
CIS 570 — Introduction to Formal Language Theory — Fall 2006

Exercise Set 1

Model Answers

Exercise 1

We proceed by mathematical induction.

(Basis Step) We have that 3(02 + 0 + 2) = 3 ∗ 2 = 6 = 6 ∗ 1 and 1 ∈ N.

(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis:

3(n2 + n+ 2) = 6m, for some m ∈ N.

We must show that,

3((n+ 1)2 + (n+ 1) + 2) = 6m, for some m ∈ N.

We have that

3((n+ 1)2 + (n+ 1) + 2) = 3(n2 + 2n+ 1) + 3(n+ 1) + 6

= 3n2 + 6n+ 3 + 3n+ 3 + 6

= 3n2 + 3n+ 6 + 6n+ 6

= 3(n2 + n+ 2) + 6(n+ 1)

= 6m+ 6(n+ 1) (inductive hypothesis)

= 6(m+ n+ 1).

Thus 3((n+ 1)2 + (n+ 1) + 2) = 6(m+ n+ 1) and m+ n+ 1 ∈ N.

Exercise 2

We proceed by strong induction. Suppose n ∈ N, and assume the inductive hypothesis: for all

m ∈ N, if m < n, then,

if m ≥ 18, then there are i, j ∈ N such that m = 4i+ 7j.

We must show that,

if n ≥ 18, then there are i, j ∈ N such that n = 4i+ 7j.

Suppose n ≥ 18. We must show that there are i, j ∈ N such that n = 4i+ 7j. There are five cases

to consider.

• Suppose n = 18. Then n = 18 = 4 ∗ 1 + 7 ∗ 2 and 1, 2 ∈ N.

• Suppose n = 19. Then n = 19 = 4 ∗ 3 + 7 ∗ 1 and 3, 1 ∈ N.
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• Suppose n = 20. Then n = 20 = 4 ∗ 5 + 7 ∗ 0 and 5, 0 ∈ N.

• Suppose n = 21. Then n = 21 = 4 ∗ 0 + 7 ∗ 3 and 0, 3 ∈ N.

• Suppose n ≥ 22. Thus 18 ≤ n− 4 < n. Because n − 4 < n, the inductive hypothesis tells us

that

if n− 4 ≥ 18, then there are i, j ∈ N such that n− 4 = 4i+ 7j.

But n− 4 ≥ 18, and thus n− 4 = 4i+ 7j for some i, j ∈ N. Hence

n = (n− 4) + 4 = 4i+ 7j + 4 = 4(i+ 1) + 7j,

and i+ 1, j ∈ N.

Exercise 3

(a) Suppose A, B and C are sets. We must show that

A− (B ∪ C) = (A−B)− C.

It will suffice to show that

A− (B ∪ C) ⊆ (A−B)− C ⊆ A− (B ∪ C).

(A− (B ∪ C) ⊆ (A−B)− C) Suppose w ∈ A− (B ∪C). We must show that w ∈ (A−B)−C.

By the assumption, we have that w ∈ A and w 6∈ (B ∪C).

Suppose, toward a contradiction, that w ∈ B. Then w ∈ B ∪ C—contradiction. Thus w 6∈ B.

Suppose, toward a contradiction, that w ∈ C. Then w ∈ B ∪ C—contradiction. Thus w 6∈ C.

Because w ∈ A and w 6∈ B, we have that w ∈ A − B. Then, since w 6∈ C, it follows that

w ∈ (A−B)− C.

((A−B)− C ⊆ A− (B ∪C)) Suppose w ∈ (A−B)−C. We must show that w ∈ A− (B ∪C).

By the assumption, we have that w ∈ A−B and w 6∈ C. Hence w ∈ A and w 6∈ B.

Suppose, toward a contradiction, that w ∈ B ∪ C. There are two cases to consider.

• Suppose w ∈ B. But w 6∈ B—contradiction.

• Suppose w ∈ C. But w 6∈ C—contradiction.

Since we obtained a contradiction in both cases, we have an overall contradiction. Thus

w 6∈ B ∪ C.

Because w ∈ A and w 6∈ B ∪ C, we have that w ∈ A− (B ∪ C).

(b) Suppose A, B and C are sets. We must show that

A− (B ∩ C) = (A−B) ∪ (A− C).

It will suffice to show that

A− (B ∩ C) ⊆ (A−B) ∪ (A− C) ⊆ A− (B ∩ C).
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(A− (B ∩ C) ⊆ (A−B) ∪ (A− C)) Suppose w ∈ A − (B ∩ C). We must show that w ∈ (A −

B) ∪ (A − C). By the assumption, we have that w ∈ A and w 6∈ B ∩ C. There are two cases

to consider.

• Suppose w ∈ B. Suppose, toward a contradiction, that w ∈ C. Thus w ∈ B ∩ C—

contradiction. Thus w 6∈ C. And w ∈ A, and thus w ∈ A− C ⊆ (A−B) ∪ (A− C).

