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Exercise Set 1

Model Answers

Exercise 1
We proceed by mathematical induction.
(Basis Step) We have that 3(0°+0+2)=3%2=6=6x1and 1 € N.
(Inductive Step) Suppose n € N, and assume the inductive hypothesis:
3(n* +n +2) = 6m, for some m € N.
We must show that,
3((n+1)*>+ (n+ 1)+ 2) = 6m, for some m € N.
We have that

3(n+1)2+n+1)+2)=30n*+2n+1)+3(n+1)+6
=3n*+6n+3+3n+3+6
=3n*+3n+6+6n+6
=3(n*+n+2)+6(n+1)
=6m+6(n+1) (inductive hypothesis)
=6(m+n+1).

Thus 3((n+1)2+ (n+1)+2)=6(m+n+1) and m+n+1€N.

Exercise 2

We proceed by strong induction. Suppose n € N, and assume the inductive hypothesis: for all
m € N, if m < n, then,

if m > 18, then there are 7,5 € N such that m = 4i + 7j.
We must show that,
if n > 18, then there are i, j € N such that n = 4i 4 7j.

Suppose n > 18. We must show that there are 7, j € N such that n = 4i 4+ 7j. There are five cases
to consider.

e Suppose n =18. Thenn=18=4%1+7*2and 1,2 € N.

e Suppose n =19. Thenn=19=4%3+7x1and 3,1 € N.



e Suppose n =20. Thenn=20=4%5+7x%0 and 5,0 € N.
e Suppose n =21. Thenn=21=4%0+7+3 and 0,3 € N.

e Suppose n > 22. Thus 18 < n —4 < n. Because n — 4 < n, the inductive hypothesis tells us
that
if n — 4 > 18, then there are i, j € N such that n — 4 = 4i + 7j.

But n —4 > 18, and thus n — 4 = 4¢ 4 75 for some 4, j € N. Hence
n=Mn-4)+4=4i+7j+4=4>i+1)+7j,

and i+ 1,7 € N.

Exercise 3

(a) Suppose A, B and C are sets. We must show that
A—-(BuC)=(A-B)-C.
It will suffice to show that
A—(BUC)C(A-B)-CCA—-(BUCQ).

(A-(BUC)C (A-B)—C) Suppose w € A— (BUC). We must show that w € (A— B) —C.
By the assumption, we have that w € A and w ¢ (BUC).
Suppose, toward a contradiction, that w € B. Then w € B U C—contradiction. Thus w ¢ B.
Suppose, toward a contradiction, that w € C. Then w € B U C—contradiction. Thus w & C.
Because w € A and w ¢ B, we have that w € A — B. Then, since w ¢ C, it follows that
we(A-—B)-C.

(A—B)—CCA—-(BUC)) Suppose w € (A— B)—C. We must show that w € A— (BUC).
By the assumption, we have that w € A — B and w ¢ C. Hence w € A and w ¢ B.

Suppose, toward a contradiction, that w € B U C. There are two cases to consider.

e Suppose w € B. But w ¢ B—contradiction.
e Suppose w € C. But w ¢ C—contradiction.

Since we obtained a contradiction in both cases, we have an overall contradiction. Thus
w¢ BUC.

Because w € A and w ¢ B U C, we have that w e A — (BUC).

(b) Suppose A, B and C are sets. We must show that
A-(BNnC)=(A-B)U(A-0C).
It will suffice to show that

A—(BNC)C(A-B)U(A—-C)CA—(BNC).



(A-(BNC)C(A-=B)U(A—-C)) Suppose w € A— (BNC). We must show that w € (A —
B) U (A — C). By the assumption, we have that w € A and w & BN C. There are two cases
to consider.

e Suppose w € B. Suppose, toward a contradiction, that w € C. Thus w € BN C—
contradiction. Thus w ¢ C. And w € A, and thusw e A—C C(A—B)U(A-C).

e Suppose w ¢ B. Because w € A, it follows that we A— B C (A— B)U (A - C).

