CIS 570 — Introduction to Formal Language Theory — Fall 2006

Exercise Set 1

Model Answers

Exercise 1

We proceed by mathematical induction.

(Basis Step) We have that $3(0^2 + 0 + 2) = 3 \times 2 = 6 = 6 \times 1$ and $1 \in \mathbb{N}$.

(Inductive Step) Suppose $n \in \mathbb{N}$, and assume the inductive hypothesis:

 $3(n^2 + n + 2) = 6m$, for some $m \in \mathbb{N}$.

We must show that,

$$
3((n+1)^2 + (n+1) + 2) = 6m
$$
, for some $m \in \mathbb{N}$.

We have that

$$
3((n+1)^2 + (n+1) + 2) = 3(n^2 + 2n + 1) + 3(n+1) + 6
$$

= 3n² + 6n + 3 + 3n + 3 + 6
= 3n² + 3n + 6 + 6n + 6
= 3(n² + n + 2) + 6(n + 1)
= 6m + 6(n + 1) (inductive hypothesis)
= 6(m + n + 1).

Thus $3((n+1)^2 + (n+1) + 2) = 6(m+n+1)$ and $m+n+1 \in \mathbb{N}$.

Exercise 2

We proceed by strong induction. Suppose $n \in \mathbb{N}$, and assume the inductive hypothesis: for all $m \in \mathbb{N}$, if $m < n$, then,

if $m \ge 18$, then there are $i, j \in \mathbb{N}$ such that $m = 4i + 7j$.

We must show that,

if
$$
n \ge 18
$$
, then there are $i, j \in \mathbb{N}$ such that $n = 4i + 7j$.

Suppose $n \geq 18$. We must show that there are $i, j \in \mathbb{N}$ such that $n = 4i + 7j$. There are five cases to consider.

- Suppose $n = 18$. Then $n = 18 = 4 * 1 + 7 * 2$ and $1, 2 \in \mathbb{N}$.
- Suppose $n = 19$. Then $n = 19 = 4 * 3 + 7 * 1$ and $3, 1 \in \mathbb{N}$.
- Suppose $n = 20$. Then $n = 20 = 4 * 5 + 7 * 0$ and $5, 0 \in \mathbb{N}$.
- Suppose $n = 21$. Then $n = 21 = 4 * 0 + 7 * 3$ and $0, 3 \in \mathbb{N}$.
- Suppose $n \geq 22$. Thus $18 \leq n-4 < n$. Because $n-4 < n$, the inductive hypothesis tells us that

if
$$
n-4 \ge 18
$$
, then there are $i, j \in \mathbb{N}$ such that $n-4 = 4i + 7j$.

But $n-4 \ge 18$, and thus $n-4 = 4i + 7j$ for some $i, j \in \mathbb{N}$. Hence

$$
n = (n - 4) + 4 = 4i + 7j + 4 = 4(i + 1) + 7j,
$$

and $i + 1, j \in \mathbb{N}$.

Exercise 3

(a) Suppose A, B and C are sets. We must show that

$$
A - (B \cup C) = (A - B) - C.
$$

It will suffice to show that

$$
A - (B \cup C) \subseteq (A - B) - C \subseteq A - (B \cup C).
$$

 $(A - (B \cup C) \subseteq (A - B) - C)$ Suppose $w \in A - (B \cup C)$. We must show that $w \in (A - B) - C$. By the assumption, we have that $w \in A$ and $w \notin (B \cup C)$.

Suppose, toward a contradiction, that $w \in B$. Then $w \in B \cup C$ —contradiction. Thus $w \notin B$. Suppose, toward a contradiction, that $w \in C$. Then $w \in B \cup C$ —contradiction. Thus $w \notin C$. Because $w \in A$ and $w \notin B$, we have that $w \in A - B$. Then, since $w \notin C$, it follows that $w \in (A - B) - C.$

 $((A - B) - C \subseteq A - (B \cup C))$ Suppose $w \in (A - B) - C$. We must show that $w \in A - (B \cup C)$. By the assumption, we have that $w \in A - B$ and $w \notin C$. Hence $w \in A$ and $w \notin B$.

Suppose, toward a contradiction, that $w \in B \cup C$. There are two cases to consider.

