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PrefaceThis monograph presents a language-independent theory of fully abstract denota-tional semantics of programming languages|models that identify program fragmentsexactly when they are operationally interchangeable|and uses this theory to showthe existence or nonexistence of such models for several example programming lan-guages. It is intended for researchers in programming language semantics, and ismathematically self-contained: only naive set theory and some very basic notions ofcategory theory are assumed. Some familiarity with universal algebra and domaintheory would be helpful, however.This monograph is a revision of the author's Ph.D. thesis [Stou], which was submit-ted to the University of Edinburgh in August, 1986. It is a pleasure to acknowledgemany stimulating discussions with my thesis supervisor, Gordon Plotkin. Numer-ous conversations with Marek Bednarczyk, Ilaria Castellani, Peter Dybjer, MatthewHennessy, Kim Larsen, David McCarty, Robin Milner, Peter Mosses, Andrew Pitts,K.V.S. Prasad, Edmund Robinson, Dave Schmidt, Oliver Schoet and Colin Stirling,as well as particular talks with G�erard Berry, Evelyn Nelson and Glynn Winskel,were also helpful. Special thanks are due to G�erard Berry, Peter Dybjer and DavidMcCarty for critically reading my thesis, and to G�erard Berry, Rance Cleaveland andAndrew Pitts for their comments on a draft of this monograph.I was �nancially supported by a University of Edinburgh Studentship and researchfellowships from the Department of Computer Sciences of Chalmers University ofTechnology and the Science and Engineering Research Council of Great Britain.
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Chapter 1Introduction
1.1 Program Equivalence and Full AbstractionNotions of program equivalence are fundamental to the theory and practice of pro-gramming languages. They are the semantic basis for program optimization and canbe used to justify the correctness-preserving transformations that are employed byprogram manipulation systems. Notions of program equivalence are generally substi-tutive in the sense that the results of embedding equivalent terms (program fragments)into a context (a term with \holes" in it) are also equivalent. Thus a programmer canreplace fragments of a program by equivalent terms without considering the detailsof the whole program.Program equivalences are typically de�ned according to the following paradigm.Terms that are considered to be directly executable and observable are designated asprograms, and their behaviour is de�ned. Then two terms are de�ned to be equivalentif and only if (i�) they have the same behaviour in all program contexts, i.e., i� onecan be replaced by the other in any program without a�ecting the behaviour of thatprogram. Thus term equivalence is reduced to program behaviour.The distinction between terms and programs is often suggested by the syntacticcategories of programming languages. For example, in an imperative language withstatements and expressions the statements might be taken to be the programs, re-ecting the view that expressions can only be executed as parts of statements. Forlanguages with block structure, i.e., in which identi�ers can be statically bound, it iscommon to take the closed terms as the programs.By the behaviour of programs we mean the actions of programs that are visibleto external observers. Program behaviours for a deterministic programming language
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might simply be functions from inputs to outputs, whereas behaviours for languageswith communicating processes might consist of communication histories. Much de-pends upon the level of detail that external observers are allowed to see.It is also possible to consider notions of program ordering, i.e., notions of whenone term should be considered less de�ned, or convergent, than another. Programorderings are typically de�ned by ordering the set of program behaviours and thende�ning one term to be less than another i� the behaviour of the �rst is less thanthat of the second in all program contexts.Program behaviours and their orderings can be de�ned as abstractions of bothoperational and denotational semantics, although the literature is currently biasedtoward the use of operational semantics. Examples of the use of denotational seman-tics in this way are given in this monograph. Often there are multiple natural notionsof behaviour that can be de�ned via a given semantics. Examples of behaviourallyde�ned program orderings and equivalences can be found in [Mil1], [Mil3], [Plo1] and[HenPlo1].Once a notion of program equivalence has been selected for a programming lan-guage, its properties must be determined and proof techniques found. Denotationalsemantics, as developed by Scott, Strachey and their followers (see [Stoy] for an in-troduction and extensive references), is a suitable framework for these activities. Theidea is to reduce the equivalence of terms to the equality of their semantic values inappropriate models, i.e., to semantically capture the notion of program equivalence.Thus it is necessary to work with models that are equationally correct (or simplycorrect) in the sense that only equivalent terms are identi�ed (mapped to the samesemantic value). Models with the ideal property that exactly the equivalent termsare identi�ed are called equationally fully abstract (or simply fully abstract).Similarly, one can judge denotational semantics with reference to notions of pro-gram ordering. A model is said to be inequationally correct with reference to aprogram ordering i� one term is less than another in the program ordering wheneverthe meaning of the �rst is less than that of the second in the model, and inequation-ally fully abstract i� one term is less than another in the program ordering exactlywhen the meaning of the �rst is less than that of the second in the model.For models to be useful for reasoning about program equivalences or orderings, itis necessary that their structure be understandable independently from those equiv-alences or orderings; informally, we call such models natural. For example, modelssynthesized using the standard constructions of denotational semantics are generallynatural, in contrast to term models, i.e., models constructed from equivalence classes
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of terms, etc.The idea of judging denotational semantics with reference to prede�ned notions ofprogram ordering and equivalence is due to Milner [Mil1] and Plotkin [Plo1] and hasbeen studied, for a variety of programming languages, by Abramsky, Berry, Curien,Hennessy and others. Research on full abstraction can be divided into two categories:(i) The synthesis and analysis of natural models.(ii) The theoretical study of the conditions under which fully abstract modelsexist.We consider each of these in turn.For many programming languages, the standard techniques of denotational seman-tics yield natural models that are too concrete, i.e., correct but not fully abstract.Many common language features, such as functions of higher type, concurrency, stor-age allocation and data abstraction, are problematic. This phenomenon was �rst no-ticed in connection with a simple applicative programming language, based upon thetyped lambda calculus, called PCF (Programming Computable Functions). Plotkin[Plo1] showed that the natural continuous function model of PCF is correct, but notfully abstract, with reference to its standard notion of program equivalence, whichis based upon the total evaluation of closed ground terms. This lack of full abstrac-tion is due to the presence of certain \parallel" elements in the model, which are notrealized by terms in the programming language. In fact, Plotkin showed that if a\parallel conditional" is added to the language then the continuous function modelof this extended language is fully abstract. The problem of �nding a natural fullyabstract model of the original language is still open, although much progress has beenmade by Berry, Curien and Winskel [BerCurL�ev]. A byproduct of their work is thesequential algorithms model of PCF [BerCur], which is fully abstract with referenceto an alternative notion of program equivalence that is sensitive to the order andextent of evaluation of function arguments. See [BerCurL�ev] for an excellent surveyof this and other research into the full abstraction problem for PCF.Other examples of the search for natural fully abstract models can be foundin [HenPlo1], which considers a simple parallel programming language, [Abr1] and[Abr2], which treat a nondeterministic applicative language with in�nite streams, and[Bro] and [HalMeyTra], which deal with Algol-like languages. Many open problemsexist.The di�culty of �nding natural fully abstract models for many programminglanguages has led to the theoretical study of the conditions under which fully abstractmodels exist. Proofs of the existence or nonexistence of fully abstract models of
3



programming languages are relative, of course, to what count as models of thoselanguages. Positive results spur on the search for natural models, whereas negativeones indicate that the class of models being considered must be widened.The study of the existence of fully abstract models can be carried out withinthe framework of initial algebra semantics [Sco][ADJ1][CouNiv]. Programming lan-guage syntax is speci�ed in this framework by many-sorted signatures, whose sortsand operators correspond to the syntactic categories and constructs, respectively,of programming languages, and models are universal algebras whose carriers havecertain order-theoretic structure and whose operations preserve that structure. Usu-ally the carriers are taken to be complete partial orders (cpo's) and the operationscontinuous functions, but it is also possible to work with weaker notions of conti-nuity [AptPlo][Plo2] or to generalize from partial orders to categories [Leh][Abr2].The meanings assigned by models to iteration and recursion constructs are normallyrequired to be least �xed points of appropriate unary derived operations. For ex-ample, the meaning of a while-loop while E do S od should be the least �xed pointof if E then S;� else skip � . Many additional requirements may be set for modelsof particular programming languages, e.g., extensionality for models of applicativelanguages.Positive results are typically proved via termmodel constructions. Such techniqueswere �rst used by Milner, who constructed a fully abstract model of the combinatorylogic version of PCF [Mil2]. His construction was simpli�ed and applied to the typedlambda calculus version of PCF by Berry [Ber1]. Similar techniques were used byHennessy and Plotkin to construct fully abstract models of two variants of CCS[HenPlo2][Hen]. These term model constructions proceed, roughly, as follows. Onedesignates certain terms as \semantically �nite", orders them by the language's notionof program ordering, and then makes them into an !-algebraic cpo, using the familiarideal completion. An algebra is then de�ned using this cpo as its carrier. In Berry'sconstruction, the syntactic projections 	nM of arbitrary terms M are taken as thesemantically �nite terms.Recently, Mulmuley has considered the problem of connecting the continuous func-tion model of the combinatory logic version of PCF with Milner's fully abstract model[Mul]. Using operationally de�ned inclusive predicates, he de�nes a fully abstractmodel as a retract of the complete lattices version of the continuous function modeland then removes the top elements from this model, thus yielding Milner's model. Inthis ingenious construction the unwanted, parallel functions are retracted either towanted, sequential ones or to the top elements. Thus the technique is not applicable
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to the usual continuous function model, which is based instead upon cpo's; since thecomplete lattices model is less abstract than the cpo model [Plo1], this may be seenas a disadvantage. In addition, Mulmuley's retraction does not preserve function ap-plication, and thus is not a homomorphism of algebras, and his retract model is not acombinatory algebra, because of the interaction between the K combinators and thetop elements.The �rst negative result was proved by Apt and Plotkin [AptPlo] for a nondeter-ministic imperative programming language with random assignment, i.e., the facilityfor choosing an arbitrary natural number and assigning it to a variable. They provethat there does not exist a fully abstract model that is based upon cpo's and con-tinuous functions for this language. This is because there are programs (such as theone that chooses a natural number and then decrements it until it becomes zero) thatalways terminate, but whose �nite approximations all have the possibility of diver-gence. They are able, however, to give a natural fully abstract model that is basedupon a weaker notion of continuity. Abramsky, following this work, has proved asimilar negative result for a nondeterministic applicative programming language within�nite streams [Abr3].1.2 A Theory of Fully Abstract ModelsAll of the research described above has focused on full abstraction for speci�c pro-gramming languages. In this monograph we try to develop a theory of fully abstractmodels of programming languages that is applicable to programming languages ingeneral. The goal is to develop a uni�ed framework in which simpler proofs of theexisting positive and negative results can be given and new results can be proved.The following paragraphs summarize the contents of the monograph.We begin by building a mathematical framework for studying full abstraction,based upon initial algebra semantics. As models we take complete ordered algebras,i.e., many-sorted universal algebras whose carriers are sort-indexed families of com-plete partial orders and operations are continuous functions. Following [CouNiv],every signature is required to contain a distinguished nullary operator 
 of each sort,which stands for divergence or nontermination, and is interpreted as the least ele-ment of its sort in every model. Although programming languages rarely containsuch constants explicitly, many languages for which divergence is possible in all syn-tactic categories do contain terms that the constants 
 can be modelled after, e.g.,while true do skip od , in some imperative languages. Chapter 2 consists of the def-
5