(A-B)U(A-C)C A—(BNC)) Suppose w € (A— B)U (A — C). We must show that w €
A — (BN C). By the assumption, there are two cases to consider.

e Suppose w € A — B. Hence w € A and w ¢ B. Suppose, toward a contradiction, that
w € BNC. Thus w € B—contradiction. Hence w ¢ BN C, so that w e A — (BN C).

e Suppose w € A — C. Hence w € A and w ¢ C. Suppose, toward a contradiction, that
w € BNC. Thus w € C—contradiction. Hence w ¢ BN C, so that w e A — (BN C).

Exercise 4

(a) We use induction on X to show that, for all w € X, w € Y. There are four steps to show.
(1) Since diff(%) = 0, we have that % € Y.

(2) Suppose w,z,y,z € X and w,x,y,z € Y. We must show that wlzly0z € Y. Be-
cause w,x,y,z € Y, it follows that diff(w) = diff(z) = diff(y) = diff(z) = 0. Hence
diff (wlzly0z) = diff(w) + diff(1) + diff(z) + diff(1) + diff(y) + diff(0) + diff(z) =
0+14+0+4+140+ -2+ 0 =0, showing that wlzly0z € Y.

(3) Suppose w,x,y,z € X and w,z,y,z € Y. We must show that wlzOylz € Y. Be-
cause w,x,y,z € Y, it follows that diff(w) = diff(z) = diff(y) = diff(z) = 0. Hence
diff (wla0ylz) = diff(w) + diff(1) + diff (z) + diff (0) + diff (y) + diff(1) + diff(z) =
0+1+0+—-240+1+0=0, showing that wlzOylz €Y.

(4) Suppose w,z,y,z € X and w,x,y,z € Y. We must show that wOzlylz € Y. Be-
cause w,x,y,z € Y, it follows that diff(w) = diff(z) = diff (y) = diff(z) = 0. Hence
diff (w0zlylz) = diff(w) + diff(0) + diff(z) + diff (1) + diff(y) + diff(1) + diff(z) =
0+—-240+14+0+1+0=0, showing that wlzlylz €Y.

(b) We begin by proving two lemmas.

Lemma ES1.4.1
For all w € {0,1}*, if diff (w) > 1, then there are x,y € {0,1}* such that w = z1ly, diff(z) = 0 and
diff (y) = diff (w) — 1.

Proof. Suppose w € {0,1}* and suppose diff (w) > 1. Let z be the shortest prefix of w such that
diff (z) > 1. (Such a z exists, because w is a prefix of itself with a positive diff.) Let y € {0,1}* be
such that w = zy. Because diff(z) > 1, we have that z # %. Thus z = xb, for some z € {0,1}* and
b € {0,1}. Because x is a shorter prefix of w than z, it follows that diff(x) < 0.



Suppose, toward a contradiction, that b = 0. Since diff(x) + —2 = diff(20) = diff (zb) =
diff(z) > 1, we have that diff(z) > 3—contradiction. Thus b = 1, so that z = zb = z1 and
w = zy = zly.

Since diff (z) + 1 = diff(x1) = diff(z) > 1, we have that diff(z) > 0. But diff(z) < 0, and
thus diff () = 0. And, because 1 + diff(y) = 0+ 1 + diff (y) = diff (x1y) = diff (w), we have that
diff(y) = diff(w) — 1. O

Lemma ES1.4.2
For all w € {0,1}*, if diff (w) < —1, then there are x,y € {0,1}* such that w = z0y, and either

o diff(x) = 0 and diff (y) = diff (w) + 2; or
o diff(x) =1 and diff (y) = diff (w) + 1.

Proof. Suppose w € {0,1}* and suppose diff (w) < —1. Let z be the shortest prefix of w such that
diff (z) < —1. (Such a z exists, because w is a prefix of itself with a negative diff.) Let y € {0,1}*
be such that w = zy. Because diff (z) < —1, we have that z # %. Thus z = zb, for some = € {0,1}*
and b € {0,1}. Because z is a shorter prefix of w than z, it follows that diff(z) > 0.

Suppose, toward a contradiction, that b = 1. Since diff (z)+1 = diff (x1) = diff (xb) = diff () <
—1, we have that diff (z) < —2—contradiction. Thus b = 0, so that z = b = 20 and w = zy = z0y.