- Suppose $w \in B$. But $w \notin B$ —contradiction.
- Suppose $w \in C$. But $w \notin C$ —contradiction.

Since we obtained a contradiction in both cases, we have an overall contradiction. Thus $w \notin B \cup C$.

Because $w \in A$ and $w \notin B \cup C$, we have that $w \in A - (B \cup C)$.

(b) Suppose A, B and C are sets. We must show that

$$
A - (B \cap C) = (A - B) \cup (A - C).
$$

It will suffice to show that

$$
A - (B \cap C) \subseteq (A - B) \cup (A - C) \subseteq A - (B \cap C).
$$

- $(A (B \cap C) \subseteq (A B) \cup (A C))$ Suppose $w \in A (B \cap C)$. We must show that $w \in (A B)$ B) ∪ $(A - C)$. By the assumption, we have that $w \in A$ and $w \notin B \cap C$. There are two cases to consider.
	- Suppose $w \in B$. Suppose, toward a contradiction, that $w \in C$. Thus $w \in B \cap C$ contradiction. Thus $w \notin C$. And $w \in A$, and thus $w \in A - C \subseteq (A - B) \cup (A - C)$.
	- Suppose $w \notin B$. Because $w \in A$, it follows that $w \in A B \subseteq (A B) \cup (A C)$.

 $((A - B) \cup (A - C) \subseteq A - (B \cap C))$ Suppose $w \in (A - B) \cup (A - C)$. We must show that $w \in$ $A - (B \cap C)$. By the assumption, there are two cases to consider.

- Suppose $w \in A B$. Hence $w \in A$ and $w \notin B$. Suppose, toward a contradiction, that $w \in B \cap C$. Thus $w \in B$ —contradiction. Hence $w \notin B \cap C$, so that $w \in A - (B \cap C)$.
- Suppose $w \in A C$. Hence $w \in A$ and $w \notin C$. Suppose, toward a contradiction, that $w \in B \cap C$. Thus $w \in C$ —contradiction. Hence $w \notin B \cap C$, so that $w \in A - (B \cap C)$.

Exercise 4

- (a) We use induction on X to show that, for all $w \in X$, $w \in Y$. There are four steps to show.
	- (1) Since $\text{diff}(\%) = 0$, we have that $\% \in Y$.
	- (2) Suppose $w, x, y, z \in X$ and $w, x, y, z \in Y$. We must show that $w1x1y0z \in Y$. Because $w, x, y, z \in Y$, it follows that $\text{diff}(w) = \text{diff}(x) = \text{diff}(y) = \text{diff}(z) = 0$. Hence $diff(w1x1y0z) = diff(w) + diff(1) + diff(x) + diff(1) + diff(y) + diff(0) + diff(z) =$ $0 + 1 + 0 + 1 + 0 + -2 + 0 = 0$, showing that $w1x1y0z \in Y$.
	- (3) Suppose $w, x, y, z \in X$ and $w, x, y, z \in Y$. We must show that $w1x0y1z \in Y$. Because $w, x, y, z \in Y$, it follows that $\text{diff}(w) = \text{diff}(x) = \text{diff}(y) = \text{diff}(z) = 0$. Hence $diff(w1x0y1z) = diff(w) + diff(1) + diff(x) + diff(0) + diff(y) + diff(1) + diff(z) =$ $0 + 1 + 0 + -2 + 0 + 1 + 0 = 0$, showing that $w1x0y1z \in Y$.
	- (4) Suppose $w, x, y, z \in X$ and $w, x, y, z \in Y$. We must show that $w0x1y1z \in Y$. Because $w, x, y, z \in Y$, it follows that $\text{diff}(w) = \text{diff}(x) = \text{diff}(y) = \text{diff}(z) = 0$. Hence $diff(w0x1y1z) = diff(w) + diff(0) + diff(x) + diff(1) + diff(y) + diff(1) + diff(z) =$ $0 + -2 + 0 + 1 + 0 + 1 + 0 = 0$, showing that $w0x1y1z \in Y$.
- (b) We begin by proving two lemmas.

