 49



Standard ML

Standard ML:

• is strongly typed, featuring type inference

• is statically scoped

• uses eager evaluation (but lazy evaluation can be simulated)

• is mostly functional
• imperative features, but downplayed
• data structures immutable, so sharing happens automatically

• has a powerful module language

2 / 49



Standard ML

Standard ML:

• is strongly typed, featuring type inference

• is statically scoped

• uses eager evaluation (but lazy evaluation can be simulated)

• is mostly functional
• imperative features, but downplayed
• data structures immutable, so sharing happens automatically

• has a powerful module language

• has moderately good libraries

2 / 49



Compilers

There are two main compilers available:

3 / 49



Compilers

There are two main compilers available:

• Standard ML of New Jersey (SML/NJ):

3 / 49



Compilers

There are two main compilers available:

• Standard ML of New Jersey (SML/NJ):
• interactive front end

3 / 49



Compilers

There are two main compilers available:

• Standard ML of New Jersey (SML/NJ):
• interactive front end
• excellent support for separate compilation using the

Compilation Manager (CM)

3 / 49



Compilers

There are two main compilers available:

• Standard ML of New Jersey (SML/NJ):
• interactive front end
• excellent support for separate compilation using the

Compilation Manager (CM)
• generates heap images, which can be loaded into executables

3 / 49



Compilers

There are two main compilers available:

• Standard ML of New Jersey (SML/NJ):
• interactive front end
• excellent support for separate compilation using the

Compilation Manager (CM)
• generates heap images, which can be loaded into executables

• MLton:

3 / 49



Compilers

There are two main compilers available:

• Standard ML of New Jersey (SML/NJ):
• interactive front end
• excellent support for separate compilation using the

Compilation Manager (CM)
• generates heap images, which can be loaded into executables

• MLton:
• whole program optimizing compiler

3 / 49



Compilers

There are two main compilers available:

• Standard ML of New Jersey (SML/NJ):
• interactive front end
• excellent support for separate compilation using the

Compilation Manager (CM)
• generates heap images, which can be loaded into executables

• MLton:
• whole program optimizing compiler
• generates executables

3 / 49



Compilers

There are two main compilers available:

• Standard ML of New Jersey (SML/NJ):
• interactive front end
• excellent support for separate compilation using the

Compilation Manager (CM)
• generates heap images, which can be loaded into executables

• MLton:
• whole program optimizing compiler
• generates executables
• development normally done using SML/NJ

3 / 49



Examples

These slides and the code for my examples—plus links to more
resources on Standard ML—are available on the web at:

https://alleystoughton.us/getting-started-typed-fp-sml

4 / 49

https://alleystoughton.us/getting-started-typed-fp-sml


Using SML as a Calculator

-

5 / 49



Using SML as a Calculator

- 5 + 4;

5 / 49



Using SML as a Calculator

- 5 + 4;

val it = 9 : int

-

5 / 49



Using SML as a Calculator

- 5 + 4;

val it = 9 : int

- if 3 + it < 12

5 / 49



Using SML as a Calculator

- 5 + 4;

val it = 9 : int

- if 3 + it < 12

=

5 / 49



Using SML as a Calculator

- 5 + 4;

val it = 9 : int

- if 3 + it < 12

= then it mod 3

5 / 49



Using SML as a Calculator

- 5 + 4;

val it = 9 : int

- if 3 + it < 12

= then it mod 3

=

5 / 49



Using SML as a Calculator

- 5 + 4;

val it = 9 : int

- if 3 + it < 12

= then it mod 3

= else it div 3;

5 / 49



Using SML as a Calculator

- 5 + 4;

val it = 9 : int

- if 3 + it < 12

= then it mod 3

= else it div 3;

val it = 3 : int

-

5 / 49



Using SML as a Calculator

- 5 + 4;

val it = 9 : int

- if 3 + it < 12

= then it mod 3

= else it div 3;

val it = 3 : int

- [1, 2] @ [3, 4];

5 / 49



Using SML as a Calculator

- 5 + 4;

val it = 9 : int

- if 3 + it < 12

= then it mod 3

= else it div 3;

val it = 3 : int

- [1, 2] @ [3, 4];

val it = [1,2,3,4] : int list

-

5 / 49



Using SML as a Calculator

- 5 + 4;

val it = 9 : int

- if 3 + it < 12

= then it mod 3

= else it div 3;

val it = 3 : int

- [1, 2] @ [3, 4];

val it = [1,2,3,4] : int list

- 0 :: it;

5 / 49



Using SML as a Calculator

- 5 + 4;

val it = 9 : int

- if 3 + it < 12

= then it mod 3

= else it div 3;

val it = 3 : int

- [1, 2] @ [3, 4];

val it = [1,2,3,4] : int list

- 0 :: it;

val it = [0,1,2,3,4] : int list

-

5 / 49



Using SML as a Calculator

- 5 + 4;

val it = 9 : int

- if 3 + it < 12

= then it mod 3

= else it div 3;

val it = 3 : int

- [1, 2] @ [3, 4];

val it = [1,2,3,4] : int list

- 0 :: it;

val it = [0,1,2,3,4] : int list

- rev it;

5 / 49



Using SML as a Calculator

- 5 + 4;

val it = 9 : int

- if 3 + it < 12

= then it mod 3

= else it div 3;

val it = 3 : int

- [1, 2] @ [3, 4];

val it = [1,2,3,4] : int list

- 0 :: it;

val it = [0,1,2,3,4] : int list

- rev it;

val it = [4,3,2,1,0] : int list

-

5 / 49



Using SML as a Calculator

- 5 + 4;

val it = 9 : int

- if 3 + it < 12

= then it mod 3

= else it div 3;

val it = 3 : int

- [1, 2] @ [3, 4];

val it = [1,2,3,4] : int list

- 0 :: it;

val it = [0,1,2,3,4] : int list

- rev it;

val it = [4,3,2,1,0] : int list

- tl it;

5 / 49



Using SML as a Calculator

- 5 + 4;

val it = 9 : int

- if 3 + it < 12

= then it mod 3

= else it div 3;

val it = 3 : int

- [1, 2] @ [3, 4];

val it = [1,2,3,4] : int list

- 0 :: it;

val it = [0,1,2,3,4] : int list

- rev it;

val it = [4,3,2,1,0] : int list

- tl it;

val it = [3,2,1,0] : int list

-

5 / 49



Using SML as a Calculator

- 5 + 4;

val it = 9 : int

- if 3 + it < 12

= then it mod 3

= else it div 3;

val it = 3 : int

- [1, 2] @ [3, 4];

val it = [1,2,3,4] : int list

- 0 :: it;

val it = [0,1,2,3,4] : int list

- rev it;

val it = [4,3,2,1,0] : int list

- tl it;

val it = [3,2,1,0] : int list

- hd it;

5 / 49



Using SML as a Calculator

- 5 + 4;

val it = 9 : int

- if 3 + it < 12

= then it mod 3

= else it div 3;

val it = 3 : int

- [1, 2] @ [3, 4];

val it = [1,2,3,4] : int list

- 0 :: it;

val it = [0,1,2,3,4] : int list

- rev it;

val it = [4,3,2,1,0] : int list

- tl it;

val it = [3,2,1,0] : int list

- hd it;

val it = 3 : int

5 / 49



Using SML as a Calculator

-

6 / 49



Using SML as a Calculator

- (4 * 9, 5 < 7);