initions and theorems concerning universal algebras and ordered algebras that willbe needed in the sequel. In particular, we prove several quotienting and completiontheorems that will be used in term model constructions.Chapter 3 is devoted to the de�nitions and elementary properties of full ab-straction and least �xed point models. We consider three kinds of full abstraction(and also correctness): equational, inequational and contextual. The �rst two are asdescribed above, and the third is the natural generalization of equational full abstrac-tion from ordinary terms to contexts. Formally, notions of program equivalence arecongruences over the term algebra, and notions of program ordering are substitutivepre-orderings over the term algebra in which the maximally divergent terms 
 areleast elements. Least �xed point models are intended to assign iteration and recursionconstructs meanings that are least �xed points of appropriate unary derived opera-tions. Such requirements are formally expressed in our framework by families of least�xed point constraints, which specify that the meanings of certain terms should beleast upper bounds of the meanings of certain directed subsets of the ordered termalgebra. We also consider contextually least �xed point models, which are the naturalgeneralization of least �xed point models from terms to contexts.In chapter 4 we study two programming languages within our framework. The�rst is the combinatory logic version of PCF, and the second is an imperative languagewith explicit storage allocation and higher and recursive types, which we call TIE.We give denotational semantics for both of these languages, de�ne notions of programordering and equivalence as abstractions of these models, in a uniform manner, andshow that the models are inequationally correct with reference to these notions ofordering. In contrast, the model of PCF is already known not to be fully abstract,and we conjecture that neither is our model of the second language.In chapter 5 we give necessary and su�cient conditions for the existence of cor-rect and fully abstract models, for each of the three kinds of correctness and fullabstraction. The condition for the existence of inequationally fully abstract models isthe cornerstone of these results. An inequationally fully abstract model of a program-ming language exists i� its notion of program ordering satis�es the constraints in theclosure|under the operations of the term algebra|of its family of least �xed pointconstraints. Showing the necessity of this condition is straightforward. Its su�ciencyis proved via a term model construction: the ordered term algebra is quotiented bythe notion of program ordering, and then embedded into a complete ordered algebrain a way that preserves the least upper bounds corresponding to the constraints inthe closure of the family of least �xed point constraints. The chapter concludes with
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several theorems concerning the existence of initial objects and the nonexistence ofterminal objects in various categories of models.Chapter 6 consists of simpli�ed proofs of the negative results of [AptPlo] and[Abr3], using the condition for the existence of equationally fully abstract modelsgiven in chapter 5. Although our theory is directly applicable to Abramsky's nonde-terministic applicative language with streams, we prefer to work instead with a non-deterministic imperative language with in�nite output streams. Since the streams ofour language are unreadable, in contrast to those of Abramsky's language, we achievea slight sharpening of his result. The notions of program equivalence for the lan-guages of this chapter are de�ned via operational semantics, and no model-theoreticreasoning is used in the proofs of the negative results.In chapter 7, we investigate two approaches to obtaining fully abstract modelsfrom correct ones. In the �rst, we use the condition for the existence of inequation-ally fully abstract models given in chapter 5 in order to develop useful necessaryand su�cient conditions involving the existence of correct models. In the second, weconsider the possibility of collapsing correct models, via continuous homomorphisms,to fully abstract ones. We show that this is not always possible|indeed the naturalcontinuous function model of PCF provides a counterexample|but give su�cientconditions for its possibility. Both of these approaches yield fully abstract models forthe languages introduced in chapter 4, and, more generally, for languages whose no-tions of program ordering and equivalence are de�ned as abstractions of models usingthe technique of chapter 4. In the case of PCF, we are able to continuously collapsethe reachable inductive subalgebra of the continuous function model to Milner's fullyabstract model, thus providing a pleasing, algebraic solution to Mulmuley's problemof relating these models.Finally, in chapter 8, we consider the limitations of the monograph and thecorresponding possibilities for further research.
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Chapter 2Universal Algebras and OrderedAlgebrasThis chapter introduces the de�nitions and theorems concerning universal algebrasand ordered algebras that are the basis of the monograph. We begin, in section 2.1,by describing the (mostly standard) conventions of notation and terminology thatwill be followed in the sequel.Sections 2.2 and 2.3 deal with the basics of many-sorted algebras and orderedalgebras, respectively. Most of the de�nitions and theorems in these sections areboth standard and straightforward and detailed references will not be given. Thosereaders who are interested in the history of these ideas are referred to [Gr�a], for theuniversal algebra, and [Sco], [ADJ1], [CouNiv] and [Nel], for the work on orderedalgebras. The exception to this is the de�nition and treatment of \unary-substitutivepre-orderings", which I believe to be new (see de�nition 2.2.23).Section 2.4 consists of a completion theorem and two quotienting theorems forordered algebras. The completion theorem is a variation of that of [CouRao] andconcerns the embedding of ordered algebras into complete ordered algebras in sucha way that certain existing least upper bounds are preserved. For our results inchapters 5 and 7 we must preserve sets of existing least upper bounds that cannot bedescribed by the usual families of subsets [CouRao] (subset systems in the terminologyof [ADJ2] and [Nel]), which are de�ned uniformly for all ordered algebras. As a result,we work with families of subsets that are associated with individual ordered algebras.The quotienting theorems are taken from [CouNiv] and [CouRao].
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2.1 Mathematical ConventionsWe identify the set of natural numbers N with the ordinal !, so that 0 = ; andn = f0; 1; : : : ; n� 1g, and write Tr for the set ftt ;� g of booleans.Function space formation,X!Y , associates to the right and function application,f a, to the left. We sometimes write Y X forX!Y . For f :X!Y andX 0 � X, f X 0 isf f x j x 2 X 0 g � Y , the image ofX 0 under f , and f jX 0 is f hx; yi 2 f j x 2 X 0 g:X 0!Y , the restriction of f to X 0. For a set X, idX :X !X is the identity function, andfor f :X ! Y and g:Y ! Z, g � f :X ! Z is the composition of f and g. The nthiterate, fn, of a function f :X!X is de�ned by f 0 = idX and fn+1 = f � fn.For a set X, the set X? of �nite sequences of elements of X is Sn2!Xn, and theset X1 of �nite and in�nite sequences of elements of X is X? [ X!. For a 2 X?(respectively, a 2 X!), jaj, the cardinality of a, doubles as the length of a. Further-more, � doubles as the is-a-pre�x-of relation on sequences. We write hx1; : : : ; xnifor elements of Xn � X?; in particular, h i = ; 2 X0 is the empty sequence. Fora 2 X? and b 2 X? (respectively, b 2 X!), the concatenation of a and b, a b 2 X?(respectively, a b 2 X!), is a [ f hn+ jaj; xi j hn; xi 2 b g:The product D1 � � � � � Dn of sets D1; : : : ; Dn, n � 0, is f hd1; : : : ; dni jdi 2 Di g. Thus, if n = 0 then D1 � � � � � Dn = fh ig. The projection functions�i:D1 � � � � �Dn !Di, 1 � i � n, are de�ned by �i hd1; : : : ; dni = di. More gener-ally, the product Qx2X Ax of an X-indexed family of sets A isf �:X! [x2X Ax j � x 2 Ax; for all x 2 X g:The projection functions �x:Qx2X Ax ! Ax are de�ned by �x � = � x, and we oftenwrite �[x] for �x �. For x 2 X,�[�=x]: (Yx2XAx)� Ax! (Yx2XAx)is de�ned by �y �[a=x] = ( a if y = x;(�y �) otherwise:We write PX for the powerset of a set X, i.e., the set of all subsets of X.A binary relation over a set is a pre-ordering i� it is reexive and transitive, apartial ordering i� it is an antisymmetric pre-ordering, and an equivalence relation9



i� it is a symmetric pre-ordering. If R is a relation over X then we write R? for thereexive-transitive closure of R. If � is a pre-ordering then we write � for its inverse(x � y i� y � x). Other examples of the notation for inverses are � for � and �ffor �f . Note that the inverse is not always the exact mirror image of the originalordering. If � is an equivalence relation over X then X=�, the quotient of X by �,is f [x]� j x 2 X g, where [x]�, the �-equivalence class of x, is f x0 2 X j x0 � x g.Sometimes we drop the relation � from [x]�.As we will make extensive use of many-sorted algebras, we will frequently needto manipulate families of (structured) sets. Many operations and concepts extendnaturally from sets to families of sets, in a pointwise manner. For example, if Aand B are X-indexed families of sets, i.e., functions with domain X, then a functionf :A!B is an X-indexed family of functions fx:Ax!Bx, x 2 X; A � B i� Ax � Bx,for all x 2 X; and (A\B)x = Ax \Bx, for all x 2 X. We will make use of these andother such extensions without explicit comment.We often give inductive de�nitions of sets, i.e., we de�ne a set X to be the least set(under the subset relation) satisfying certain closure conditions. A proof by inductionover X of a proposition 8 x2X �(x) consists of showing that the set Y = f x 2 X j�(x) g satis�es the closure conditions, since, by the leastness of X, we can thenconclude that Y = X. Induction over the natural numbers and structural inductionover term algebras (see de�nition 2.2.5) are special cases of this general principle.2.2 Many-Sorted AlgebrasThis section contains the de�nitions and results concerning many-sorted algebras thatwill be used in the sequel. We begin with the de�nitions of signatures, algebras, ho-momorphisms and subalgebras. The initial or term algebra is then de�ned, followedby the de�nition of reachability. Substitutive and 
-least pre-orderings over alge-bras are then considered. Next, derived operations are introduced, leading to theimportant notion of unary-substitutive pre-orderings. Several results relating unary-substitutivity and substitutivity then follow, and the section concludes with two lem-mas concerning the relations over the term algebra that are induced by relations overalgebras.De�nition 2.2.1 A signature � consists of a set of sorts S, a set of operators �,and a function from � to (S? � S), which assigns types to operators. We write s1 �� � ��sn!s0 for n-ary types hhs1; : : : ; sni; s0i; unary types hhs1i; s0i are written s1!s0,
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and nullary types hh i; s0i as s0. In addition, each signature contains a distinguishednullary operator 
s of type s, for each s 2 S. We often drop the sort s from 
s.The operators 
s may be thought of as representing divergence or nontermination.De�nition 2.2.2 A �-algebra A is an S-indexed family of sets A (the carrier ofA) together with an operation �A:As1 � � � � � Asn ! As0, for each � 2 � of types1 � � � � � sn ! s0. A homomorphism h:A!B over algebras is a function h:A!Bsuch that for all � 2 � of type s1 � � � � � sn! s0,hs0 �Aha1; : : : ; ani = �Bhhs1 a1; : : : ; hsn ani;for all ai 2 Asi, 1 � i � n.We use uppercase script letters (A, B, etc.) to denote algebras and the cor-responding italic letters (A, B, etc.) to stand for their carriers. We often drop thealgebra A from �A, and write �, � a and a1 � a2, instead of �h i, �hai and �ha1; a2i, fornullary, unary and binary operations, respectively. As usual, if �(�) is an operationon algebras then we write �(A) for the carrier of �(A).De�nition 2.2.3 For algebras A and B, A is a subalgebra of B i� A � B and for all� 2 � of type s1 � � � � � sn ! s0 and ai 2 Asi, 1 � i � n,�Aha1; : : : ; ani = �Bha1; : : : ; ani:If A is an algebra and B � A then by B is a subalgebra of A we mean that B isclosed under the operations of A. We write A � B for A is a subalgebra of B.A consequence of this de�nition is that A is a subalgebra of B i� A � B andthe inclusion map from A to B is a homomorphism from A to B. Note that the �relation over the class of algebras is a partial ordering.De�nition 2.2.4 If f :A ! B is a homomorphism then f A, the subalgebra of Binduced by f , consists of f A, together with the restrictions of the operations of B tof A.The set f A is closed under the operations of B, since if � 2 � has type s1� � � ��sn! s0 and ai 2 Asi , 1 � i � n, then�Bhfs1 a1; : : : ; fsn ani = fs0 �Aha1; : : : ; ani:Note that f is also a homomorphism from A to f A.11