Lemma ES1.4.1

For all $w \in \{0,1\}^*$, if $\text{diff}(w) \geq 1$, then there are $x, y \in \{0,1\}^*$ such that $w = x1y$, $\text{diff}(x) = 0$ and $\text{diff}(y) = \text{diff}(w) - 1.$

Proof. Suppose $w \in \{0,1\}^*$ and suppose $\text{diff}(w) \geq 1$. Let z be the shortest prefix of w such that $diff(z) \geq 1$. (Such a z exists, because w is a prefix of itself with a positive diff.) Let $y \in \{0,1\}^*$ be such that $w = zy$. Because $\text{diff}(z) \geq 1$, we have that $z \neq \%$. Thus $z = xb$, for some $x \in \{0,1\}^*$ and $b \in \{0,1\}$. Because x is a shorter prefix of w than z, it follows that $\text{diff}(x) \leq 0$.

Suppose, toward a contradiction, that $b = 0$. Since $diff(x) + -2 = diff(x0) = diff(xb)$ $diff(z) \ge 1$, we have that $diff(x) \ge 3$ —contradiction. Thus $b = 1$, so that $z = xb = x1$ and $w = zy = x1y$.

Since $\text{diff}(x) + 1 = \text{diff}(x) = \text{diff}(z) \ge 1$, we have that $\text{diff}(x) \ge 0$. But $\text{diff}(x) \le 0$, and thus $\text{diff}(x) = 0$. And, because $1 + \text{diff}(y) = 0 + 1 + \text{diff}(y) = \text{diff}(x) = \text{diff}(w)$, we have that $\text{diff}(y) = \text{diff}(w) - 1. \quad \Box$

Lemma ES1.4.2

For all $w \in \{0,1\}^*$, if $\text{diff}(w) \leq -1$, then there are $x, y \in \{0,1\}^*$ such that $w = x0y$, and either

- diff(x) = 0 and diff(y) = diff(w) + 2; or
- diff(x) = 1 and diff(y) = diff(w) + 1.

Proof. Suppose $w \in \{0,1\}^*$ and suppose $\text{diff}(w) \leq -1$. Let z be the shortest prefix of w such that $diff(z) \leq -1$. (Such a z exists, because w is a prefix of itself with a negative diff.) Let $y \in \{0,1\}^*$ be such that $w = zy$. Because $\text{diff}(z) \leq -1$, we have that $z \neq \%$. Thus $z = xb$, for some $x \in \{0,1\}^*$ and $b \in \{0, 1\}$. Because x is a shorter prefix of w than z, it follows that $\text{diff}(x) \geq 0$.

Suppose, toward a contradiction, that $b = 1$. Since $\text{diff}(x) + 1 = \text{diff}(x) = \text{diff}(xb) = \text{diff}(z) \leq$ -1 , we have that $\text{diff}(x) \leq -2$ —contradiction. Thus $b = 0$, so that $z = xb = x0$ and $w = zy = x0y$. Since $\text{diff}(x) + -2 = \text{diff}(x) = \text{diff}(z) \leq -1$, we have that $\text{diff}(x) \leq 1$. But $\text{diff}(x) \geq 0$, and

thus $\text{diff}(x) \in \{0, 1\}$. Thus there are two cases to consider.

- Suppose $\text{diff}(x) = 0$. Because $-2 + \text{diff}(y) = 0 2 + \text{diff}(y) = \text{diff}(x\text{0}y) = \text{diff}(w)$, we have that $\text{diff}(y) = \text{diff}(w) + 2$. Thus $\text{diff}(x) = 0$ and $\text{diff}(y) = \text{diff}(w) + 2$.
- Suppose $\text{diff}(x) = 1$. Because $-1 + \text{diff}(y) = 1 2 + \text{diff}(y) = \text{diff}(x\text{0}y) = \text{diff}(w)$, we have that $\text{diff}(y) = \text{diff}(w) + 1$. Thus $\text{diff}(x) = 1$ and $\text{diff}(y) = \text{diff}(w) + 1$.

 \Box

Now, we show that $Y \subseteq X$. Since $Y \subseteq \{0,1\}^*$, it will suffice to show that, for all $w \in \{0,1\}^*$,

if
$$
w \in Y
$$
, then $w \in X$.

We proceed by strong string induction. Suppose $w \in \{0,1\}^*$, and assume the inductive hypothesis: for all $x \in \{0, 1\}^*$, if $|x| < |w|$, then

if
$$
x \in Y
$$
, then $x \in X$.

We must show that

if
$$
w \in Y
$$
, then $w \in X$.