6 / 49



Using SML as a Calculator

- (4 * 9, 5 < 7);

val it = (36,true) : int * bool

6 / 49



Declarations and Local Declarations

-

7 / 49



Declarations and Local Declarations

- val x = 4 + 8;

7 / 49



Declarations and Local Declarations

- val x = 4 + 8;

val x = 12 : int

-

7 / 49



Declarations and Local Declarations

- val x = 4 + 8;

val x = 12 : int

- val y = x * x;

7 / 49



Declarations and Local Declarations

- val x = 4 + 8;

val x = 12 : int

- val y = x * x;

val y = 144 : int

-

7 / 49



Declarations and Local Declarations

- val x = 4 + 8;

val x = 12 : int

- val y = x * x;

val y = 144 : int

- let val x = x + y

7 / 49



Declarations and Local Declarations

- val x = 4 + 8;

val x = 12 : int

- val y = x * x;

val y = 144 : int

- let val x = x + y

=

7 / 49



Declarations and Local Declarations

- val x = 4 + 8;

val x = 12 : int

- val y = x * x;

val y = 144 : int

- let val x = x + y

= in (x, 2 * x, 3 * x) end;

7 / 49



Declarations and Local Declarations

- val x = 4 + 8;

val x = 12 : int

- val y = x * x;

val y = 144 : int

- let val x = x + y

= in (x, 2 * x, 3 * x) end;

val it = (156,312,468) : int * int * int

-

7 / 49



Declarations and Local Declarations

- val x = 4 + 8;

val x = 12 : int

- val y = x * x;

val y = 144 : int

- let val x = x + y

= in (x, 2 * x, 3 * x) end;

val it = (156,312,468) : int * int * int

- #2 it;

7 / 49



Declarations and Local Declarations

- val x = 4 + 8;

val x = 12 : int

- val y = x * x;

val y = 144 : int

- let val x = x + y

= in (x, 2 * x, 3 * x) end;

val it = (156,312,468) : int * int * int

- #2 it;

val it = 312 : int

7 / 49



Function Definitions

-

8 / 49



Function Definitions

- fun fact n =

8 / 49



Function Definitions

- fun fact n =

=

8 / 49



Function Definitions

- fun fact n =

= if n = 0

8 / 49



Function Definitions

- fun fact n =

= if n = 0

=

8 / 49



Function Definitions

- fun fact n =

= if n = 0

= then 1

8 / 49



Function Definitions

- fun fact n =

= if n = 0

= then 1

=

8 / 49



Function Definitions

- fun fact n =

= if n = 0

= then 1

= else n * fact(n - 1);

8 / 49



Function Definitions

- fun fact n =

= if n = 0

= then 1

= else n * fact(n - 1);

val fact = fn : int -> int

-

8 / 49



Function Definitions

- fun fact n =

= if n = 0

= then 1

= else n * fact(n - 1);

val fact = fn : int -> int

- fact 6;

8 / 49



Function Definitions

- fun fact n =

= if n = 0

= then 1

= else n * fact(n - 1);

val fact = fn : int -> int

- fact 6;

val it = 720 : int

8 / 49



Function Definitions and Pattern Matching

-

9 / 49



Function Definitions and Pattern Matching

- fun fact n =

9 / 49



Function Definitions and Pattern Matching

- fun fact n =

=

9 / 49



Function Definitions and Pattern Matching

- fun fact n =

= case n of

9 / 49



Function Definitions and Pattern Matching

- fun fact n =

= case n of

=

9 / 49



Function Definitions and Pattern Matching

- fun fact n =

= case n of

= 0 => 1

9 / 49



Function Definitions and Pattern Matching

- fun fact n =

= case n of

= 0 => 1

=

9 / 49



Function Definitions and Pattern Matching

- fun fact n =

= case n of

= 0 => 1

= | n => n * fact(n - 1);

9 / 49



Function Definitions and Pattern Matching

- fun fact n =

= case n of

= 0 => 1

= | n => n * fact(n - 1);

val fact = fn : int -> int

-

9 / 49



Function Definitions and Pattern Matching

- fun fact n =

= case n of

= 0 => 1

= | n => n * fact(n - 1);

val fact = fn : int -> int

- fact 7;

9 / 49



Function Definitions and Pattern Matching

- fun fact n =

= case n of

= 0 => 1

= | n => n * fact(n - 1);

val fact = fn : int -> int

- fact 7;

val it = 5040 : int

-

9 / 49



Function Definitions and Pattern Matching

- fun fact n =

= case n of

= 0 => 1

= | n => n * fact(n - 1);

val fact = fn : int -> int

- fact 7;

val it = 5040 : int

- fun fact 0 = 1

9 / 49



Function Definitions and Pattern Matching

- fun fact n =

= case n of

= 0 => 1

= | n => n * fact(n - 1);

val fact = fn : int -> int

- fact 7;

val it = 5040 : int

- fun fact 0 = 1

=

9 / 49



Function Definitions and Pattern Matching

- fun fact n =

= case n of

= 0 => 1

= | n => n * fact(n - 1);

val fact = fn : int -> int

- fact 7;

val it = 5040 : int

- fun fact 0 = 1

= | fact n = n * fact(n - 1);

9 / 49



Function Definitions and Pattern Matching

- fun fact n =

= case n of

= 0 => 1

= | n => n * fact(n - 1);

val fact = fn : int -> int

- fact 7;

val it = 5040 : int

- fun fact 0 = 1

= | fact n = n * fact(n - 1);

val fact = fn : int -> int

-

9 / 49



Function Definitions and Pattern Matching

- fun fact n =

= case n of

= 0 => 1

= | n => n * fact(n - 1);

val fact = fn : int -> int

- fact 7;

val it = 5040 : int

- fun fact 0 = 1

= | fact n = n * fact(n - 1);

val fact = fn : int -> int

- fact 8;

9 / 49



Function Definitions and Pattern Matching

- fun fact n =

= case n of

= 0 => 1

= | n => n * fact(n - 1);

val fact = fn : int -> int

- fact 7;

val it = 5040 : int

- fun fact 0 = 1

= | fact n = n * fact(n - 1);

val fact = fn : int -> int

- fact 8;

val it = 40320 : int

9 / 49



Tail Recursion

-

Compilers for functional programming languages translate tail

recursion into loops, not allocating stack frames.

10 / 49



Tail Recursion

- fun fact n =

Compilers for functional programming languages translate tail

recursion into loops, not allocating stack frames.

10 / 49



Tail Recursion

- fun fact n =

=

Compilers for functional programming languages translate tail

recursion into loops, not allocating stack frames.

10 / 49



Tail Recursion

- fun fact n =

= let fun fct(0, m) = m

Compilers for functional programming languages translate tail

recursion into loops, not allocating stack frames.

10 / 49



Tail Recursion

- fun fact n =

= let fun fct(0, m) = m

=

Compilers for functional programming languages translate tail

recursion into loops, not allocating stack frames.