De�nition 2.2.5 We de�ne the term algebra T� (or simply T ) as follows. Its carrierT is least such that if � 2 � has type s1 � � � � � sn! s0 and ti 2 Tsi, 1 � i � n, thenh�; ht1; : : : ; tnii 2 Ts0. If � 2 � has type s1 � � � � � sn ! s0 then the operation �T isde�ned by �T ht1; : : : ; tni = h�; ht1; : : : ; tnii.A standard result then easily follows.Lemma 2.2.6 The term algebra T is initial in the category of algebras and homo-morphisms. 2De�nition 2.2.7 For an algebra A, we write MA (or simply M) for the uniquehomomorphism from T to A. An element a 2 As, s 2 S, is denotable i� there existsa term t 2 Ts such that Ms t = a.Here M stands for \meaning" and can be thought of as the meaning or semanticfunction from syntax to semantics. An easy application of lemma 2.2.6 is thatMAs t =MBs t, for all t 2 Ts, s 2 S, if A is a subalgebra of B.De�nition 2.2.8 An algebra A is reachable i� MA T = A, i.e., every element of Ais denotable.An equivalent de�nition is that an algebra is reachable i� it has no proper subal-gebras. An obvious consequence of this de�nition is that T itself is reachable.We now consider several kinds of relations over algebras.De�nition 2.2.9 If A is an algebra and R is a relation over A then R is substitutivei� the operations of A respect R: for all � 2 � of type s1�� � ��sn!s0 and ai; a0i 2 Asi,1 � i � n, if aiRsi a0i; 1 � i � n; then �ha1; : : : ; aniRs0 �ha01; : : : ; a0ni:As usual, substitutive equivalence relations are called congruences.It is easy to see that if � is a substitutive pre-ordering over A then � \ �is a congruence. Note that if R is a substitutive pre-ordering (respectively, partialordering, equivalence relation) over A, and B is a subalgebra of A, then the restrictionof R to B is a substitutive pre-ordering (respectively, partial ordering, equivalencerelation) over B.
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De�nition 2.2.10 If f :D! E is a function over sets then the equivalence relationover D induced by f , �f , is de�ned by: d1 �f d2 i� f d1 = f d2.If f :A!B is a homomorphism then �f is clearly a congruence over A. We makeuse of this de�nition in giving the next one.De�nition 2.2.11 For an algebra A, the congruence over T induced by A, �A, is�MA .Note that if A � B then �A = �B.De�nition 2.2.12 If A is an algebra and R is a pre-ordering over A then R is 
-leasti� for all s 2 S and a 2 As, 
sRs a.We will extensively use both 
-least substitutive pre-orderings and congruences.Note that if A is an algebra and R is a relation over A then there is a least 
-leastsubstitutive pre-ordering containing R, as well as a least congruence containing R.As there are no constraints concerning the 
 operations on congruences, it isnot surprising that not every congruence is induced by an 
-least substitutive pre-ordering, as the next lemma shows.Lemma 2.2.13 There is a signature � and a congruence � over T such that thereis no 
-least substitutive pre-ordering � over T with the property that � = � \ �.Proof. Let � over S = f0; 1g have the following operators:(i) 
0 and a of type 0;(ii) 
1 of type 1; and(iii) f of type 0! 1.Let � be the least congruence over T with the property that 
1 �1 f a. Then, noother unequal terms are congruent.Suppose, towards a contradiction, that a � as in the statement of the lemmaexists. Then 
1 �1 f 
o �1 f a �1 
1;showing that 
1 �1 f 
0|a contradiction. 2We now consider derived operators, which are de�ned via the free algebra over aset of generators.
13



De�nition 2.2.14 For an S-indexed family X of disjoint sets of context variablesnot occurring in �, �(X) is the signature formed by adding nullary operators x oftype s, for each x 2 Xs, s 2 S, to �. The �-algebra T�(X) (or simply T (X)) is therestriction of T�(X) to a �-algebra. For x 2 Xs, we simply write x for hx; h ii 2 T (X)s.We often use the letter c, for \context", to stand for elements of T (X). Thestandard result that T (X) is the free algebra generated by X now easily follows.Lemma 2.2.15 De�ne f :X! T (X) by fs x = x. If A is an algebra and g:X! Athen there exists a unique homomorphism h: T (X)!A such that g = h � f :X T (X)
A

fg h-@@@@@@@R ? .2De�nition 2.2.16 For a signature �, V� (or simply V ) is an S-indexed family ofdisjoint, countably-in�nite sets of context variables not occurring in �. We oftenview a set Y of variables (Y � Ss2S Vs) as the S-indexed family of variables Y 0de�ned by Y 0s = Vs \ Y .De�nition 2.2.17 A derived operator of type s1 � � � � � sn! s0 is a pairhc; hv1; : : : ; vnii;where the vi 2 Vsi are distinct variables and c 2 T (fv1; : : : ; vng)s0. We writec[v1; : : : ; vn] for derived operators hc; hv1; : : : ; vnii. For an algebra A, the derivedoperation cA[v1; : : : ; vn]:As1 � � � � � Asn ! As0is de�ned by cA[v1; : : : ; vn]ha1; : : : ; ani = hs0 c;where h: T (fv1; : : : ; vng)!A is de�ned via lemma 2.2.15, by taking fv1; : : : ; vng forX and de�ning g by gsi vi = ai, 1 � i � n.14



We write c for c[v1; : : : ; vn] when the order of the variables is clear from the context,and we often drop the algebra A from cA. A derived operator c[v1; : : : ; vn] of types1 � � � � � sn ! s0 is a projection i� c = vi and s0 = si, for some 1 � i � n, and aconstant i� c 2 Ts0.The next three lemmas show how derived operators can be constructed fromconstant and projection derived operators and ordinary operators.Lemma 2.2.18 Suppose A is an algebra and ai 2 Asi , 1 � i � n.(i) For each projection vi[v1; : : : ; vn] of type s1 � � � � � sn! si,viA ha1; : : : ; ani = ai:(ii) For each constant t[v1; : : : ; vn] of type s1 � � � � � sn! s0,tA ha1; : : : ; ani =Ms0 t:Proof. (i) is immediate from de�nition 2.2.17, and (ii) is a simple structuralinduction over T . 2Lemma 2.2.19 If � 2 � has type s1 � � � � � sn ! s, ci[v1; : : : ; vm], 1 � i � n, arederived operators of type s01�� � �� s0m!si, A is an algebra and aj 2 As0j , 1 � j � m,then (�T (fv1;:::;vmg)hc1; : : : ; cni)[v1; : : : ; vm]is a derived operator of type s01 � � � � � s0m! s and(�hc1; : : : ; cni)A ha1; : : : ; ami = �A hc1A ha1; : : : ; ami; : : : ; cnA ha1; : : : ; amii:Proof. Immediate from de�nition 2.2.17. 2Lemma 2.2.20 If c[v1; : : : ; vn] is a derived operator of type s1 � � � � � sn ! s,ci[v01; : : : ; v0m], 1 � i � n, are derived operators of type s01 � � � � � s0m ! si, A is analgebra and aj 2 As0j , 1 � j � m, then(cT (fv01;:::;v0mg)hc1; : : : ; cni)[v01; : : : ; v0m]is a derived operator of type s01 � � � � � s0m! s and(chc1; : : : ; cni)A ha1; : : : ; ami = cA hc1A ha1; : : : ; ami; : : : ; cnA ha1; : : : ; amii:15



Proof. An easy structural induction over T (fv1; : : : ; vng). 2Two standard lemmas concerning derived operations now follow.Lemma 2.2.21 Homomorphisms preserve derived operations and derived operationsrespect substitutive pre-orderings.Proof. Both parts of the lemma are easy structural inductions over T (X), forappropriate sets of variables X. 2Lemma 2.2.22 If A is a subalgebra of B then for all derived operators c[v1; : : : ; vn]of type s1 � � � � � sn! s0 and ai 2 Asi, 1 � i � n,cA ha1; : : : ; ani = cB ha1; : : : ; ani:Proof. Immediate from lemma 2.2.21 and the fact that the inclusion map from Ato B is a homomorphism from A to B. 2It is now possible to de�ne a weaker notion of substitutivity that, as we shall see,arises naturally.De�nition 2.2.23 If A is an algebra and R is a pre-ordering over A then R is unary-substitutive i� all unary derived operations respect R: for all derived operators c[v]of type s! s0 and a; a0 2 As,if aRs a0 then chaiRs0 cha0i:We could, of course, de�ne the notion of n-substitutive pre-orderings, which wouldbe respected by n-ary derived operations, but we have no use for this generality inthe sequel.A consequence of lemma 2.2.22 is that if R is a unary-substitutive pre-ordering(respectively, partial ordering, equivalence relation) over A, and B is a subalgebra ofA, then the restriction of R to B is a unary-substitutive pre-ordering (respectively,partial ordering, equivalence relation) over B. If� is a unary-substitutive pre-orderingover an algebra A then (� \ �) is a unary-substitutive equivalence relation over A.We now de�ne an operation that will be employed in the de�nitions of notions ofprogram ordering and equivalence of chapters 4 and 6.
16



De�nition 2.2.24 If P � S, A is an algebra and R is a pre-ordering over AjPthen Rc, the contextualization of R, is the relation over A de�ned by: aRcs a0 i�chaiRp cha0i, for all derived operators c[v] of type s! p, p 2 P . If R is a pre-orderingover A then P will implicitly be S in the de�nition of Rc.Subsets P � S can be thought of as consisting of program sorts, and derivedoperators c[v] of type s! p as program contexts. Thus if R is a relation over T jP(programs) then two terms are related by Rc i� they are related by R in all programcontexts.The next lemma shows that, as might be guessed, Rc is always a unary-substitutivepre-ordering.Lemma 2.2.25 If P � S, A is an algebra and R is a pre-ordering (respectively,equivalence relation) over AjP then Rc is the greatest unary-substitutive pre-ordering(respectively, equivalence relation) over A whose restriction to P is included in R.Proof. It is easy to see that Rc is a pre-ordering over A and that it is symmetricif R is symmetric. The inclusion of the restriction of Rc to P in R follows from theexistence of projection derived operators v[v] of type p! p, for all p 2 P . Next, weshow that Rc is unary-substitutive. Suppose a1Rcs a2 and c[v] is a derived operatorof type s! s0. We must show that cha1iRcs0 cha2i. Let p 2 P and c0[v0] be a derivedoperator of type s0! p. Then, (c0hci)[v] is a derived operator of type s! p andc0hcha1ii = (c0hci)ha1i Rp (c0hci)ha2i = c0hcha2ii;by lemma 2.2.20, and by the assumption that a1Rcs a2. Finally, suppose R0 is a unary-substitutive pre-ordering (respectively, equivalence relation) over A whose restrictionto P is included in R; we must show that R0 � Rc. Let a1R0s a2. If p 2 P and c[v]is a derived operator of type s! p then cha1iR0p cha2i, and thus cha1iRp cha2i. Thusa1Rcs a2, as required. 2It is easy to see that if P � S, A is an algebra and � is a pre-ordering over AjPthen (� \ �)c = (�c \ �c).Lemma 2.2.26 If � is a unary-substitutive equivalence relation over an algebra Aand � is a pre-ordering over A that induces � then �c also induces �.Proof. Since �c � �, �c \ �c � �. For the opposite inclusion, suppose a1 �s a2,s 2 S. To show that a1 �cs a2, let c[v] be a derived operator of type s! s0. Thencha1i �s0 cha2i, since � is unary-substitutive, and thus cha1i �s0 cha2i. Similarly,a2 �cs a1. 2 17



The next lemma shows that, as mentioned above, unary-substitutivity is weakerthan substitutivity. In fact there is even a unary-substitutive equivalence relationover an algebra such that every congruence over that algebra induces a di�erentpre-ordering over T .Lemma 2.2.27 There is a signature �, an algebra A and an 
-least unary-substitutive pre-ordering � over A such that:(i) � is not substitutive;(ii) The unary-substitutive equivalence relation � = � \ � is not substitutive;and(iii) There does not exist a congruence �0 over A such thatMs t1 �s Ms t2 i�Ms t1 �0s Ms t2;for all t1; t2 2 Ts, s 2 S.Proof. Let � over S = f0; 1; 2g have the following operators:(i) 
0 of type 0;(ii) 
1, x and y of type 1;(iii) 
2 and z of type 2; and(iv) + of type 0� 1! 2.De�ne the algebra A as follows. Its carrier A is de�ned by A0 = f
0; wg, A1 =f
1; x; yg and A2 = f
2; zg. All of the nullary operations have themselves as theirvalues. The operation + is bistrict with reference to the 
's, i.e., a+a0 = 
2 if a = 
0or a0 = 
1; on non-
 elements, it is de�ned by w+ x = z and w+ y = 
2. Note thatthe element w of A0 is not denotable. Let � be the least 
-least pre-ordering over Asuch that x �1 y �1 x:

0 
1 
2w x y z@@@ ��� .Clearly the constant and projection unary derived operations respect �. This leaves(v + 
1)[v], (v + x)[v] and (v + y)[v] of type 0! 2 and (
0 + v0)[v0] of type 1! 2.Since + is bistrict, v+
1 and 
0 + v0 respect �. The unary-substitutivity of � thenfollows, since 
0 + x = 
2 �2 z = w + x
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and 
0 + y = 
2 �2 
2 = w + y:(i) will follow immediately from (ii), and (ii) immediately from (iii). For (iii),suppose that such an �0 exists. Then,x �1 y ) x �01 y) z = w + x �02 w + y = 
2) z �2 
2;which is a contradiction. 2As might be guessed from the proof of the previous lemma, a su�cient (butnot necessary) condition for a unary-substitutive pre-ordering over an algebra to besubstitutive is that the algebra be reachable. As an aid toward proving this, we �rstgive a characterization of substitutivity, which will also be used in section 2.3.Lemma 2.2.28 Let A be an algebra and R a pre-ordering over A. Then, R is sub-stitutive i� for all derived operators c[v; v1; : : : ; vn] of type s�s1�� � ��sn!s0, n � 0,and a; a0 2 As, if aRs a0 thencha; a1; : : : ; aniRs0 cha0; a1; : : : ; ani; for all ai 2 Asi ; 1 � i � n:Proof. The \only if" direction follows from lemma 2.2.21 and the reexivity of R.For the \if" direction, suppose � 2 � has type s1 � � � � � sn ! s0, and ai; a0i 2 Asihave the property that aiRsi a0i, 1 � i � n. We must show that�ha1; : : : ; ani Rs0 �ha01; : : : ; a0ni:If n = 0 then � Rs0 �, since R is reexive; so, assume that n � 1. Since R is transitive,it is su�cient to show that�ha1; : : : ; ani Rs0 �ha01; a2; : : : ; aniRs0 �ha01; a02; a3; : : : ; ani...Rs0 �ha01; : : : ; a0ni:We show a representative step in this chain:�ha01; : : : ; a0i�1; ai; ai+1; : : : ; ani Rs0 �ha01; : : : ; a0i�1; a0i; ai+1; : : : ; ani:19



Let vi 2 Vsi, 1 � i � n, be distinct variables. Then,(�hv1; : : : ; vni)[vi; v1; : : : ; vi�1; vi+1; : : : ; vn]is a derived operator of typesi � s1 � � � � � si�1 � si+1 � � � � � sn! s0;and thus �ha01; : : : ; a0i�1; ai; ai+1; : : : ; ani= (�hv1; : : : ; vni)hai; a01; : : : ; a0i�1; ai+1; : : : ; aniRs0 (�hv1; : : : ; vni)ha0i; a01; : : : ; a0i�1; ai+1; : : : ; ani= �ha01; : : : ; a0i�1; a0i; ai+1; : : : ; ani;since aiRsi a0i. 2Lemma 2.2.29 Unary-substitutive pre-orderings over reachable algebras are substi-tutive.Proof. Let R be a unary-substitutive pre-ordering over a reachable algebra A. Wemake use of the characterization of substitutivity given by lemma 2.2.28. Supposec[v; v1; : : : ; vn] is a derived operator of type s� s1 � � � � � sn ! s0, n � 0, a; a0 2 As,ai 2 Asi , 1 � i � n, and aRs a0. Since A is reachable, there are ti 2 Tsi such thatai =Msi ti, 1 � i � n. Then, (chv; t1; : : : ; tni)[v] is a derived operator of type s! s0,and cha; a1; : : : ; ani = (chv; t1; : : : ; tni)haiRs0 (chv; t1; : : : ; tni)ha0i= cha0; a1; : : : ; ani;since R is unary-substitutive. 2Combining lemmas 2.2.25 and 2.2.29 we have that if P � S, A is a reachablealgebra and R is a pre-ordering (respectively, equivalence relation) over AjP thenRc is the greatest substitutive pre-ordering (respectively, congruence) over A whoserestriction to P is included in R.This section concludes with two lemmas concerning the relations over T that areinduced by relations over the carriers of algebras.20



Lemma 2.2.30 Suppose P � S, A is an algebra, R is a pre-ordering over AjP , andQ is the pre-ordering over T jP de�ned byt1Qp t2 i�Mp t1RpMp t2:Then Rc is a unary-substitutive pre-ordering over A, Qc is a substitutive pre-orderingover T , and t1Qcs t2 i�Ms t1RcsMs t2;for all t1; t2 2 Ts, s 2 S.Proof. The substitutivity of Qc follows from lemma 2.2.29, andt1Qcs t2 i� cht1iQp cht2i; for all c[v] of type s! p; p 2 Pi� Mp cht1iRpMp cht2i; for all c[v] of type s! p; p 2 Pi� chMs t1iRp chMs t2i; for all c[v] of type s! p; p 2 Pi� Ms t1RcsMs t2;for all t1; t2 2 Ts, s 2 S. 2Lemma 2.2.31 Suppose A is an algebra, R is a pre-ordering over A, and Q is thepre-ordering over T de�ned byt1Qs t2 i�Ms t1RsMs t2:(i) If R is unary-substitutive then Q is substitutive.(ii) If Q is substitutive thent1Qs t2 i�Ms t1RcsMs t2;for all t1; t2 2 Ts, s 2 S.Proof. Immediate from lemma 2.2.30, with P = S. 22.3 Ordered AlgebrasThis section consists of the basic de�nitions and results concerning ordered algebrasthat will be needed in the sequel. We begin by considering posets, cpo's, continuousfunctions and inductive pre-orderings. Ordered algebras, complete ordered algebras21



and inductive subalgebras are then de�ned, followed by two results concerning thederived operations of ordered algebras, and the de�nitions of the ordered term algebraand free ordered algebras. Generated inductive subalgebras and inductive reachabil-ity are then considered, followed by two lemmas relating substitutivity and unary-substitutivity for complete ordered algebras. The section concludes with two lemmasconcerning the pre-orderings over the terms algebra that are induced by inductivepre-orderings over complete ordered algebras.De�nition 2.3.1 A pre-ordered set (preset) P is a set P , together with a pre-orderingvP over P . If p 2 P and P 0 � P then p is an upper bound (ub) of P 0 i� p0 vP p, forall p0 2 P 0, and p is a least upper bound (lub) of P 0 i� p is an ub of P 0 and p vP p00, forall ub's p00 of P 0. We write P 0 vP p, for p is an ub of P 0. A subset D � P is directedi� it is nonempty and every pair of elements of D has an ub in D. If P 00 � P 0 � Pthen P 00 is co�nal in P 0 i� for all p0 2 P 0, there exists a p00 2 P 00 such that p0 vP p00. Asubset P 0 � P is downward-closed i� for all p0 2 P 0 and p 2 P , if p vP p0 then p 2 P 0.We write downP (P 0) for f p 2 P j p vP p0; for some p0 2 P 0 g, the downward-closureof P 0.We often drop the P from vP and downP (P 0) when it is clear from the context.Equivalently, D � P is directed i� all �nite subsets of D have ub's in D. Notethat lub's in presets are not necessarily unique.De�nition 2.3.2 A partially ordered set (poset) P is a preset such that vP is apartial ordering. Such a P is pointed i� it contains a least element, ?P . A pointedposet P is at i� for all p1; p2 2 P , p1 vP p2 i� p1 = ?P or p1 = p2. A completepartial order (cpo) P is a pointed poset with the property that every directed set Dof P has a lub FP D in P .We often drop the P from ?P and FP when it is clear from the context.Note that all at pointed posets are cpo's.De�nition 2.3.3 A function f :P ! Q over posets is monotonic i� f p vQ f p0 ifp vP p0, an order-embedding i� f p vQ f p0 i� p vP p0, and an order-isomorphismi� f is a surjective order-embedding. Two posets are order-isomorphic i� there is anorder-isomorphism from one to the other. A function f :P!Q over pointed posets isstrict i� f ?P = ?Q. A function f :P!Q over cpo's is continuous i� it is monotonicand f FP D = FQ f D, for all directed sets D � P .
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Note that order-isomorphism coincides with isomorphism in the category of posetsand monotonic functions, and that order-isomorphisms over cpo's are continuous.We could just as well have worked with the larger category of !-complete partialorders and !-continuous functions in this monograph. On the other hand, some ofour constructions, e.g., the quotienting constructions of section 2.4, do not preserve!-algebraicity and consistent completeness, and so we cannot work in the smallercategory of cpo's with these additional properties.De�nition 2.3.4 A pre-ordering over a poset hP;vP i is simply a pre-ordering overthe set P . A pre-ordering � over a cpo hP;vP i is inductive i� vP � � and wheneverD is a directed set in hP;vP i and D � d, FD � d.Note the requirement that � respect the ordering vP of P .De�nition 2.3.5 The product P1 � � � � � Pn of posets Pi, 1 � i � n, n � 0, is theproduct of their underlying sets Pi, ordered componentwise:hp1; : : : ; pni v hp01; : : : ; p0ni i� pi v p0i; 1 � i � n:The projection functions �i:P1 � � � � � Pn ! Pi are monotonic. A directed setD � P1 � � � � � Pn has a lub i� the directed sets �iD, 1 � i � n, have lub's, andhF �1D; : : : ;F �nDi is the lub of D, when it exists. Thus, if all of the Pi's are cpo'sthen so is P1 � � � � � Pn, and the projection functions are continuous. If Di � Pi,1 � i � n, are directed sets then so is D1� � � ��Dn. Finally, if f :P1 � � � � � Pn!Qis a monotonic function, for cpo's Pi, 1 � i � n, and Q, then f is continuous i� forall directed sets Di � Pi, 1 � i � n,fhGD1; : : : ;GDni = G f(D1 � � � � �Dn):De�nition 2.3.6 If P andQ are cpo's then [P!Q] is the cpo of continuous functionsfrom P to Q, with the pointwise ordering:f v g i� for all p 2 P; f p v g p:The constantly ? function is the least element of [P !Q] and if F � [P !Q] isa directed set then (FF )p = Ff f p j f 2 F g, for all p 2 P .
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De�nition 2.3.7 An ordered �-algebra A is an S-indexed family of pointed posetsA (the carrier of A), together with a monotonic operation �A:As1 � � � � � Asn!As0,for each � 2 � of type s1� � � �� sn! s0, and such that 
sA h i is the least element ofAs, for all s 2 S. Such an A is complete i� each As is a cpo and each �A is continuous.We write vA for the family of posets v(As), s 2 S, so that vA is a partial orderingover A. We often write vs instead of vAs . As usual, if �(�) is an operation onordered algebras then we write �(A) for the carrier of �(A).Ordered algebras can be viewed as algebras by forgetting the partial orderings,and we will often do so without explicit comment. Thus, for an ordered algebra A,A will stand for both the carrier of A (a family of posets) and for the carrier ofthe underlying algebra (a family of sets). For example, we call an ordered algebrareachable i� its underlying algebra is reachable (cf., inductively reachable completeordered algebras, de�nition 2.3.30).Note that a homomorphism h:A!B over ordered algebras (i.e., a homomorphismover the underlying algebras) is strict, since for all s 2 S,hs?As = hs 
sA = 
sB = ?Bs :De�nition 2.3.8 For complete ordered algebras A and B, A is an inductive subal-gebra of B i� A is a subalgebra of B, and for all s 2 S, vAs is the restriction of vBsto As and FAsD = FBs D, whenever D � As is a directed set. If A is a completeordered algebra and B � A then by B is an inductive subalgebra of A we mean thatB is a subalgebra of A and FAs D 2 Bs, whenever D � Bs is a directed set in As.This is sensible since if B is an inductive subalgebra of A then the complete orderedalgebra B consisting of B, together with the restrictions of the operations and partialorderings of A to B, is indeed an inductive subalgebra of A. We write A � B for Ais an inductive subalgebra of B.Note that the relation � over the class of complete ordered algebras is a partialordering.De�nition 2.3.9 An order-embedding h:A!B over ordered algebras is a homomor-phism such that h:A!B is an order-embedding. An order-isomorphism over orderedalgebras is a surjective order-embedding. Two ordered algebras are order-isomorphici� there is an order-isomorphism from one to the other.
24