Since diff () + —2 = diff (20) = diff (z) < —1, we have that diff(z) < 1. But diff(z) > 0, and
thus diff () € {0,1}. Thus there are two cases to consider.

e Suppose diff (z) = 0. Because —2 + diff (y) = 0 + —2 + diff (y) = diff (20y) = diff (w), we
have that diff (y) = diff (w) + 2. Thus diff (z) = 0 and diff (y) = diff (w) + 2.

e Suppose diff (z) = 1. Because —1 + diff(y) = 1 + —2 + diff (y) = diff (20y) = diff (w), we
have that diff (y) = diff (w) + 1. Thus diff (z) = 1 and diff (y) = diff (w) + 1.

Now, we show that Y C X. Since Y C {0, 1}*, it will suffice to show that, for all w € {0,1}*,
ifweY, thenw € X.

We proceed by strong string induction. Suppose w € {0,1}*, and assume the inductive hypothesis:
for all z € {0,1}*, if |z] < |w|, then

ifrxeY, thenx € X.

We must show that
ifweY, thenw € X.

Suppose w € Y, so that diff (w) = 0. We must show that w € X. There are three cases to consider.

e Suppose w = %. Then w =% € X, by Part (1) of the definition of X.



e Suppose w = Os, for some s € {0,1}*. Because —2 + diff(s) = diff(0s) = diff(w) = 0, we
have that diff(s) = 2. Since diff(s) > 1, Lemma ES1.4.1 tells us that there are x,¢ € {0,1}*
such that s = z1¢, diff (z) = 0 and diff (t) = diff(s) — 1. Hence z € Y and diff (t) =2—-1 = 1.
Since diff(¢t) > 1, Lemma ES1.4.1 tells us that there are y,z € {0,1}* such that ¢t = ylz,
diff(y) = 0 and diff(z) = diff(t) — 1. Hence y € Y and diff(z) =1 -1 =0, so that z € Y.
Summarizing, we have that w = 0s = 0z1lt = Oxlylz and z,y,z € Y. Because |z| < |w],
ly| < |w| and |z| < |w], the inductive hypothesis tells us that z,y,z € X. By Part (1) of the
definition on X, we have that % € X. Finally, since %, x,y,z € X, Part (4) of the definition
of X tells us that w = 0xlylz = %0zxlylz € X.

e Suppose w = 1s, for some s € {0,1}*. Because 1 + diff (s) = diff (1s) = diff (w) = 0, we have
that diff(s) = —1. Since diff(s) < —1, Lemma ES1.4.2 tells us that there are z,y € {0,1}*
such that s = 20y, and either

— diff(z) = 0 and diff (y) = diff(s) + 2; or
— diff () = 1 and diff (y) = diff(s) + 1.

Thus there are two cases to consider.

— Suppose diff(x) = 0 and diff(y) = diff(s) + 2. Hence z € Y and diff (y) = -1+2 = 1.
Since diff (y) > 1, Lemma ES1.4.1 tells us that there are z,¢ € {0,1}* such that y = z1¢,
diff (z) = 0 and diff(¢) = diff(y) — 1. Hence z € Y and diff () =1—1 =0, so that t € Y.
Summarizing, we have that w = 1s = 120y = 12021t and z, z,¢ € Y. Because |z| < |w|,
|z] < |w| and |t| < |w|, the inductive hypothesis tells us that x,z,t € X. By Part (1) of
the definition on X, we have that % € X. Finally, since %, x, z,t € X, Part (3) of the
definition of X tells us that w = 12021t = %12021¢ € X.

— Suppose diff(x) = 1 and diff (y) = diff(s) + 1. Hence diff(y) = =1+ 1 = 0, so that
y €Y. Since diff (z) > 1, Lemma ES1.4.1 tells us that there are z,¢t € {0,1}* such that
x = z1t, diff (z) = 0 and diff (¢) = diff () — 1. Hence z € Y and diff (t) =1 -1 =10, so
that t € Y. Summarizing, we have that w = 1s = 120y = 121t0y and z,t,y € Y. Because
|z] < |w|, [t| < |w| and |y| < |w]|, the inductive hypothesis tells us that z,¢,y € X. By
Part (1) of the definition on X, we have that % € X. Finally, since %, z,t,y € X, Part (2)
of the definition of X tells us that w = 12110y = %1210y € X.