10 / 49



Tail Recursion

- fun fact n =

= let fun fct(0, m) = m

= | fct(n, m) = fct(n - 1, n * m)

Compilers for functional programming languages translate tail

recursion into loops, not allocating stack frames.

10 / 49



Tail Recursion

- fun fact n =

= let fun fct(0, m) = m

= | fct(n, m) = fct(n - 1, n * m)

=

Compilers for functional programming languages translate tail

recursion into loops, not allocating stack frames.

10 / 49



Tail Recursion

- fun fact n =

= let fun fct(0, m) = m

= | fct(n, m) = fct(n - 1, n * m)

= in fct(n, 1) end;

Compilers for functional programming languages translate tail

recursion into loops, not allocating stack frames.

10 / 49



Tail Recursion

- fun fact n =

= let fun fct(0, m) = m

= | fct(n, m) = fct(n - 1, n * m)

= in fct(n, 1) end;

val fact = fn : int -> int

-

Compilers for functional programming languages translate tail

recursion into loops, not allocating stack frames.

10 / 49



Tail Recursion

- fun fact n =

= let fun fct(0, m) = m

= | fct(n, m) = fct(n - 1, n * m)

= in fct(n, 1) end;

val fact = fn : int -> int

- fact 6;

Compilers for functional programming languages translate tail

recursion into loops, not allocating stack frames.

10 / 49



Tail Recursion

- fun fact n =

= let fun fct(0, m) = m

= | fct(n, m) = fct(n - 1, n * m)

= in fct(n, 1) end;

val fact = fn : int -> int

- fact 6;

val it = 720 : int

Compilers for functional programming languages translate tail

recursion into loops, not allocating stack frames.

10 / 49



Polymorphism and List Processing Functions

-

11 / 49



Polymorphism and List Processing Functions

- fun rev xs =

11 / 49



Polymorphism and List Processing Functions

- fun rev xs =

=

11 / 49



Polymorphism and List Processing Functions

- fun rev xs =

= if null xs

11 / 49



Polymorphism and List Processing Functions

- fun rev xs =

= if null xs

=

11 / 49



Polymorphism and List Processing Functions

- fun rev xs =

= if null xs

= then nil

11 / 49



Polymorphism and List Processing Functions

- fun rev xs =

= if null xs

= then nil

=

11 / 49



Polymorphism and List Processing Functions

- fun rev xs =

= if null xs

= then nil

= else rev(tl xs) @ [hd xs];

11 / 49



Polymorphism and List Processing Functions

- fun rev xs =

= if null xs

= then nil

= else rev(tl xs) @ [hd xs];

val rev = fn : ’a list -> ’a list

-

11 / 49



Polymorphism and List Processing Functions

- fun rev xs =

= if null xs

= then nil

= else rev(tl xs) @ [hd xs];

val rev = fn : ’a list -> ’a list

- rev[1, 3, 5, 7];

11 / 49



Polymorphism and List Processing Functions

- fun rev xs =

= if null xs

= then nil

= else rev(tl xs) @ [hd xs];

val rev = fn : ’a list -> ’a list

- rev[1, 3, 5, 7];

val it = [7,5,3,1] : int list

-

11 / 49



Polymorphism and List Processing Functions

- fun rev xs =

= if null xs

= then nil

= else rev(tl xs) @ [hd xs];

val rev = fn : ’a list -> ’a list

- rev[1, 3, 5, 7];

val it = [7,5,3,1] : int list

- fun rev nil = nil

11 / 49



Polymorphism and List Processing Functions

- fun rev xs =

= if null xs

= then nil

= else rev(tl xs) @ [hd xs];

val rev = fn : ’a list -> ’a list

- rev[1, 3, 5, 7];

val it = [7,5,3,1] : int list

- fun rev nil = nil

=

11 / 49



Polymorphism and List Processing Functions

- fun rev xs =

= if null xs

= then nil

= else rev(tl xs) @ [hd xs];

val rev = fn : ’a list -> ’a list

- rev[1, 3, 5, 7];

val it = [7,5,3,1] : int list

- fun rev nil = nil

= | rev (x :: xs) = rev xs @ [x];

11 / 49



Polymorphism and List Processing Functions

- fun rev xs =

= if null xs

= then nil

= else rev(tl xs) @ [hd xs];

val rev = fn : ’a list -> ’a list

- rev[1, 3, 5, 7];

val it = [7,5,3,1] : int list

- fun rev nil = nil

= | rev (x :: xs) = rev xs @ [x];

val rev = fn : ’a list -> ’a list

-

11 / 49



Polymorphism and List Processing Functions

- fun rev xs =

= if null xs

= then nil

= else rev(tl xs) @ [hd xs];

val rev = fn : ’a list -> ’a list

- rev[1, 3, 5, 7];

val it = [7,5,3,1] : int list

- fun rev nil = nil

= | rev (x :: xs) = rev xs @ [x];

val rev = fn : ’a list -> ’a list

- rev[1, 3, 5, 7];

11 / 49



Polymorphism and List Processing Functions

- fun rev xs =

= if null xs

= then nil

= else rev(tl xs) @ [hd xs];

val rev = fn : ’a list -> ’a list

- rev[1, 3, 5, 7];

val it = [7,5,3,1] : int list

- fun rev nil = nil

= | rev (x :: xs) = rev xs @ [x];

val rev = fn : ’a list -> ’a list

- rev[1, 3, 5, 7];

val it = [7,5,3,1] : int list

11 / 49



List Processing Functions and Tail Recursion

-

12 / 49



List Processing Functions and Tail Recursion

- fun rev xs =

12 / 49



List Processing Functions and Tail Recursion

- fun rev xs =

=

12 / 49



List Processing Functions and Tail Recursion

- fun rev xs =

= let fun rv(nil, ys) = ys

12 / 49



List Processing Functions and Tail Recursion

- fun rev xs =

= let fun rv(nil, ys) = ys

=

12 / 49



List Processing Functions and Tail Recursion

- fun rev xs =

= let fun rv(nil, ys) = ys

= | rv(x :: xs, ys) = rv(xs, x :: ys)

12 / 49



List Processing Functions and Tail Recursion

- fun rev xs =

= let fun rv(nil, ys) = ys

= | rv(x :: xs, ys) = rv(xs, x :: ys)

=

12 / 49



List Processing Functions and Tail Recursion

- fun rev xs =

= let fun rv(nil, ys) = ys

= | rv(x :: xs, ys) = rv(xs, x :: ys)

= in rv(xs, nil) end;

12 / 49



List Processing Functions and Tail Recursion

- fun rev xs =

= let fun rv(nil, ys) = ys

= | rv(x :: xs, ys) = rv(xs, x :: ys)

= in rv(xs, nil) end;

val rev = fn : ’a list -> ’a list

-

12 / 49



List Processing Functions and Tail Recursion

- fun rev xs =

= let fun rv(nil, ys) = ys

= | rv(x :: xs, ys) = rv(xs, x :: ys)

= in rv(xs, nil) end;

val rev = fn : ’a list -> ’a list

- rev[1, 3, 5, 7];