Note that order-isomorphism coincides with isomorphism in the category of or-dered algebras and monotonic homomorphisms. Furthermore, if h:A!B is an order-isomorphism over complete ordered algebras then h is continuous. A consequenceof the above de�nitions is that for complete ordered algebras A and B, A is an in-ductive subalgebra of B i� A � B and the inclusion from A to B is a continuousorder-embedding from A to B.De�nition 2.3.10 For an ordered algebra A, the 
-least substitutive pre-orderingover T induced by A, �A, is de�ned by:t1 �As t2 i�Ms t1 vs Ms t2:Note that for any ordered algebra A, �A = (�A \ �A), and that if A and B arecomplete ordered algebras and A � B then �A = �B.De�nition 2.3.11 If f :P ! Q is a monotonic function over posets then the pre-ordering over P induced by f , �f , is de�ned by:p1 �f p2 i� f p1 vQ f p2:Clearly �f respects the ordering of P , and if f is a continuous function over cpo'sthen �f is inductive. Furthermore, if h:A!B is a monotonic homomorphism overordered algebras then �h is a substitutive pre-ordering over A.Lemma 2.3.12 If A is an inductive subalgebra of B and � is a substitutive (respec-tively, unary-substitutive) inductive pre-ordering over B then the restriction of � toA is a substitutive (respectively, unary-substitutive) inductive pre-ordering over A.Proof. Immediate from the de�nitions and lemma 2.2.22. 2Two results concerning derived operations of ordered algebras now follow.Lemma 2.3.13 Derived operations of ordered algebras are monotonic and derivedoperations of complete ordered algebras are continuous.Proof. Both parts are easy and standard structural inductions over T (X), forappropriate X's. 2Lemma 2.3.14 If A is a complete ordered algebra and � is an inductive pre-orderingover AjP , for P � S, then �c is a unary-substitutive inductive pre-ordering over A.25



Proof. By lemma 2.2.25, it is su�cient to show that �c is inductive. We beginby showing that vA � �c. Suppose a vs a0. If c[v] is a derived operator of types! p, p 2 P , then chai vp cha0i, by lemma 2.3.13, and thus chai �p cha0i, since � isinductive. Thus a �cs a0, as required. Now, suppose D � As is a directed set, a 2 Asand D �cs a. If c[v] is a derived operator of type s! p, p 2 P , thenchGDi =Gf chdi j d 2 D g �p chai;by lemma 2.3.13, and since D �cs a and � is inductive. Thus FD �cs a, as required.2 We now give a de�nition and two lemmas in preparation for the de�nition of theordered term algebra.De�nition 2.3.15 Let �
 be the least 
-least substitutive pre-ordering over T .The next lemma shows that one term is less than another in �
 i� the second canbe formed by replacing occurrences of 
 in the �rst by terms.Lemma 2.3.16 For all s 2 S and t; t0 2 Ts, t �
s t0 i� (y) t = 
s or there is a� 2 � of type s1� � � � � sn! s and ti; t0i 2 Tsi, 1 � i � n, such that t = �ht1; : : : ; tni,t0 = �ht01; : : : ; t0ni and ti �
si t0i, 1 � i � n.Proof. De�ne a relation R over T by: t Rs t0 i� (y) holds. It is su�cient to showthat �
 = R. Clearly R � �
. Furthermore, it is easy to see that R is an 
-leastsubstitutive pre-ordering over T . Thus, by the leastness of �
, �
 � R. 2Lemma 2.3.17 The relation �
 is a partial ordering.Proof. An easy structural induction over t, using lemma 2.3.16, shows that for allt 2 Ts, t0 2 Ts, s 2 S, if t �
s t0 and t0 �
s t then t = t0. 2De�nition 2.3.18 The ordered algebra OT� (or simply OT ) consists of T orderedby �
.If A is an ordered algebra then MA:OT !A is monotonic, since if t �
s t0 thent �As t0, by the leastness of �
, and so MAs t vs MAs t0, by the de�nition of �A.Thus we have the following lemma.
26



Lemma 2.3.19 The ordered algebra OT is initial in the category of ordered algebrasand monotonic homomorphisms. 2We can now generalize from the initial ordered algebra to free ordered algebras.De�nition 2.3.20 If X is an S-indexed family of disjoint sets of context variablesnot occurring in � then OT�(X) (or simply OT (X)) is the restriction of OT �(X) toan ordered �-algebra.The standard result that OT (X) is the free ordered algebra generated by X noweasily follows.Lemma 2.3.21 De�ne f :X ! OT (X) by fs x = x. If A is an ordered algebra andg:X! A then there exists a unique monotonic homomorphism h:OT (X)!A suchthat g = h � f : X OT (X)
A

fg h-@@@@@@@R ? .2 The next lemma shows that we could have de�ned derived operations over orderedalgebras via free ordered algebras, instead of free algebras.Lemma 2.3.22 If A is an ordered algebra and c[v1; : : : ; vn] is a derived operator oftype s1 � � � � � sn! s0 then for all ai 2 Asi, 1 � i � n,cAha1; : : : ; ani = hs0 c;where h:OT (fv1; : : : ; vng)!A is de�ned via lemma 2.3.21, by taking fv1; : : : ; vng forX and de�ning g by gsi vi = ai, 1 � i � n.Proof. Simply note that h is a homomorphism from T (fv1; : : : ; vng) to the algebraA such that g = h � f . 2
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Lemma 2.3.23 If A is an ordered algebra and c1[v1; : : : ; vn] and c2[v1; : : : ; vn] arederived operators of type s1 � � � � � sn! s0 such thatc1 vOT(fv1;:::;vng)s0 c2then for all ai 2 Asi, 1 � i � n,c1Aha1; : : : ; ani vs0 c2Aha1; : : : ; ani:Proof. Immediate from lemma 2.3.22. 2We now consider the inductive subalgebras of complete ordered algebras thatare generated by ordinary subalgebras. This notion is then specialized to reachableinductive subalgebras.De�nition 2.3.24 If A is a complete ordered algebra and B is a subalgebra of A (Bis an ordinary algebra) then [B], the subset of A generated by B, is the least subsetof A such that for all s 2 S, Bs � [B]s and FD 2 [B]s, whenever D � [B]s is adirected set in As.The next lemma shows that [B] is a subalgebra of A and thus, since [B] is closedunder A-lub's, that [B] is an inductive subalgebra of A.Lemma 2.3.25 If A is a complete ordered algebra and B is a subalgebra of A then[B] is a subalgebra of A.Proof. Let � 2 � have type s1 � � � � � sn! s0. We must show that�A([B]s1 � � � � � [B]sn) � [B]s0 :By the de�nition of subalgebra,�A(Bs1 � � � � � Bsn) � Bs0 � [B]s0:If n = 0 then�A([B]s1 � � � � � [B]sn) = �A(fh ig) = �A(Bs1 � � � � � Bsn);
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so, assume n � 1. It is su�cient to show that the following chain of implicationsholds: �A(Bs1 � � � � � Bsn) � [B]s0) �A([B]s1 � Bs2 � � � � � Bsn) � [B]s0) �A([B]s1 � [B]s2 �Bs3 � � � � � Bsn) � [B]s0...) �A([B]s1 � � � � � [B]sn) � [B]s0 :We show a representative step�([B]s1 � � � � � [B]si�1 � Bsi � Bsi+1 � � � � � Bsn) � [B]s0) �([B]s1 � � � � � [B]si�1 � [B]si � Bsi+1 � � � � � Bsn) � [B]s0 ;by induction on [B]si . Let C be the set of all bi 2 [B]si such that �hb1; : : : ; bni 2 [B]s0 ,for all b1 2 [B]s1 , . . . , bi�1 2 [B]si�1 , bi+1 2 Bsi+1, . . . , bn 2 Bsn. By assumption,Bsi � C. Let D � C be a directed set in Asi; we must show that FD 2 C. Letb1 2 [B]s1, . . . , bi�1 2 [B]si�1 , bi+1 2 Bsi+1 , . . . , bn 2 Bsn. Then,�hb1; : : : ; bi�1;GD; bi+1; : : : ; bni= G �(fb1g � � � � � fbi�1g �D � fbi+1g � � � � � fbng)2 [B]s0 ;since �(fb1g � � � � � fbi�1g �D � fbi+1g � � � � � fbng) � [B]s0is a directed set in As0 . 2De�nition 2.3.26 For a complete ordered algebra A and a subalgebra B of A, [B],the inductive subalgebra of A generated by B, is [B], together with the restrictions ofthe operations and partial orderings of A to [B].Lemma 2.3.27 If A is a complete ordered algebra and B is a subalgebra of A then[B] is the �-least inductive subalgebra of A that contains B.Proof. If C is an inductive subalgebra of A that contains B then C is closedunder the de�ning conditions of [B], and so [B] � C. Then, since [B] and C are bothinductive subalgebras of A, it follows that [B] � C. 229



De�nition 2.3.28 For a complete ordered algebra A, de�ne R(A), the reachableinductive subalgebra of A, to be [MA T ].The following lemma is an immediate consequence of lemma 2.3.27.Lemma 2.3.29 If A is a complete ordered algebra then R(A) is the �-least inductivesubalgebra of A. 2De�nition 2.3.30 A complete ordered algebra A is inductively reachable i� A =R(A).It is easy to see that R(A) itself is inductively reachable (clearly R(R(A)) � R(A),and R(A) � R(R(A)) since R(R(A)) is an inductive subalgebra of A and R(A)is the �-least such inductive subalgebra), and that a complete ordered algebra isinductively reachable i� it has no proper inductive subalgebras. We can carry outproofs by induction over inductively reachable complete ordered algebrasA: ifB � Ascontains Ms Ts, and FD 2 B, whenever D � B is a directed set, then B = As.A su�cient|but not necessary|condition for a complete ordered algebra to beinductively reachable is that its carrier is !-algebraic and all of its �nite elements aredenotable.Three useful lemmas concerning inductive reachability now follow.Lemma 2.3.31 There is at most one continuous homomorphism from an inductivelyreachable complete ordered algebra to a complete ordered algebra.Proof. Suppose f and g are continuous homomorphisms from an inductivelyreachable complete ordered algebra A to a complete ordered algebra B, and let s 2 S.We prove that fs a = gs a, for all a 2 As, by induction over As. Let A0 = f a 2 As jfs a = gs a g. Firstly, Ms Ts � A0, since, by the initiality of T ,fs(MAs t) =MBs t = gs(MAs t);for all t 2 Ts. Secondly, if D � A0 is a directed set thenfsGD =G fsD =G gsD = gsGD;and thus FD 2 A0. 2Lemma 2.3.32 If A and B are complete ordered algebras, A is inductively reachableand f :A!B is a continuous homomorphism then f is also a continuous homomor-phism from A to R(B). 30