• Suppose w 6∈ B. Because w ∈ A, it follows that w ∈ A−B ⊆ (A−B) ∪ (A− C).

((A−B) ∪ (A− C) ⊆ A− (B ∩ C)) Suppose w ∈ (A − B) ∪ (A − C). We must show that w ∈

A− (B ∩ C). By the assumption, there are two cases to consider.

• Suppose w ∈ A − B. Hence w ∈ A and w 6∈ B. Suppose, toward a contradiction, that

w ∈ B ∩ C. Thus w ∈ B—contradiction. Hence w 6∈ B ∩ C, so that w ∈ A− (B ∩C).

• Suppose w ∈ A − C. Hence w ∈ A and w 6∈ C. Suppose, toward a contradiction, that

w ∈ B ∩ C. Thus w ∈ C—contradiction. Hence w 6∈ B ∩ C, so that w ∈ A− (B ∩C).

Exercise 4

(a) We use induction on X to show that, for all w ∈ X , w ∈ Y . There are four steps to show.

(1) Since diff(%) = 0, we have that % ∈ Y .

(2) Suppose w, x, y, z ∈ X and w, x, y, z ∈ Y . We must show that w1x1y0z ∈ Y . Be-

cause w, x, y, z ∈ Y , it follows that diff(w) = diff(x) = diff(y) = diff(z) = 0. Hence

diff(w1x1y0z) = diff(w) + diff(1) + diff(x) + diff(1) + diff(y) + diff(0) + diff(z) =

0 + 1 + 0 + 1 + 0 +−2 + 0 = 0, showing that w1x1y0z ∈ Y .

(3) Suppose w, x, y, z ∈ X and w, x, y, z ∈ Y . We must show that w1x0y1z ∈ Y . Be-

cause w, x, y, z ∈ Y , it follows that diff(w) = diff(x) = diff(y) = diff(z) = 0. Hence

diff(w1x0y1z) = diff(w) + diff(1) + diff(x) + diff(0) + diff(y) + diff(1) + diff(z) =

0 + 1 + 0 +−2 + 0 + 1 + 0 = 0, showing that w1x0y1z ∈ Y .

(4) Suppose w, x, y, z ∈ X and w, x, y, z ∈ Y . We must show that w0x1y1z ∈ Y . Be-

cause w, x, y, z ∈ Y , it follows that diff(w) = diff(x) = diff(y) = diff(z) = 0. Hence

diff(w0x1y1z) = diff(w) + diff(0) + diff(x) + diff(1) + diff(y) + diff(1) + diff(z) =

0 +−2 + 0 + 1 + 0 + 1 + 0 = 0, showing that w0x1y1z ∈ Y .

(b) We begin by proving two lemmas.

Lemma ES1.4.1

For all w ∈ {0, 1}∗, if diff(w) ≥ 1, then there are x, y ∈ {0, 1}∗ such that w = x1y, diff(x) = 0 and

diff(y) = diff(w) − 1.

Proof. Suppose w ∈ {0, 1}∗ and suppose diff(w) ≥ 1. Let z be the shortest prefix of w such that

diff(z) ≥ 1. (Such a z exists, because w is a prefix of itself with a positive diff.) Let y ∈ {0, 1}∗ be

such that w = zy. Because diff(z) ≥ 1, we have that z 6= %. Thus z = xb, for some x ∈ {0, 1}∗ and

b ∈ {0, 1}. Because x is a shorter prefix of w than z, it follows that diff(x) ≤ 0.
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Suppose, toward a contradiction, that b = 0. Since diff(x) + −2 = diff(x0) = diff(xb) =

diff(z) ≥ 1, we have that diff(x) ≥ 3—contradiction. Thus b = 1, so that z = xb = x1 and

w = zy = x1y.

Since diff(x) + 1 = diff(x1) = diff(z) ≥ 1, we have that diff(x) ≥ 0. But diff(x) ≤ 0, and

thus diff(x) = 0. And, because 1 + diff(y) = 0 + 1 + diff(y) = diff(x1y) = diff(w), we have that

diff(y) = diff(w) − 1. ✷

Lemma ES1.4.2

For all w ∈ {0, 1}∗, if diff(w) ≤ −1, then there are x, y ∈ {0, 1}∗ such that w = x0y, and either

• diff(x) = 0 and diff(y) = diff(w) + 2; or

• diff(x) = 1 and diff(y) = diff(w) + 1.

Proof. Suppose w ∈ {0, 1}∗ and suppose diff(w) ≤ −1. Let z be the shortest prefix of w such that

diff(z) ≤ −1. (Such a z exists, because w is a prefix of itself with a negative diff.) Let y ∈ {0, 1}∗

be such that w = zy. Because diff(z) ≤ −1, we have that z 6= %. Thus z = xb, for some x ∈ {0, 1}∗

and b ∈ {0, 1}. Because x is a shorter prefix of w than z, it follows that diff(x) ≥ 0.