12 / 49



List Processing Functions and Tail Recursion

- fun rev xs =

= let fun rv(nil, ys) = ys

= | rv(x :: xs, ys) = rv(xs, x :: ys)

= in rv(xs, nil) end;

val rev = fn : ’a list -> ’a list

- rev[1, 3, 5, 7];

val it = [7,5,3,1] : int list

12 / 49



Anonymous and Higher-order Functions

-

13 / 49



Anonymous and Higher-order Functions

- fn x => x + 1;

13 / 49



Anonymous and Higher-order Functions

- fn x => x + 1;

val it = fn : int -> int

-

13 / 49



Anonymous and Higher-order Functions

- fn x => x + 1;

val it = fn : int -> int

- it(3 + 4);

13 / 49



Anonymous and Higher-order Functions

- fn x => x + 1;

val it = fn : int -> int

- it(3 + 4);

val it = 8 : int

-

13 / 49



Anonymous and Higher-order Functions

- fn x => x + 1;

val it = fn : int -> int

- it(3 + 4);

val it = 8 : int

- map;

13 / 49



Anonymous and Higher-order Functions

- fn x => x + 1;

val it = fn : int -> int

- it(3 + 4);

val it = 8 : int

- map;

val it = fn : (’a -> ’b) -> ’a list -> ’b list

-

13 / 49



Anonymous and Higher-order Functions

- fn x => x + 1;

val it = fn : int -> int

- it(3 + 4);

val it = 8 : int

- map;

val it = fn : (’a -> ’b) -> ’a list -> ’b list

- map (fn x => x + 1) [1, 3, 5];

13 / 49



Anonymous and Higher-order Functions

- fn x => x + 1;

val it = fn : int -> int

- it(3 + 4);

val it = 8 : int

- map;

val it = fn : (’a -> ’b) -> ’a list -> ’b list

- map (fn x => x + 1) [1, 3, 5];

val it = [2,4,6] : int list

13 / 49



Anonymous and Higher-order Functions

-

14 / 49



Anonymous and Higher-order Functions

- List.exists;

14 / 49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool

-

14 / 49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool

- List.exists

14 / 49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool

- List.exists

=

14 / 49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool

- List.exists

= (fn x => x mod 2 = 0)

14 / 49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool

- List.exists

= (fn x => x mod 2 = 0)

=

14 / 49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool

- List.exists

= (fn x => x mod 2 = 0)

= [1, 2, 3, 4, 5, 6, 7];

14 / 49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool

- List.exists

= (fn x => x mod 2 = 0)

= [1, 2, 3, 4, 5, 6, 7];

val it = true : bool

-

14 / 49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool

- List.exists

= (fn x => x mod 2 = 0)

= [1, 2, 3, 4, 5, 6, 7];

val it = true : bool

- List.filter;

14 / 49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool

- List.exists

= (fn x => x mod 2 = 0)

= [1, 2, 3, 4, 5, 6, 7];

val it = true : bool

- List.filter;

val it = fn : (’a -> bool) -> ’a list -> ’a list

-

14 / 49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool

- List.exists

= (fn x => x mod 2 = 0)

= [1, 2, 3, 4, 5, 6, 7];

val it = true : bool

- List.filter;

val it = fn : (’a -> bool) -> ’a list -> ’a list

- List.filter

14 / 49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool

- List.exists

= (fn x => x mod 2 = 0)

= [1, 2, 3, 4, 5, 6, 7];

val it = true : bool

- List.filter;

val it = fn : (’a -> bool) -> ’a list -> ’a list

- List.filter

=

14 / 49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool

- List.exists

= (fn x => x mod 2 = 0)

= [1, 2, 3, 4, 5, 6, 7];

val it = true : bool

- List.filter;

val it = fn : (’a -> bool) -> ’a list -> ’a list

- List.filter

= (fn x => x mod 2 = 0)

14 / 49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool

- List.exists

= (fn x => x mod 2 = 0)

= [1, 2, 3, 4, 5, 6, 7];

val it = true : bool

- List.filter;

val it = fn : (’a -> bool) -> ’a list -> ’a list

- List.filter

= (fn x => x mod 2 = 0)

=

14 / 49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool

- List.exists

= (fn x => x mod 2 = 0)

= [1, 2, 3, 4, 5, 6, 7];

val it = true : bool

- List.filter;

val it = fn : (’a -> bool) -> ’a list -> ’a list

- List.filter

= (fn x => x mod 2 = 0)

= [1, 2, 3, 4, 5, 6, 7];

14 / 49



Anonymous and Higher-order Functions

- List.exists;

[autoloading]

[autoloading done]

val it = fn : (’a -> bool) -> ’a list -> bool

- List.exists

= (fn x => x mod 2 = 0)

= [1, 2, 3, 4, 5, 6, 7];

val it = true : bool

- List.filter;

val it = fn : (’a -> bool) -> ’a list -> ’a list

- List.filter

= (fn x => x mod 2 = 0)

= [1, 2, 3, 4, 5, 6, 7];

val it = [2,4,6] : int list

14 / 49



Option Types

-

15 / 49



Option Types

- NONE;

15 / 49



Option Types

- NONE;

val it = NONE : ’a option

-

15 / 49



Option Types

- NONE;

val it = NONE : ’a option

- SOME 5;

15 / 49



Option Types

- NONE;

val it = NONE : ’a option

- SOME 5;

val it = SOME 5 : int option

-

15 / 49



Option Types

- NONE;

val it = NONE : ’a option

- SOME 5;

val it = SOME 5 : int option

- SOME true;

15 / 49



Option Types

- NONE;

val it = NONE : ’a option

- SOME 5;

val it = SOME 5 : int option

- SOME true;

val it = SOME true : bool option

-

15 / 49



Option Types

- NONE;

val it = NONE : ’a option

- SOME 5;

val it = SOME 5 : int option

- SOME true;

val it = SOME true : bool option

- valOf(SOME false);

15 / 49



Option Types

- NONE;

val it = NONE : ’a option

- SOME 5;

val it = SOME 5 : int option

- SOME true;

val it = SOME true : bool option

- valOf(SOME false);

val it = false : bool

15 / 49



Option Types

-

16 / 49



Option Types

- fun firstPos(f, ys) =

16 / 49



Option Types

- fun firstPos(f, ys) =

=

16 / 49



Option Types

- fun firstPos(f, ys) =

= let fun first(_, nil) = NONE

16 / 49



Option Types

- fun firstPos(f, ys) =

= let fun first(_, nil) = NONE

=

16 / 49



Option Types

- fun firstPos(f, ys) =

= let fun first(_, nil) = NONE

= | first(i, y :: ys) =

16 / 49



Option Types

- fun firstPos(f, ys) =

= let fun first(_, nil) = NONE

= | first(i, y :: ys) =

=

16 / 49



Option Types

- fun firstPos(f, ys) =

= let fun first(_, nil) = NONE

= | first(i, y :: ys) =

= if f y

16 / 49



Option Types

- fun firstPos(f, ys) =

= let fun first(_, nil) = NONE

= | first(i, y :: ys) =

= if f y

=

16 / 49



Option Types

- fun firstPos(f, ys) =

= let fun first(_, nil) = NONE

= | first(i, y :: ys) =

= if f y

= then SOME i

16 / 49



Option Types

- fun firstPos(f, ys) =

= let fun first(_, nil) = NONE

= | first(i, y :: ys) =

= if f y

= then SOME i

=

16 / 49



Option Types

- fun firstPos(f, ys) =

= let fun first(_, nil) = NONE

= | first(i, y :: ys) =

= if f y

= then SOME i

= else first(i + 1, ys)