Proof. It is su�cient to show that fs a 2 R(B)s, for all a 2 As, s 2 S, and thisfollows by induction over As. 2The next lemma shows that inductive reachability is preserved by order-isomorphisms.Lemma 2.3.33 If A and B are order-isomorphic complete ordered algebras and, inaddition, A is inductively reachable then B is also inductively reachable.Proof. Since A and B are order-isomorphic, there is a continuous, surjective order-embedding f :A!B. By lemma 2.3.32, it follows that f A � R(B). Then, since f issurjective, it follows that B = R(B), and thus that B = R(B). 2We now consider the relationship between substitutive and unary-substitutiveinductive pre-orderings over complete ordered algebras. The following two lemmasshow that the situation is similar to that for unary-substitutive and substitutivepre-orderings over ordinary algebras: there exist unary-substitutive inductive pre-orderings that are not substitutive, and unary-substitutive inductive pre-orderingsover inductively reachable complete ordered algebras are substitutive.Lemma 2.3.34 There is a signature �, a complete ordered algebra A and a unary-substitutive inductive pre-ordering � over A such that:(i) � is not substitutive;(ii) The unary-substitutive equivalence relation � = � \ � is not substitutive;and(iii) There does not exist a congruence �0 over A such thatMs t1 �s Ms t2 i�Ms t1 �0s Ms t2;for all t1; t2 2 Ts, s 2 S.Proof. Consider the �, A and � from the proof of lemma 2.2.27. Order each As bya1 vs a2 i� a1 = 
s or a1 = a2. Then A is an ordered algebra and vA � �. Since Ais �nite, it then follows that A is complete and � is inductive. The rest of the lemmafollows by lemma 2.2.27. 2Lemma 2.3.35 Unary-substitutive inductive pre-orderings over inductively reachablecomplete ordered algebras are substitutive.
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Proof. Let � be a unary-substitutive inductive pre-ordering over an inductivelyreachable complete ordered algebra A. We make use of the characterization of substi-tutivity given by lemma 2.2.28. It is su�cient to show that for all derived operatorsc[v; v1; : : : ; vn] of type s� s1 � � � � � sn! s0 and a; a0 2 As, if a �s a0 thencha; a1; : : : ; ani �s0 cha0; a1; : : : ; ani; for all ai 2 Asi; 1 � i � n;we prove this by induction on n. The case n = 0 follows from the unary-substitutivityof �. For the induction step, suppose that c[v; v1; : : : ; vn+1] is a derived operator oftype s� s1� � � �� sn+1! s0 and that a �s a0. We show by induction over Asn+1 thatfor all an+1 2 Asn+1,cha; a1; : : : ; an+1i �s0 cha0; a1; : : : ; an+1i; for all ai 2 Asi; 1 � i � n: (2.1)Let A0 be the set of all an+1 2 Asn+1 such that (2.1). Suppose t 2 Tsn+1 ; we mustshow that Msn+1 t 2 A0. Then,(chv; v1; : : : ; vn; ti)[v; v1; : : : ; vn]is a derived operator of type s� s1 � � � � � sn! s0, and, by the inductive hypothesison n, cha; a1; : : : ; an;Msn+1 ti = (chv; v1; : : : ; vn; ti)ha; a1; : : : ; ani�s0 (chv; v1; : : : ; vn; ti)ha0; a1; : : : ; ani= cha0; a1; : : : ; an;Msn+1 ti;for all ai 2 Asi, 1 � i � n. Now, suppose D � A0 is a directed set; we must showthat FD 2 A0. Suppose ai 2 Asi, 1 � i � n. Then,cha; a1; : : : ; an;GDi = G c(fag � fa1g � � � � � fang �D)�s0 G c(fa0g � fa1g � � � � � fang �D)= cha0; a1; : : : ; an;GDi;since A is complete and � is inductive. 2A consequence of lemmas 2.2.25, 2.3.14 and 2.3.35 is that if P � S, A is aninductively reachable complete ordered algebra, and � is an inductive pre-orderingover AjP then �c is the greatest substitutive inductive pre-ordering over A whoserestriction to P is included in �.This section concludes with two lemmas concerning the pre-orderings over T thatare induced by inductive pre-orderings over the carriers of complete ordered algebras.32



Lemma 2.3.36 Suppose P � S, A is a complete ordered algebra, � is an inductivepre-ordering over AjP , and � is the pre-ordering over T jP de�ned byt1 �p t2 i�Mp t1 �p Mp t2:Then �c is a unary-substitutive inductive pre-ordering over A, �c is an 
-least sub-stitutive pre-ordering over T , andt1 �cs t2 i�Ms t1 �cs Ms t2;for all t1; t2 2 Ts, s 2 S.Proof. All that remains after applying lemma 2.2.30 is to show that �c is inductiveand �c is 
-least. The former fact follows from lemma 2.3.14. For the second, ift 2 Ts, s 2 S, then Ms 
s = ? �cs Ms t;since vA � �c, and thus 
s �cs t. 2Lemma 2.3.37 Suppose A is a complete ordered algebra, � is an inductive pre-ordering over A, and � is the pre-ordering over T de�ned byt1 �s t2 i�Ms t1 �s Ms t2:(i) If � is unary-substitutive then � is 
-least and substitutive.(ii) If � is substitutive thent1 �s t2 i�Ms t1 �cs Ms t2;for all t1; t2 2 Ts, s 2 S.Proof. Immediate from lemma 2.3.36, with P = S. 22.4 Completion and Quotienting TheoremsIn this section, we present a completion theorem and two quotienting theorems forordered algebras, which will be employed in chapters 5 and 7. The main resultis theorem 2.4.2, a completion construction in which ordered algebras are embeddedinto complete ordered algebras in such a way that certain existing lub's are preserved.Because the operations of complete ordered algebras are required to be continuous,it is impossible, in general, to preserve arbitrary sets of existing lub's. Thus, to beginwith, we need a way to specify suitably consistent sets of lub's of ordered algebras.This we do via families of subsets. 33



De�nition 2.4.1 A family of subsets � for a pointed poset P is a set of directedsubsets of P . Such a P is �-complete i� for all D 2 �, D has a lub in P . A functionf from a �-complete pointed poset P to a cpo Q is �-continuous i� it is monotonicand for all D 2 �, f FD = F f D.A family of subsets � for an ordered algebra A is an S-indexed family of sets suchthat:(i) �s is a family of subsets of As, for all s 2 S;(ii) fag 2 �s, for all a 2 As, s 2 S; and(iii) if � 2 � has type s1 � � � � � sn ! s0 and Di 2 �si, 1 � i � n, then �(D1 �� � � �Dn) 2 �s0.Such an A is �-complete i� As is �s-complete, for all s 2 S, and if � 2 � has types1 � � � � � sn! s0 and Di 2 �si, 1 � i � n, then�hGD1; : : : ;GDni = G�(D1 � � � � �Dn):A homomorphism f from a �-complete ordered algebra A to a complete orderedalgebra B is �-continuous i� fs:As!Bs is �s-continuous, for all s 2 S.In contrast to [CouRao] and [ADJ2], we associate families of subsets with indi-vidual ordered algebras|i.e., we deal with non-uniform families of subsets. As aconsequence, we must explicitly include the singleton directed sets in our families ofsubsets. See the proof of lemma 2.4.13 to see why this is necessary.Next, we state our completion theorem, which is a variation of Theorem 1 of[CouRao].Theorem 2.4.2 If A is a �-complete ordered algebra then there is a complete orderedalgebra C, together with a �-continuous order-embedding f :A!C, such that if D is acomplete ordered algebra and g:A!D is a �-continuous homomorphism then thereexists a unique continuous homomorphism h: C !D such that g = h � f :A C
D

fg h-@@@@@@@R ? .
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Before giving the proof of theorem 2.4.2, we give two de�nitions and a series oflemmas, some of which are motivated by sections 5 and 6 of [Mar]. Until lemma2.4.13, below, let P be a �-complete pointed poset.De�nition 2.4.3 A subset P 0 of P is closed i� the following conditions hold:(i) ?P 2 P 0;(ii) If p v p0 and p0 2 P 0 then p 2 P 0; and(iii) If D � P 0 and D 2 � then FD 2 P 0.For a subset P 0 of P , cl(P 0), the closure of P 0, is the least closed set containing P 0.A set P 0 is closed i� it is nonempty, downward-closed and closed under �-lub's.Thus, if P 0 is nonempty then cl(P 0) is simply the least set containing P 0 that isdownward-closed and closed under �-lub's. Since cl(P 0) is inductively de�ned, wecan give proofs by induction over it.Lemma 2.4.4 For all X; Y � P :(i) X � cl(X);(ii) cl(X) = cl(cl(X)); and(iii) if X � Y then cl(X) � cl(Y ).Proof. (i) and (ii) are obvious from the de�nition. For (iii), suppose X � Y . Then,by (i), X � Y � cl(Y ), and so cl(Y ) is a closed set containing X. Thus, by theleastness of cl(X), cl(X) � cl(Y ). 2Lemma 2.4.5 If P 0 is a nonempty, �nite subset of P then cl(P 0) = down(P 0).Proof. It is su�cient to show that down(P 0) is closed under �-lub's. Let D �down(P 0) and D 2 �. Suppose, toward a contradiction, that FD =2 down(P 0). Thenfor all p0 2 P 0, there exists a dp0 2 D such that dp0 6v p0, and thus, since D is directed,there exists an ub d of f dp0 j p0 2 P 0 g in D. But then dp0 v d v p0, for somep0 2 P 0|a contradiction. 2Lemma 2.4.6 If D 2 � then cl(fFDg) = cl(D).Proof. First, fFDg � cl(D), and thus cl(fFDg) � cl(D). Second, D �cl(fFDg), since cl(fFDg) is downward-closed, and thus cl(D) � cl(fFDg). 2Lemma 2.4.7 If X is a set of subsets of P then cl(SX) = cl(SP 02X cl(P 0)).
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Proof. First, SX � SP 02X cl(P 0), and so cl(SX) � cl(SP 02X cl(P 0)). Second, forall P 0 2 X, cl(P 0) � cl(SX), and thus cl(SP 02X cl(P 0)) � cl(SX). 2Lemma 2.4.8 If P 0 is a nonempty subset of P and g is a �-continuous function fromP to a cpo Q then g P 0 has a lub i� g cl(P 0) has a lub, and they are equal if they exist.Proof. It is su�cient to show that for q 2 Q, q is an ub of g P 0 i� q is an ub ofg cl(P 0). The \if" direction is trivial, since P 0 � cl(P 0). For the \only if" direction,suppose q is an ub of g P 0. Let P 00 be f p00 2 cl(P 0) j g p00 v q g. Clearly P 0 � P 00.Suppose p00 2 P 00 and p v p00, for some p 2 P . Then g p v g p00 v q, showing thatp 2 P 00. Suppose D � P 00 and D 2 �. Then gFD = F g D v q, since g is �-continuous, showing that FD 2 P 00. Thus P 00 = cl(P 0), and so q is an ub of g cl(P 0).2De�nition 2.4.9 A subset P 0 of P is continuously directed i� for all �-continuousfunctions g:P !Q, for cpo's Q, g P 0 has a lub in Q.Clearly, directed sets are continuously directed. To see that the converse is false,let P be the poset
01
...x ����
�� 0010

...
,so that x = F! and !0 = fn0 j n 2 ! g has no lub, and let � = f!g. Then P itself iscontinuously directed, by lemma 2.4.8, but is obviously not directed.Returning to the general case, we can now give our completion construction forposets.Lemma 2.4.10 Let C be the least set of closed subsets of P such that(i) cl(fpg) 2 C, if p 2 P ; and(ii) cl(SX) 2 C, if X is a directed subset of C, ordered by inclusion.De�ne f :P ! C by f p = cl(fpg). Then C, ordered by inclusion, is a cpo, f is a�-continuous order-embedding, all elements of C are continuously directed, and for all�-continuous g:P!Q, for cpo's Q, the function P 0 7! F g P 0 is the unique continuoush:C!Q such that h � f = g. 36