Suppose, toward a contradiction, that b = 1. Since diff(x)+1 = diff(x1) = diff(xb) = diff(z) ≤

−1, we have that diff(x) ≤ −2—contradiction. Thus b = 0, so that z = xb = x0 and w = zy = x0y.

Since diff(x) + −2 = diff(x0) = diff(z) ≤ −1, we have that diff(x) ≤ 1. But diff(x) ≥ 0, and

thus diff(x) ∈ {0, 1}. Thus there are two cases to consider.

• Suppose diff(x) = 0. Because −2 + diff(y) = 0 + −2 + diff(y) = diff(x0y) = diff(w), we

have that diff(y) = diff(w) + 2. Thus diff(x) = 0 and diff(y) = diff(w) + 2.

• Suppose diff(x) = 1. Because −1 + diff(y) = 1 + −2 + diff(y) = diff(x0y) = diff(w), we

have that diff(y) = diff(w) + 1. Thus diff(x) = 1 and diff(y) = diff(w) + 1.

✷

Now, we show that Y ⊆ X . Since Y ⊆ {0, 1}∗, it will suffice to show that, for all w ∈ {0, 1}∗,

if w ∈ Y, then w ∈ X.

We proceed by strong string induction. Suppose w ∈ {0, 1}∗, and assume the inductive hypothesis:

for all x ∈ {0, 1}∗, if |x| < |w|, then

if x ∈ Y, then x ∈ X.

We must show that

if w ∈ Y, then w ∈ X.

Suppose w ∈ Y , so that diff(w) = 0. We must show that w ∈ X . There are three cases to consider.

• Suppose w = %. Then w = % ∈ X , by Part (1) of the definition of X .
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• Suppose w = 0s, for some s ∈ {0, 1}∗. Because −2 + diff(s) = diff(0s) = diff(w) = 0, we

have that diff(s) = 2. Since diff(s) ≥ 1, Lemma ES1.4.1 tells us that there are x, t ∈ {0, 1}∗

such that s = x1t, diff(x) = 0 and diff(t) = diff(s)− 1. Hence x ∈ Y and diff(t) = 2− 1 = 1.

Since diff(t) ≥ 1, Lemma ES1.4.1 tells us that there are y, z ∈ {0, 1}∗ such that t = y1z,

diff(y) = 0 and diff(z) = diff(t) − 1. Hence y ∈ Y and diff(z) = 1 − 1 = 0, so that z ∈ Y .

Summarizing, we have that w = 0s = 0x1t = 0x1y1z and x, y, z ∈ Y . Because |x| < |w|,

|y| < |w| and |z| < |w|, the inductive hypothesis tells us that x, y, z ∈ X . By Part (1) of the

definition on X , we have that % ∈ X . Finally, since %, x, y, z ∈ X , Part (4) of the definition

of X tells us that w = 0x1y1z = %0x1y1z ∈ X .

• Suppose w = 1s, for some s ∈ {0, 1}∗. Because 1 + diff(s) = diff(1s) = diff(w) = 0, we have

that diff(s) = −1. Since diff(s) ≤ −1, Lemma ES1.4.2 tells us that there are x, y ∈ {0, 1}∗

such that s = x0y, and either

– diff(x) = 0 and diff(y) = diff(s) + 2; or

– diff(x) = 1 and diff(y) = diff(s) + 1.

Thus there are two cases to consider.

– Suppose diff(x) = 0 and diff(y) = diff(s) + 2. Hence x ∈ Y and diff(y) = −1 + 2 = 1.

Since diff(y) ≥ 1, Lemma ES1.4.1 tells us that there are z, t ∈ {0, 1}∗ such that y = z1t,

diff(z) = 0 and diff(t) = diff(y)−1. Hence z ∈ Y and diff(t) = 1−1 = 0, so that t ∈ Y .

Summarizing, we have that w = 1s = 1x0y = 1x0z1t and x, z, t ∈ Y . Because |x| < |w|,

|z| < |w| and |t| < |w|, the inductive hypothesis tells us that x, z, t ∈ X . By Part (1) of

the definition on X , we have that % ∈ X . Finally, since %, x, z, t ∈ X , Part (3) of the

definition of X tells us that w = 1x0z1t = %1x0z1t ∈ X .

– Suppose diff(x) = 1 and diff(y) = diff(s) + 1. Hence diff(y) = −1 + 1 = 0, so that

y ∈ Y . Since diff(x) ≥ 1, Lemma ES1.4.1 tells us that there are z, t ∈ {0, 1}∗ such that

x = z1t, diff(z) = 0 and diff(t) = diff(x) − 1. Hence z ∈ Y and diff(t) = 1− 1 = 0, so

that t ∈ Y . Summarizing, we have that w = 1s = 1x0y = 1z1t0y and z, t, y ∈ Y . Because

|z| < |w|, |t| < |w| and |y| < |w|, the inductive hypothesis tells us that z, t, y ∈ X . By

Part (1) of the definition on X , we have that % ∈ X . Finally, since %, z, t, y ∈ X , Part (2)

of the definition of X tells us that w = 1z1t0y = %1z1t0y ∈ X .
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