16 / 49



Option Types

- fun firstPos(f, ys) =

= let fun first(_, nil) = NONE

= | first(i, y :: ys) =

= if f y

= then SOME i

= else first(i + 1, ys)

=

16 / 49



Option Types

- fun firstPos(f, ys) =

= let fun first(_, nil) = NONE

= | first(i, y :: ys) =

= if f y

= then SOME i

= else first(i + 1, ys)

= in first(0, ys) end;

16 / 49



Option Types

- fun firstPos(f, ys) =

= let fun first(_, nil) = NONE

= | first(i, y :: ys) =

= if f y

= then SOME i

= else first(i + 1, ys)

= in first(0, ys) end;

val firstPos = fn :

(’a -> bool) * ’a list -> int option

-

16 / 49



Option Types

- fun firstPos(f, ys) =

= let fun first(_, nil) = NONE

= | first(i, y :: ys) =

= if f y

= then SOME i

= else first(i + 1, ys)

= in first(0, ys) end;

val firstPos = fn :

(’a -> bool) * ’a list -> int option

- firstPos(fn x => x = 4, [1, 3, 4, 5, 4, 7]);

16 / 49



Option Types

- fun firstPos(f, ys) =

= let fun first(_, nil) = NONE

= | first(i, y :: ys) =

= if f y

= then SOME i

= else first(i + 1, ys)

= in first(0, ys) end;

val firstPos = fn :

(’a -> bool) * ’a list -> int option

- firstPos(fn x => x = 4, [1, 3, 4, 5, 4, 7]);

val it = SOME 2 : int option

-

16 / 49



Option Types

- fun firstPos(f, ys) =

= let fun first(_, nil) = NONE

= | first(i, y :: ys) =

= if f y

= then SOME i

= else first(i + 1, ys)

= in first(0, ys) end;

val firstPos = fn :

(’a -> bool) * ’a list -> int option

- firstPos(fn x => x = 4, [1, 3, 4, 5, 4, 7]);

val it = SOME 2 : int option

- firstPos(fn x => x > 7, [1, 3, 2, 7]);

16 / 49



Option Types

- fun firstPos(f, ys) =

= let fun first(_, nil) = NONE

= | first(i, y :: ys) =

= if f y

= then SOME i

= else first(i + 1, ys)

= in first(0, ys) end;

val firstPos = fn :

(’a -> bool) * ’a list -> int option

- firstPos(fn x => x = 4, [1, 3, 4, 5, 4, 7]);

val it = SOME 2 : int option

- firstPos(fn x => x > 7, [1, 3, 2, 7]);

val it = NONE : int option

16 / 49



Datatypes

-

17 / 49



Datatypes

- datatype tree =

17 / 49



Datatypes

- datatype tree =

=

17 / 49



Datatypes

- datatype tree =

= Leaf of int

17 / 49



Datatypes

- datatype tree =

= Leaf of int

=

17 / 49



Datatypes

- datatype tree =

= Leaf of int

= | Node of bool * tree * tree;

17 / 49



Datatypes

- datatype tree =

= Leaf of int

= | Node of bool * tree * tree;

datatype tree

= Leaf of int | Node of bool * tree * tree

-

17 / 49



Datatypes

- datatype tree =

= Leaf of int

= | Node of bool * tree * tree;

datatype tree

= Leaf of int | Node of bool * tree * tree

- val tr =

17 / 49



Datatypes

- datatype tree =

= Leaf of int

= | Node of bool * tree * tree;

datatype tree

= Leaf of int | Node of bool * tree * tree

- val tr =

=

17 / 49



Datatypes

- datatype tree =

= Leaf of int

= | Node of bool * tree * tree;

datatype tree

= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

17 / 49



Datatypes

- datatype tree =

= Leaf of int

= | Node of bool * tree * tree;

datatype tree

= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

=

17 / 49



Datatypes

- datatype tree =

= Leaf of int

= | Node of bool * tree * tree;

datatype tree

= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),

17 / 49



Datatypes

- datatype tree =

= Leaf of int

= | Node of bool * tree * tree;

datatype tree

= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),

=

17 / 49



Datatypes

- datatype tree =

= Leaf of int

= | Node of bool * tree * tree;

datatype tree

= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),

= Leaf 2);

17 / 49



Datatypes

- datatype tree =

= Leaf of int

= | Node of bool * tree * tree;

datatype tree

= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),

= Leaf 2);

val tr =

Node (false,Node (true,Leaf 0,Leaf 1),Leaf 2) :

tree

-

17 / 49



Datatypes

- datatype tree =

= Leaf of int

= | Node of bool * tree * tree;

datatype tree

= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),

= Leaf 2);

val tr =

Node (false,Node (true,Leaf 0,Leaf 1),Leaf 2) :

tree

- fun size(Leaf _) = 1

17 / 49



Datatypes

- datatype tree =

= Leaf of int

= | Node of bool * tree * tree;

datatype tree

= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),

= Leaf 2);

val tr =

Node (false,Node (true,Leaf 0,Leaf 1),Leaf 2) :

tree

- fun size(Leaf _) = 1

=

17 / 49



Datatypes

- datatype tree =

= Leaf of int

= | Node of bool * tree * tree;

datatype tree

= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),

= Leaf 2);

val tr =

Node (false,Node (true,Leaf 0,Leaf 1),Leaf 2) :

tree

- fun size(Leaf _) = 1

= | size(Node(_, tr1, tr2)) =

17 / 49



Datatypes

- datatype tree =

= Leaf of int

= | Node of bool * tree * tree;

datatype tree

= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),

= Leaf 2);

val tr =

Node (false,Node (true,Leaf 0,Leaf 1),Leaf 2) :

tree

- fun size(Leaf _) = 1

= | size(Node(_, tr1, tr2)) =

=

17 / 49



Datatypes

- datatype tree =

= Leaf of int

= | Node of bool * tree * tree;

datatype tree

= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),

= Leaf 2);

val tr =

Node (false,Node (true,Leaf 0,Leaf 1),Leaf 2) :

tree

- fun size(Leaf _) = 1

= | size(Node(_, tr1, tr2)) =

= 1 + size tr1 + size tr2;

17 / 49



Datatypes

- datatype tree =

= Leaf of int

= | Node of bool * tree * tree;

datatype tree

= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),

= Leaf 2);

val tr =

Node (false,Node (true,Leaf 0,Leaf 1),Leaf 2) :

tree

- fun size(Leaf _) = 1

= | size(Node(_, tr1, tr2)) =

= 1 + size tr1 + size tr2;

val size = fn : tree -> int

-

17 / 49



Datatypes

- datatype tree =

= Leaf of int

= | Node of bool * tree * tree;

datatype tree

= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),

= Leaf 2);

val tr =

Node (false,Node (true,Leaf 0,Leaf 1),Leaf 2) :

tree

- fun size(Leaf _) = 1

= | size(Node(_, tr1, tr2)) =

= 1 + size tr1 + size tr2;

val size = fn : tree -> int

- size tr;