Proof. Clearly cl(f?Pg) = f?Pg is the least element of C, and cl(SX) is the lubof any directed X � C. Since cl(fpg) = down(fpg), by lemma 2.4.5, it is easy to seethat f is an order-embedding. If D 2 � thenfGD = cl(fGDg)= cl(D) (lemma 2.4.6)= cl([d2Dfdg)= cl([d2D cl(fdg)) (lemma 2.4.7)= G f D;showing that f is �-continuous.Next, we show that all elements of C are continuously directed. Suppose g:P!Qis �-continuous, for a cpo Q. We show, by induction over C, that g P 0 has a lub inQ, for all P 0 2 C. Let C 0 = fP 0 2 C j F g P 0 exists g. Clearly cl(fpg) 2 C 0, forall p 2 P , since g p is the lub of g fpg, and thus, by lemma 2.4.8, is also the lub ofg cl(fpg). If X � C 0 is directed then fF g P 0 j P 0 2 X g is directed, and thus has alub q in Q. Furthermore, fF g P 0 j P 0 2 X g and g (SX) share the same ub's, andthus q is the lub of g (SX). Finally, by lemma 2.4.8, q is also the lub of g cl(SX),showing that cl(SX) 2 C 0.For the universal property, suppose g:P!Q is �-continuous, for a cpo Q. De�neh:C!Q by hP 0 = F g P 0. Clearly h is monotonic, andh(f p) = G g cl(fpg)= G g fpg (lemma 2.4.8)= g p;for all p 2 P . For continuity, if X � C is directed thenhGX = h cl([X)= G g cl([X)= GfG g P 0 j P 0 2 X g= G hX:Finally, suppose h0:C!Q is continuous and h0 � f = g. We show by induction overC that hP 0 = h0 P 0, for all P 0 2 C. Let C 0 = fP 0 2 C j hP 0 = h0 P 0 g. First, for allp 2 P , h cl(fpg) = h(f p) = g p = h0(f p) = h0 cl(fpg);37



showing that cl(fpg) 2 C 0. Second, if X � C 0 is directed thenh cl([X) = hGX =G hX =G h0X = h0GX = h0 cl([X);showing that cl(SX) 2 C 0. 2If � is empty (or contains only singletons) then the C of lemma 2.4.10 consistsof all of the downward-closed, directed subsets of P , and is thus the usual idealcompletion. In general, however, the elements of C need not be directed sets, as canbeen seen from the above example, in which the non-directed poset P is an elementof its own completion. It would be nice to give a direct characterization of C, in thegeneral case, and I cannot resist making the following conjecture.Conjecture 2.4.11 The cpo C of lemma 2.4.10 consists of the set of all closed,continuously directed subsets of P .The following lemma, concerning the internal structure of the completion C of P ,will not be used until chapter 7, but is included here for convenience.Lemma 2.4.12 Let C be the cpo de�ned in the statement of lemma 2.4.10. Ifcl(P 0) 2 C, for a nonempty, �nite subset P 0 of P , then there exists a p0 2 P 0 suchthat cl(P 0) = cl(fp0g).Proof. By lemma 2.4.5, cl(P 0) = down(P 0), and thus cl(P 0) = down(P 00), whereP 00 is the set of maximal elements of P 0. It is thus su�cient to show that jP 00j = 1.Make P 00 into a cpo, Q, by adding a lower bound, ?, and two incomparable ub's, xand y. Formally, let Q be P 00 [ f?; x; yg, ordered by q1 v q2 i�(i) q1 = ?; or(ii) q2 = x and q1 6= y; or(iii) q2 = y and q1 6= x; or(iv) q1; q2 2 P 00 and q1 = q2.For p 2 P , let �p = f p00 2 P 00 j p v p00 g. De�ne f :P !Q by:f p = 8>><>>: x if �p = ;;p00 if �p = fp00g;? if j�pj � 2:Thus y =2 f P . It is easy to see that f is monotonic. For �-continuity, supposeD 2 �. If D 6� down(P 00) then f FD = x = F f D; so, suppose D � down(P 00).38



Since down(P 00) is closed, FD 2 down(P 00), and thus �FD 6= ;. If j�FDj � 2 thenf FD = ? = F f D; so, assume �FD = fp00g, for some p00 2 P 00. If there is a d 2 Dsuch that j�dj = 1 then f FD = p00 = F f D; so, suppose, toward a contradiction,that j�dj � 2, for all d 2 D. Then Z = (Sd2D �d)� fp00g is a nonempty subset of P 00,and for all z 2 Z, there exists a dz 2 D such that dz 6v z. But, since D is directed,there exists an ub d of f dz j z 2 Z g in D, and thus dz v d v z, for some z 2 Z|acontradiction. Thus f is indeed �-continuous, and, by lemma 2.4.10, f down(P 00)has a lub in Q. But P 00 � f down(P 00) and x =2 f down(P 00), and thus jP 00j = 1, asrequired. 2Lemma 2.4.13 Suppose A is a �-complete ordered algebra. If � 2 � has type s1 �� � � � sn! s0 and A0i � Asi , 1 � i � n, are nonempty thencl(�(cl(A01)� � � � � cl(A0n))) = cl(�(A01 � � � � � A0n)):Proof. Showing that the rhs is a subset of the lhs is trivial by lemma 2.4.4. For theother direction, it is su�cient to show that�(cl(A01)� � � � � cl(A0n)) � cl(�(A01 � � � � � A0n)):If n = 0 then �fh ig � cl(�fh ig); so, assume n � 1. Clearly,�(A01 � � � � � A0n) � cl(�(A01 � � � � � A0n));and thus it is su�cient to show that the following chain of implications holds:�(A01 � � � � � A0n) � cl(�(A01 � � � � � A0n))) �(cl(A01)� A02 � � � � � A0n) � cl(�(A01 � � � � � A0n))) �(cl(A01)� cl(A02)� A03 � � � � � A0n) � cl(�(A01 � � � � � A0n))...) �(cl(A01)� � � � � cl(A0n)) � cl(�(A01 � � � � � A0n)):We show a representative step�(cl(A01)� � � � � cl(A0i�1)� A0i � A0i+1 � � � � � A0n) � cl(�(A01 � � � � � A0n))+�(cl(A01)� � � � � cl(A0i�1)� cl(A0i)� A0i+1 � � � � � A0n) � cl(�(A01 � � � � � A0n));by induction over cl(A0i). Let B be the set of all ai 2 cl(A0i) such that�ha1; : : : ; ani 2 cl(�(A01 � � � � � A0n));39



for all a1 2 cl(A01), . . . , ai�1 2 cl(A0i�1), ai+1 2 A0i+1, . . . , an 2 A0n. By assumption,A0i � B. Furthermore, B is downward-closed, since � is monotonic and cl(�(A01 �� � ��A0n)) is downward-closed. Since A0i is nonempty, it only remains to show that Bis closed under �-lub's. Suppose D � B and D 2 �si; we must show that FD 2 B.Let a1 2 cl(A01), . . . , ai�1 2 cl(A0i�1), ai+1 2 A0i+1, . . . , an 2 A0n. Then,�ha1; : : : ; ai�1;GD; ai+1; : : : ; ani= G�(fa1g � � � � � fai�1g �D � fai+1g � � � � � fang)2 cl(�(A01 � � � � � A0n));since A is �-complete and�(fa1g � � � � � fai�1g �D � fai+1g � � � � � fang)is a subset of cl(�(A01 � � � � � A0n)) and an element of �s0. (Here, it is essential that� contain all singleton sets.) 2Proof of theorem 2.4.2. We begin by de�ning a complete ordered algebra B,together with a homomorphism f :A ! B. For s 2 S, Bs is the set of all closedsubsets of As, ordered by inclusion, and for � 2 � of type s1 � � � � � sn ! s0 andA0i 2 Bsi, 1 � i � n, �BhA01; : : : ; A0ni = cl(�A(A01 � � � � � A0n)):Then, for s 2 S, 
sBh i = cl(
sAfh ig) = cl(f?Asg) = f?Asgis the least element of Bs. The monotonicity of the operations follows from lemma2.4.4. Thus B is an ordered algebra.If B0 � Bs, s 2 S, then cl(SB0) is the lub of B0, and so B is a cpo (actually, acomplete lattice). Suppose � 2 � has type s1�� � �� sn!s0 and B0i � Bsi , 1 � i � n,are nonempty. Then,�BhGB01; : : : ;GB0ni = �Bhcl([B01); : : : ; cl([B0n)i= cl(�A(cl([B01)� � � � � cl([B0n)))= cl(�A([B01 � � � � �[B0n)) (lemma 2.4.13)= cl([f �A(A01 � � � � � A0n) j A0i 2 B0i g)40



= cl([f cl(�A(A01 � � � � � A0n)) j A0i 2 B0i g) (lemma 2.4.7)= Gf cl(�A(A01 � � � � � A0n)) j A0i 2 B0i g= Gf �BhA01; : : : ; A0ni j A0i 2 B0i g= G �BhB01; : : : ; B0ni;and thus B is complete.De�ne f :A!B by fs a = cl(fag), for a 2 As, s 2 S. Then, f is a homomorphismfrom A to B, since if � 2 � has type s1 � � � � � sn! s0 and ai 2 Asi, 1 � i � n, thenfs �Aha1; : : : ; ani = cl(f�Aha1; : : : ; anig)= cl(�A(fa1g � � � � � fang))= cl(�A(cl(fa1g)� � � � � cl(fang))) (lemma 2.4.13)= �Bhcl(fa1g); : : : ; cl(fang)i= �Bhfs1 a1; : : : ; fsn ani:B has lub's of too many sets, in general, and thus we take the �-least inductivesubalgebra of B containing f A as our candidate for C, i.e., we de�ne C to be [f A](see de�nition 2.3.26). Since C is a subalgebra of B, f is also a homomorphism fromA to C. For all s 2 S, Cs is the least subset of Bs such that(i) fs a = cl(fag) 2 Cs, if a 2 As; and(ii) FX = cl(SX) 2 Cs, if X � Cs is directed.Thus we can apply lemma 2.4.10 and conclude that f is a �-continuous order-embedding from A to C.It remains to show the universal property of (f; C). Suppose g:A! D is a �-continuous homomorphism, for a complete ordered algebra D. By lemma 2.4.10, wecan de�ne a continuous function h:C!D by hsA0 = F gsA0, for A0 2 Cs, s 2 S, and,furthermore, h � f = g.Next, we show that h is a homomorphism from C to D. Let � 2 � have types1�� � �� sn!s0. For C 0i � Csi, 1 � i � n, let �(C 01; : : : ; C 0n) abbreviate the assertionthat for all ci 2 C 0i, 1 � i � n,hs0 �Chc1; : : : ; cni = �Dhhs1 c1; : : : ; hsn cni:If ai 2 Asi, 1 � i � n, thenhs0 �Chfs1 a1; : : : ; fsn ani = hs0 cl(�A(cl(fa1g)� � � � � cl(fang)))= hs0 cl(�A(fa1g � � � � � fang)) (lemma 2.4.13)41



= hs0 cl(f�Aha1; : : : ; anig)= hs0(fs0 �Aha1; : : : ; ani)= gs0 �Aha1; : : : ; ani= �Dhgs1 a1; : : : ; gsn ani= �Dhhs1(fs1 a1); : : : ; hsn(fsn an)i;showing that �(fs1 As1 ; : : : ; fsn Asn) holds. If n = 0 then hs0 �Ch i = �Dh i; so, assumen � 1. It is su�cient to show that the following chain of implications holds:�(fs1 As1; : : : ; fsn Asn) ) �(Cs1 ; fs2 As2; : : : ; fsn Asn)) �(Cs1 ; Cs2; fs3 As3; : : : ; fsn Asn)...) �(Cs1 ; : : : ; Csn):We show a representative step�(Cs1; : : : ; Csi�1; fsi Asi; fsi+1 Asi+1; : : : ; fsn Asn)) �(Cs1; : : : ; Csi�1; Csi; fsi+1 Asi+1 ; : : : ; fsn Asn)by induction over Csi. Let C 0 be the set of all ci 2 Csi such thaths0 �Chc1; : : : ; cni = �Dhhs1 c1; : : : ; hsn cni;for all c1 2 Cs1, . . . , ci�1 2 Csi�1, ci+1 2 fsi+1 Asi+1 , . . . , cn 2 fsn Asn . Then fsi Asi �C 0, and C 0 is closed under lub's of directed sets, since h is continuous and C and Dare complete. Thus we have shown that h: C !D is a homomorphism.Finally, we can apply lemma 2.4.10 once again to show that h is the uniquecontinuous homomorphism from C to D such that h � f = g. This completes theproof of theorem 2.4.2. 2We now introduce some notation that is based upon theorem 2.4.2.De�nition 2.4.14 Let A be a �-complete ordered algebra. We write A� (the �-completion of A) and em for the complete ordered algebra C and the �-continuousorder-embedding f , respectively, that are given by the proof of theorem 2.4.2. Ifg:A!D is a �-continuous homomorphism, for a complete ordered algebra D, then wewrite g� for the unique continuous homomorphism fromA� toD such that g = g��em.42



In the remainder of this section, we present two quotienting constructions: one forordered algebras and substitutive pre-orderings, and the other for complete orderedalgebras and substitutive inductive pre-orderings.Theorem 2.4.15 (Courcelle and Nivat) Let A be an ordered algebra and � asubstitutive pre-ordering over A that respects the ordering of A, i.e., vA � �. Thereis an ordered algebra B, together with a surjective monotonic homomorphism f :A!Bwith the property that � = �f , such that if C is an ordered algebra and g:A! C isa monotonic homomorphism with the property that � � �g then there is a uniquemonotonic homomorphism h:B ! C such that g = h � f :A B
C

fg h-@@@@@@@R ? .Proof. Let � be the congruence over A induced by �, i.e., � = � \ �. We de�nean ordered algebra B as follows. For s 2 S, Bs = As=�s, and vBs is de�ned by[a1]�s vs [an]�s i� a1 �s a2:If � 2 � has type s1 � � � � � sn! s0 then the operation �B is de�ned by�Bh[a1]�s1 ; : : : ; [an]�sni = [�Aha1; : : : ; ani]�s0:It is easy to see that vB is well-de�ned on the equivalence classes and is a partialordering, that the operations are well-de�ned and monotonic, and that
sB = [
sA]�s = [?As ]�s = ?Bs ;for all s 2 S.Next, we de�ne a surjective homomorphism f :A!B by fs a = [a]�s. Then f ismonotonic, since vA � �, and � = �f , sincea1 �s a2 i� [a1]�s vs [a2]�s i� fs a1 vs fs a2;for all a1; a2 2 As, s 2 S. 43