Suppose $w \in Y$, so that $\text{diff}(w) = 0$. We must show that $w \in X$. There are three cases to consider.

• Suppose $w = \%$. Then $w = \% \in X$, by Part (1) of the definition of X.

- Suppose $w = 0$ s, for some $s \in \{0,1\}^*$. Because $-2 + \text{diff}(s) = \text{diff}(0s) = \text{diff}(w) = 0$, we have that $\text{diff}(s) = 2$. Since $\text{diff}(s) \geq 1$, Lemma ES1.4.1 tells us that there are $x, t \in \{0, 1\}^*$ such that $s = x1t$, $diff(x) = 0$ and $diff(t) = diff(s) - 1$. Hence $x \in Y$ and $diff(t) = 2 - 1 = 1$. Since $\text{diff}(t) \geq 1$, Lemma ES1.4.1 tells us that there are $y, z \in \{0, 1\}^*$ such that $t = y1z$, $diff(y) = 0$ and $diff(z) = diff(t) - 1$. Hence $y \in Y$ and $diff(z) = 1 - 1 = 0$, so that $z \in Y$. Summarizing, we have that $w = 0s = 0x1t = 0x1y1z$ and $x, y, z \in Y$. Because $|x| < |w|$, $|y| < |w|$ and $|z| < |w|$, the inductive hypothesis tells us that $x, y, z \in X$. By Part (1) of the definition on X, we have that $\mathcal{C} \in X$. Finally, since $\mathcal{C}, x, y, z \in X$, Part (4) of the definition of X tells us that $w = 0x1y1z = %0x1y1z \in X$.
- Suppose $w = 1s$, for some $s \in \{0,1\}^*$. Because $1 + diff(s) = diff(1s) = diff(w) = 0$, we have that $\text{diff}(s) = -1$. Since $\text{diff}(s) \leq -1$, Lemma ES1.4.2 tells us that there are $x, y \in \{0, 1\}^*$ such that $s = x0y$, and either
	- $diff(x) = 0$ and $diff(y) = diff(s) + 2$; or
	- diff(x) = 1 and diff(y) = diff(s) + 1.

Thus there are two cases to consider.

- Suppose $\text{diff}(x) = 0$ and $\text{diff}(y) = \text{diff}(s) + 2$. Hence $x \in Y$ and $\text{diff}(y) = -1 + 2 = 1$. Since $\text{diff}(y) \geq 1$, Lemma ES1.4.1 tells us that there are $z, t \in \{0, 1\}^*$ such that $y = z1t$, $diff(z) = 0$ and $diff(t) = diff(y) - 1$. Hence $z \in Y$ and $diff(t) = 1 - 1 = 0$, so that $t \in Y$. Summarizing, we have that $w = 1s = 1x0y = 1x0z1t$ and $x, z, t \in Y$. Because $|x| < |w|$, $|z| < |w|$ and $|t| < |w|$, the inductive hypothesis tells us that $x, z, t \in X$. By Part (1) of the definition on X, we have that $\mathcal{C} \in X$. Finally, since $\mathcal{C}, x, z, t \in X$, Part (3) of the definition of X tells us that $w = 1x0z1t = \% 1x0z1t \in X$.
- Suppose $\text{diff}(x) = 1$ and $\text{diff}(y) = \text{diff}(s) + 1$. Hence $\text{diff}(y) = -1 + 1 = 0$, so that $y \in Y$. Since $\text{diff}(x) \geq 1$, Lemma ES1.4.1 tells us that there are $z, t \in \{0,1\}^*$ such that $x = z1t$, $\text{diff}(z) = 0$ and $\text{diff}(t) = \text{diff}(x) - 1$. Hence $z \in Y$ and $\text{diff}(t) = 1 - 1 = 0$, so that $t \in Y$. Summarizing, we have that $w = 1s = 1x0y = 1z1t0y$ and $z, t, y \in Y$. Because $|z| < |w|$, $|t| < |w|$ and $|y| < |w|$, the inductive hypothesis tells us that $z, t, y \in X$. By Part (1) of the definition on X, we have that $\mathcal{C} \in X$. Finally, since $\mathcal{C}_0, z, t, y \in X$, Part (2) of the definition of X tells us that $w = 1z1t0y = \%1z1t0y \in X$.