17 / 49



Datatypes

- datatype tree =

= Leaf of int

= | Node of bool * tree * tree;

datatype tree

= Leaf of int | Node of bool * tree * tree

- val tr =

= Node(false,

= Node(true, Leaf 0, Leaf 1),

= Leaf 2);

val tr =

Node (false,Node (true,Leaf 0,Leaf 1),Leaf 2) :

tree

- fun size(Leaf _) = 1

= | size(Node(_, tr1, tr2)) =

= 1 + size tr1 + size tr2;

val size = fn : tree -> int

- size tr;

val it = 5 : int
17 / 49



Extended Example: Generating Primes

Let’s consider the problem of generating the first n prime numbers.

18 / 49



Extended Example: Generating Primes

Let’s consider the problem of generating the first n prime numbers.

The key to generating primes semi-efficiently is this fact:

Suppose n ∈ N is at least 2. Then n is prime iff there is

no m ∈ N such that

• m < n,
• n is divisible by m, and

18 / 49



Extended Example: Generating Primes

Let’s consider the problem of generating the first n prime numbers.

The key to generating primes semi-efficiently is this fact:

Suppose n ∈ N is at least 2. Then n is prime iff there is

no m ∈ N such that

• m < n,
• n is divisible by m, and
• m is prime.

18 / 49



Extended Example: Generating Primes

Let’s consider the problem of generating the first n prime numbers.

The key to generating primes semi-efficiently is this fact:

Suppose n ∈ N is at least 2. Then n is prime iff there is

no m ∈ N such that

• m < n,
• n is divisible by m, and
• m is prime.

This holds because every natural number n ≥ 2 can be expressed
(uniquely) as a product of prime numbers (assuming n is not
prime, these prime numbers will be < n).

18 / 49



Extended Example: Generating Primes

So to test whether n ≥ 2 is prime, we can work through the prime
numbers smaller than n, from to , rejecting n as
soon as we find a divisor of n.

19 / 49



Extended Example: Generating Primes

So to test whether n ≥ 2 is prime, we can work through the prime
numbers smaller than n, from smallest to , rejecting n as
soon as we find a divisor of n.

19 / 49



Extended Example: Generating Primes

So to test whether n ≥ 2 is prime, we can work through the prime
numbers smaller than n, from smallest to largest, rejecting n as
soon as we find a divisor of n.

19 / 49



Extended Example: Generating Primes

So to test whether n ≥ 2 is prime, we can work through the prime
numbers smaller than n, from smallest to largest, rejecting n as
soon as we find a divisor of n.

Furthermore, as soon as we get to a prime m such that ,
we can stop and accept n, because if n had a prime divisor p such
that m ≤ p < n, then it would also have a prime divisor less-than
m, and so would already have been rejected.

19 / 49



Extended Example: Generating Primes

So to test whether n ≥ 2 is prime, we can work through the prime
numbers smaller than n, from smallest to largest, rejecting n as
soon as we find a divisor of n.

Furthermore, as soon as we get to a prime m such that m ∗m > n,
we can stop and accept n, because if n had a prime divisor p such
that m ≤ p < n, then it would also have a prime divisor less-than
m, and so would already have been rejected.

19 / 49



Primes in C

void gen_primes(int n, int *primes) {

int i, j;

int next = 2; /* next candidate */

for (i = 0; i < n; i++) {

int found = 0;

while (!found) {

for (j = 0; j < i; j++) {

int p = primes[j];

if (next % p == 0) { break; }

else if (p * p > next) { j = i; break; }

}

if (j == i) { found = 1; }

else { next++; }

}

primes[i] = next++;

}

}

20 / 49



Primes in SML: I

fun next(ms, l) =

if List.exists (fn m => l mod m = 0) ms

then next(ms, l + 1)

else l

fun prs 0 = nil

| prs 1 = [2]

| prs n =

let val ms = prs(n - 1)

in next(ms, hd ms + 1) :: ms end

fun primes n = rev(prs n)

21 / 49



Primes in SML: II

fun next(ms, l) =

if List.exists (fn m => l mod m = 0) ms

then next(ms, l + 1)

else l

fun prs(n, i, ms) =

if i = n

then rev ms

else prs(n, i + 1, next(ms, hd ms + 1) :: ms)

fun primes n = if n = 0 then nil else prs(n, 1, [2])

22 / 49



Primes in SML: III

fun divisible(_, nil) = false

| divisible(l, m :: ms) =

l mod m = 0 orelse

(m * m < l andalso divisible(l, ms))

fun next(ms, l) =

if divisible(l, ms)

then next(ms, l + 1)

else l

fun prs(n, i, ms, m) =

if i = n

then ms

else let val k = next(ms, m + 1)

in prs(n, i + 1, ms @ [k], k) end

fun primes n = if n = 0 then nil else prs(n, 1, [2], 2)

23 / 49



Primes in SML: IV

fun divisible(_, nil) = false

| divisible(l, m :: ms) =

l mod m = 0 orelse

(m * m < l andalso divisible(l, ms))

fun next(ms, p, ls, k) =

let val (ms, p, ls) =

if null ls orelse p >= k

then (ms, p, ls)

else (ms @ rev ls, hd ls * hd ls, nil)

in if divisible(k, ms)

then next(ms, p, ls, k + 1)

else (ms, p, ls, k)

end

24 / 49



Primes in SML: IV

fun divisible(_, nil) = false

| divisible(l, m :: ms) =

l mod m = 0 orelse

(m * m < l andalso divisible(l, ms))

fun next(ms, p, ls, k) =

let val (ms, p, ls) =

if null ls orelse p >= k

then (ms, p, ls)

else (ms @ rev ls, hd ls * hd ls, nil)

in if divisible(k, ms)

then next(ms, p, ls, k + 1)

else (ms, p, ls, k)

end

The reorganization of ms/ls only happens rarely; e.g, when
generating the first 5,000,000 primes, the reorganization only
happens

24 / 49



Primes in SML: IV

fun divisible(_, nil) = false

| divisible(l, m :: ms) =

l mod m = 0 orelse

(m * m < l andalso divisible(l, ms))

fun next(ms, p, ls, k) =

let val (ms, p, ls) =

if null ls orelse p >= k

then (ms, p, ls)

else (ms @ rev ls, hd ls * hd ls, nil)

in if divisible(k, ms)

then next(ms, p, ls, k + 1)

else (ms, p, ls, k)

end

The reorganization of ms/ls only happens rarely; e.g, when
generating the first 5,000,000 primes, the reorganization only
happens five times (when k is 5, 10, 50, 2210 or 4870850).

24 / 49



Primes in SML: IV

fun prs(n, i, ms, p, ls, k) =

if i = n

then ms @ rev ls

else let val (ms, p, ls, k) = next(ms, p, ls, k + 1)

in prs(n, i + 1, ms, p, k :: ls, k) end

fun primes n =

if n = 0 then nil else prs(n, 1, [2], 4, [], 2)

25 / 49



Primes in SML: V

signature PRIMES =

sig

val primes : int -> int list

end;

26 / 49



Primes in SML: V

structure Primes :> PRIMES =

struct

fun divisible(_, nil) = false

| divisible(l, m :: ms) =

l mod m = 0 orelse

(m * m < l andalso divisible(l, ms))

fun next(ms, p, ls, k) =

let val (ms, p, ls) =

if null ls orelse p >= k

then (ms, p, ls)

else (ms @ rev ls, hd ls * hd ls, nil)

in if divisible(k, ms)

then next(ms, p, ls, k + 1)

else (ms, p, ls, k)

end

27 / 49



Primes in SML: V

fun prs(n, i, ms, p, ls, k) =

if i = n

then ms @ rev ls

else let val (ms, p, ls, k) = next(ms, p, ls, k + 1)

in prs(n, i + 1, ms, p, k :: ls, k) end

fun primes n =

if n = 0 then nil else prs(n, 1, [2], 4, [], 2)

end;

28 / 49



Comparison Generating First 5,000,000 Primes

$ time primes-gcc 5000000 > /tmp/primes-gcc

real 0m16.989s

user 0m16.804s

sys 0m0.058s

$ time primes-smlnj 5000000 > /tmp/primes-smlnj

real 1m12.238s

user 1m10.816s

sys 0m1.360s

$ time primes-mlton 5000000 > /tmp/primes-mlton

real 0m49.371s

user 0m48.896s

sys 0m0.376s

29 / 49



Comparison Generating First 5,000,000 Primes

$ cmp /tmp/primes-gcc /tmp/primes-smlnj

$ cmp /tmp/primes-smlnj /tmp/primes-mlton

$ wc -l /tmp/primes-mlton

5000000 /tmp/primes-mlton

$ tail /tmp/primes-mlton

86027987

86027999

86028011

86028037

86028049

86028053

86028097

86028101

86028113

86028121

30 / 49



Primes in SML: VI

signature PRIMES =

sig

type state

val init : state

val next : state -> int * state

end;

31 / 49



Primes in SML: VI

structure Primes :> PRIMES =

struct

type state = int list * int * int list * int

(* invariant on state of the form (ms, p, ls, k):

ms @ rev ls is the first length ms + length ns

primes in ascending order, ms is nonempty,

p is the square of the last element of ms, and

k is the last element of ms @ rev ls *)

val init = ([2], 4, [], 2)

fun divisible(_, nil) = false

| divisible(l, m :: ms) =

l mod m = 0 orelse

(m * m < l andalso divisible(l, ms))

32 / 49



Primes in SML: VI

fun nxt(ms, p, ls, k) =

let val (ms, p, ls) =

if null ls orelse p >= k

then (ms, p, ls)

else (ms @ rev ls, hd ls * hd ls, nil)

in if divisible(k, ms)

then nxt(ms, p, ls, k + 1)

else (ms, p, ls, k)

end

fun next ((ms, p, ls, k) : state) : int * state =

(k,

let val (ms, p, ls, k) = nxt(ms, p, ls, k + 1)

in (ms, p, k :: ls, k) end)

end;

33 / 49



Primes in SML: VI

-

34 / 49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;

34 / 49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;

val n = 2 : int

val st = - : Primes.state

-

34 / 49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;

val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

34 / 49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;

val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 3 : int

val st = - : Primes.state

-

34 / 49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;

val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 3 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

34 / 49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;

val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 3 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 5 : int

val st = - : Primes.state

-

34 / 49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;

val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 3 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 5 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

34 / 49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;

val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 3 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 5 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 7 : int

val st = - : Primes.state

-

34 / 49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;

val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 3 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 5 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 7 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

34 / 49



Primes in SML: VI

- val (n, st) = Primes.next Primes.init;

val n = 2 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 3 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 5 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 7 : int

val st = - : Primes.state

- val (n, st) = Primes.next st;

val n = 11 : int

val st = - : Primes.state

34 / 49



Streams

Can we create an infinite list (stream) of all (until we have integer
overflow) primes like this?

fun g state =

let (x, state) = Primes.next state

in x :: g state end;

val primes = g Primes.init;

35 / 49



Streams

Can we create an infinite list (stream) of all (until we have integer
overflow) primes like this?

fun g state =

let (x, state) = Primes.next state

in x :: g state end;

val primes = g Primes.init;

No, only with lazy evaluation, where infinite streams can be
created, and the part of a stream that is visited is memoized.

35 / 49



Streams

Can we create an infinite list (stream) of all (until we have integer
overflow) primes like this?

fun g state =

let (x, state) = Primes.next state

in x :: g state end;

val primes = g Primes.init;

No, only with lazy evaluation, where infinite streams can be
created, and the part of a stream that is visited is memoized.

We can simulate lazy evaluation in SML using thunks and
references.

35 / 49



Suspensions

signature SUSP =

sig

type ’a susp

val delay : (unit -> ’a) -> ’a susp

val force : ’a susp -> ’a

end

The only value of type unit is ().

36 / 49



References

type ’a ref

val ref : ’a -> ’a ref

val ! : ’a ref -> ’a

val := : ’a ref * ’a -> unit

37 / 49



References

-

38 / 49



References

- val r = ref 10;

38 / 49



References

- val r = ref 10;

val r = ref 10 : int ref

-

10

r

38 / 49



References

- val r = ref 10;

val r = ref 10 : int ref

- !r;

10

r

38 / 49



References

- val r = ref 10;

val r = ref 10 : int ref

- !r;

val it = 10 : int

-

10

r

38 / 49



References

- val r = ref 10;

val r = ref 10 : int ref

- !r;

val it = 10 : int

- r := !r + 1;

10

r

38 / 49



References

- val r = ref 10;

val r = ref 10 : int ref

- !r;

val it = 10 : int

- r := !r + 1;

val it = () : unit

-

10 ⇒ 11

r

38 / 49



References

- val r = ref 10;

val r = ref 10 : int ref

- !r;

val it = 10 : int

- r := !r + 1;

val it = () : unit

- !r;

10 ⇒ 11

r

38 / 49



References

- val r = ref 10;

val r = ref 10 : int ref

- !r;

val it = 10 : int

- r := !r + 1;

val it = () : unit

- !r;

val it = 11 : int

10 ⇒ 11

r

38 / 49



Suspensions

structure Susp :> SUSP =

struct

datatype ’a delay = Value of ’a

| Delay of unit -> ’a

type ’a susp = ’a delay ref

fun delay f = ref(Delay f)

fun force(ref(Value x)) = x

| force(r as ref(Delay f)) =

let val x = f()

in r := Value x; x end

end;

39 / 49



Streams

signature STREAM =

sig

type ’a stream

val make : ’a * (’a -> ’b * ’a) -> ’b stream

val get : ’a stream -> ’a * ’a stream

val takeToList : ’a stream * int -> ’a list

val drop : ’a stream * int -> ’a stream

val rangeToList : ’a stream * int * int -> ’a list

end;

40 / 49



Streams

)

Stream

Delay(fn () => · · · )

Value(x1, Stream )

Value(x0, Stream

41 / 49



Streams

structure Stream :> STREAM =

struct

datatype ’a stream = Stream of (’a * ’a stream)Susp.susp

fun make(state, f) =

let fun g state =

Stream

(Susp.delay

(fn () =>

let val (x, state) = f state

in (x, g state) end))

in g state end

fun get(Stream x) = Susp.force x

42 / 49



Streams

fun takeToList(stm, n) =

let fun tke(stm, n, xs) =

if n <= 0

then rev xs

else let val (x, stm) = get stm

in tke(stm, n - 1, x :: xs) end

in tke(stm, n, nil) end

fun drop(stm, n) =

if n <= 0

then stm

else let val (_, stm) = get stm

in drop(stm, n - 1) end

43 / 49



Streams

fun rangeToList(stm, n, m) =

if n <= 0 orelse m < n

then nil

else takeToList(drop(stm, n - 1), m - n + 1)

end;

44 / 49



Primes in SML: VI

-

45 / 49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

45 / 49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

val primes = - : int Stream.stream

-

45 / 49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

val primes = - : int Stream.stream

- val stm = primes;

45 / 49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

val primes = - : int Stream.stream

- val stm = primes;

val stm = - : int Stream.stream

-

45 / 49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

val primes = - : int Stream.stream

- val stm = primes;

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

45 / 49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

val primes = - : int Stream.stream

- val stm = primes;

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

val x = 2 : int

val stm = - : int Stream.stream

-

45 / 49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

val primes = - : int Stream.stream

- val stm = primes;

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

val x = 2 : int

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

45 / 49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

val primes = - : int Stream.stream

- val stm = primes;

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

val x = 2 : int

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

val x = 3 : int

val stm = - : int Stream.stream

-

45 / 49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

val primes = - : int Stream.stream

- val stm = primes;

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

val x = 2 : int

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

val x = 3 : int

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

45 / 49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

val primes = - : int Stream.stream

- val stm = primes;

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

val x = 2 : int

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

val x = 3 : int

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

val x = 5 : int

val stm = - : int Stream.stream

-

45 / 49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

val primes = - : int Stream.stream

- val stm = primes;

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

val x = 2 : int

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

val x = 3 : int

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

val x = 5 : int

val stm = - : int Stream.stream

- val (x, _) = Stream.get primes;

45 / 49



Primes in SML: VI

- val primes = Stream.make(Primes.init, Primes.next);

val primes = - : int Stream.stream

- val stm = primes;

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

val x = 2 : int

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

val x = 3 : int

val stm = - : int Stream.stream

- val (x, stm) = Stream.get stm;

val x = 5 : int

val stm = - : int Stream.stream

- val (x, _) = Stream.get primes;

val x = 2 : int

45 / 49



Primes in SML: VI

-

46 / 49



Primes in SML: VI

- Stream.rangeToList(primes, 1, 10);

46 / 49



Primes in SML: VI

- Stream.rangeToList(primes, 1, 10);

val it = [2,3,5,7,11,13,17,19,23,29] : int list

-

46 / 49



Primes in SML: VI

- Stream.rangeToList(primes, 1, 10);

val it = [2,3,5,7,11,13,17,19,23,29] : int list

- Stream.rangeToList(primes, 50000, 50010);

46 / 49



Primes in SML: VI

- Stream.rangeToList(primes, 1, 10);

val it = [2,3,5,7,11,13,17,19,23,29] : int list

- Stream.rangeToList(primes, 50000, 50010);

val it =

[611953,611957,611969,611977,611993,611999,612011,

612023,612037,612041,612043] : int list

-

46 / 49



Primes in SML: VI

- Stream.rangeToList(primes, 1, 10);

val it = [2,3,5,7,11,13,17,19,23,29] : int list

- Stream.rangeToList(primes, 50000, 50010);

val it =

[611953,611957,611969,611977,611993,611999,612011,

612023,612037,612041,612043] : int list

- Stream.rangeToList(primes, 40000, 40010);

46 / 49



Primes in SML: VI

- Stream.rangeToList(primes, 1, 10);

val it = [2,3,5,7,11,13,17,19,23,29] : int list

- Stream.rangeToList(primes, 50000, 50010);

val it =

[611953,611957,611969,611977,611993,611999,612011,

612023,612037,612041,612043] : int list

- Stream.rangeToList(primes, 40000, 40010);

val it =

[479909,479939,479951,479953,479957,479971,480013,

480017,480019,480023,480043] : int list

46 / 49



Primes in SML: VI

Twin primes are primes that are separated by 2, like 3/5, 5/7 and
11/13. We can write a stream transformer that turns the stream
of all primes into the stream of all twin pairs:

47 / 49



Primes in SML: VI

Twin primes are primes that are separated by 2, like 3/5, 5/7 and
11/13. We can write a stream transformer that turns the stream
of all primes into the stream of all twin pairs:

signature TWINS =

sig

val twins : int Stream.stream -> (int * int) Stream.stream

end;

47 / 49



Primes in SML: VI

structure Twins :> TWINS =

struct

fun twins stm =

let val init : int * int Stream.stream =

Stream.get stm

fun next (n, stm) =

let val (m, stm) = Stream.get stm

in if m = n + 2

then ((n, m), (m, stm))

else next (m, stm)

end

in Stream.make(init, next) end

end;

48 / 49



Primes in SML: VI

-

49 / 49



Primes in SML: VI

- val twins = Twins.twins primes;

49 / 49



Primes in SML: VI

- val twins = Twins.twins primes;

val twins = - : (int * int) Stream.stream

-

49 / 49



Primes in SML: VI

- val twins = Twins.twins primes;

val twins = - : (int * int) Stream.stream

- Stream.rangeToList(twins, 1, 10);

49 / 49



Primes in SML: VI

- val twins = Twins.twins primes;

val twins = - : (int * int) Stream.stream

- Stream.rangeToList(twins, 1, 10);

val it =

[(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),

(59,61),(71,73),(101,103),(107,109)] :

(int * int) list

-

49 / 49



Primes in SML: VI

- val twins = Twins.twins primes;

val twins = - : (int * int) Stream.stream

- Stream.rangeToList(twins, 1, 10);

val it =

[(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),

(59,61),(71,73),(101,103),(107,109)] :

(int * int) list

- Stream.rangeToList(twins, 10000, 10010);

49 / 49



Primes in SML: VI

- val twins = Twins.twins primes;

val twins = - : (int * int) Stream.stream

- Stream.rangeToList(twins, 1, 10);

val it =

[(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),

(59,61),(71,73),(101,103),(107,109)] :

(int * int) list

- Stream.rangeToList(twins, 10000, 10010);

val it =

[(1260989,1260991),(1261079,1261081),

(1261259,1261261),(1261487,1261489),

(1261697,1261699),(1261829,1261831),

(1261889,1261891),(1262081,1262083),

(1262099,1262101),(1262291,1262293),

(1262621,1262623)] : (int * int) list

49 / 49