It remains to show the universal property of (f;B). Let C and g be as in thestatement of the theorem. De�ne a monotonic homomorphism h:B!C by hs [a]�s =gs a. Clearly, h is well-de�ned on the equivalence classes and monotonic, since� � �g.Suppose � 2 � has type s1 � � � � � sn! s0 and ai 2 Asi , 1 � i � n. Then,hs0 �Bh[a1]�s1 ; : : : ; [an]�sni = hs0 [�Aha1; : : : ; ani]�s0= gs0 �Aha1; : : : ; ani= �Chgs1 a1; : : : ; gsn ani= �Chhs1 [a1]�s1 ; : : : ; hsn [an]�sni:Thus h is, indeed, a homomorphism. From the de�nitions of h and f , it followsimmediately that g = h � f . For the uniqueness of h, let h0:B ! C be a monotonichomomorphism such that g = h0 � f . Then,hs [a]�s = hs(fs a) = gs a = h0s(fs a) = h0s [a]�s;for all a 2 As, s 2 S, showing that h = h0. 2We now give some notation that is based upon theorem 2.4.15.De�nition 2.4.16 Let A be an ordered algebra and � a substitutive pre-orderingover A such that vA � �. We write A=� (the quotient of A by �) and qt� for theordered algebra B and the surjective monotonic homomorphism f , respectively, thatare given by the proof of theorem 2.4.15. If g:A! C is a monotonic homomorphismwith the property that � � �g then we write g=� for the unique monotonic homo-morphism from A=� to C such that g = (g=�) � qt�. We often drop the subscript �from qt� when it is clear from the context.Note that if � is an 
-least substitutive pre-ordering over T then vOT = �
 � �,and so OT =� is well de�ned. Clearly, such an OT =� is reachable.We now present two simple corollaries of theorem 2.4.15, followed by the secondof our quotienting theorems, theorem 2.4.19.Corollary 2.4.17 Let A be an ordered algebra and � a substitutive pre-ordering overA such that vA � �. Let A0 � As and a 2 As, s 2 S. Then, a is a lub of A0 inhAs;�si i� qts a is the lub of qt sA0 in (A=�)s.Proof. Follows easily from the surjectivity of qt and the fact that a1 �s a2 i�qt s a1 vs qt s a2, for a1; a2 2 As, s 2 S. 244



Corollary 2.4.18 If A is a reachable ordered algebra then A is order-isomorphic toOT =�A.Proof. By theorem 2.4.15, the following diagram commutes:OT OT =�A
A

qt
MA MA=�A-@@@@@@@R ? .It is su�cient to show that MA=�A is a surjective order-embedding. The surjectivityof MA=�A follows from the surjectivity of MA, and MA=�A is an order-embeddingsince qt is surjective and �qt = �A. 2Theorem 2.4.19 (Courcelle and Raoult) Let A be a complete ordered algebraand � a substitutive inductive pre-ordering over A. There is a complete orderedalgebra B, together with a continuous homomorphism f :A!B with the property that� = �f , such that if C is a complete ordered algebra and g:A ! C is a continu-ous homomorphism with the property that � � �g then there is a unique continuoushomomorphism h:B ! C such that g = h � f :A B

C
fg h-@@@@@@@R ? .Proof. By theorem 2.4.15, we know that qt :A! A=� is a surjective monotonichomomorphism (vA � � since � is inductive). De�ne a family of subsets � of A=�by �s = f qt sD j D � As is a directed set g:If a 2 As, s 2 S, then fqt s ag = qts fag 2 �s. If � 2 � has type s1 � � � � � sn ! s0and Di � Asi, 1 � i � n, are directed sets then�((qt s1 D1)� � � � � (qtsn Dn)) = qt s0 �(D1 � � � � �Dn) 2 �s0:45



Thus � is well-de�ned. Next, we show that A=� is �-complete. Suppose D � As,s 2 S, is a directed set; we show that qts FD = F qt sD. Clearly qts FD is an ubof qt sD. Suppose qt s a is an ub of qt sD. Then D �s a and, since � is inductive,FD �s a. Thus qt sFD vs qt s a, as required. Suppose � 2 � has type s1�� � ��sn!s0and Di � Asi, 1 � i � n, are directed sets. Then,�hG qt s1 D1; : : : ;G qtsn Dni = �hqt s1GD1; : : : ; qtsnGDni= qt s0 �hGD1; : : : ;GDni= qt s0G �(D1 � � � � �Dn)= G qt s0 �(D1 � � � � �Dn)= G �((qt s1 D1)� � � � � (qtsn Dn)):By theorem 2.4.2, we know that em:A=� ! (A=�)� is a �-continuous order-embedding into a complete ordered algebra. We take (A=�)� as our candidate for Band em � qt as our candidate for f . Clearly f is a monotonic homomorphism. Forcontinuity, let D � As, s 2 S, be a directed set. Then,ems(qt s GD) = emsG qt sD = G ems(qtsD);since qt sD 2 �s. To show that � = �f , let a1; a2 2 As, s 2 S. Then,a1 �s a2 i� qt s a1 vs qts a2 i� ems(qt s a1) vs ems(qt s a2);since em is an order-embedding.It remains to show the universal property of (f;B). Let C and g be as in thestatement of the theorem.A A=�
C

(A=�)�qt
g g=�em (g=�)�-@@@@@@@R ?

- ����������	By theorem 2.4.15, we know that (y) g=� is the unique monotonic homomorphismfrom A=� to C such that g = (g=�)�qt . To see that g=� is �-continuous, let D � As,46



s 2 S, be a directed set. Then,(g=�)sG qt sD = (g=�)s(qt sGD)= gsGD= G gsD= G(g=�)s(qtsD);since g is continuous. Thus, by theorem 2.4.2, we know that (z) (g=�)� is the uniquecontinuous homomorphism from (A=�)� to C such that g=� = (g=�)� �em. We take(g=�)� as our candidate for h:B!C. Clearly g = h�f , i.e., g = (g=�)��em �qt . Foruniqueness, suppose h0:B ! C is a continuous homomorphism such that g = h0 � f ,i.e., g = h0 � em � qt . Then g=� = h0 � em, by (y), and thus h0 = h, by (z) and thecontinuity of h0. 2We now give some notation that is based upon theorem 2.4.19.De�nition 2.4.20 Let A be a complete ordered algebra and � a substitutive in-ductive pre-ordering over A. We write A==� (the inductive quotient of A by �)and qt� for the complete ordered algebra B and the continuous homomorphism f ,respectively, that are given by the proof of theorem 2.4.19. If g:A!C is a continuoushomomorphism with the property that � � �g then we write g==� for the uniquecontinuous homomorphism from A==� to C such that g = (g==�) � qt�.The section concludes with the lemma that inductive quotients of inductivelyreachable complete ordered algebras are themselves inductively reachable.Lemma 2.4.21 If A is an inductively reachable complete ordered algebra and � is asubstitutive inductive pre-ordering over A then A==� is also inductively reachable.Proof. By lemma 2.3.33, it is su�cient to show that A==� and R(A==�) are order-isomorphic. Let i be the inclusion from R(A==�) to A==�, so that i is a continuoushomomorphism from R(A==�) to A==�. By lemma 2.3.32, qt :A! A==� is also acontinuous homomorphism from A to R(A==�), and if a1 �s a2, for a1; a2 2 As,s 2 S, then qt s a1 v(A==�)s qt s a2, and thus qts a1 vR(A==�)s qt s a2. Then, by theorem2.4.19, we may let h:A==�!R(A==�) be the unique continuous homomorphism suchthat qt = h � qt .
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A==�
A==�

R(A==�)
qt

qt
qt id i � h

i h
�������-@@@@@@R

6 6
6 ?By lemma 2.3.31, h�i = idR(A==�). Also by lemma 2.3.31, it follows that (i�h)�qt = qt ,and thus i � h = id (A==�), since, by theorem 2.4.19, id (A==�) is the unique continuoushomomorphism over A==� such that qt = id (A==�) � qt . 2
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Chapter 3Full Abstraction and Least FixedPoint ModelsThis chapter is devoted to the de�nitions and elementary results concerning full ab-straction and least �xed point models. This material is based upon the universalalgebra of the previous chapter, and the combination of these two chapters forms thefoundation upon which the remainder of the monograph is built.Although we will apply this material to several programming languages in subse-quent chapters, it is convenient to have an example programming language availablein this chapter, in order to motivate the various de�nitions and results. For thispurpose, we consider an imperative programming language skeleton with null, se-quencing, conditional and iteration statements. Formally, consider a signature � overa single sort, ?, that contains the following operators, where Exp is some unspeci�edset of boolean expressions:(i) 
? and skip of type ?;(ii) while E do�od of type ?! ?, for all E 2 Exp; and(iii) ; and if E then�else�� of type ?� ?! ?, for all E 2 Exp.Since there is only one sort, we drop the sort subscripts from carriers, relations, etc.,when considering this language below.3.1 Full AbstractionIn this section, we formalize what it means for an algebra or ordered algebra tobe correct or fully abstract. We actually consider three kinds of correctness and fullabstraction: equational, inequational and contextual. The �rst and third are relations
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between algebras and congruences over T , whereas the second is a relation betweenordered algebras and 
-least substitutive pre-orderings over T . As usual, we thinkof these congruences and pre-orderings over the term algebra as notions of programequivalence and ordering, respectively.De�nition 3.1.1 Let � be a congruence over T and A be an algebra. Then A is�-equationally correct (or simply �-correct) i� �A � �, and �-equationally fullyabstract (or simply �-fully abstract) i� �A = �.De�nition 3.1.2 Let � be an 
-least substitutive pre-ordering over T and A be anordered algebra. Then A is �-inequationally correct i��A � �, and �-inequationallyfully abstract i� �A = �.It is easy to see that equational (respectively, inequational) full abstraction impliesequational (respectively, inequational) correctness, but that the converse, in general,fails. Note that if � is an 
-least substitutive pre-ordering over T and A is a �-inequationally fully abstract (respectively, �-inequationally correct) ordered algebrathen A is �-fully abstract (respectively, �-correct), where � is the congruence overT induced by �: � = � \ �.Suppose that we are given a notion of program equivalence � for our exampleprogramming language, i.e., a congruence over T , with the expected property thatwhile E do t od � if E then t;while E do t od else skip � ;for all boolean expressions E 2 Exp and terms t 2 T . Then every while-loop willhave the same meaning as its expansion in any �-fully abstract algebra A, and thusfor all E 2 Exp, the equationwhile E do a od = if E then a;while E do a od else skip �will hold for all elements of A that are denotable. But it is also reasonable to askthat this equation hold for all a 2 A, i.e., that the unary derived operationswhile E do v od [v]and if E then v;while E do v od else skip � [v]be equal, for all E 2 Exp. This suggests that we consider the following generalizationof equational full abstraction from terms to contexts, or, more precisely, to derivedoperators. 50



De�nition 3.1.3 Let � be a congruence over T and A be an algebra. Then A is�-contextually correct i� for all derived operators c1[v1; : : : ; vn] and c2[v1; : : : ; vn] oftype s1 � � � � � sn! s0,if c1A = c2A then for all ti 2 Tsi; 1 � i � n; c1ht1; : : : ; tni �s0 c2ht1; : : : ; tni;and A is �-contextually fully abstract i� for all derived operators c1[v1; : : : ; vn] andc2[v1; : : : ; vn] of type s1 � � � � � sn! s0,c1A = c2A i� for all ti 2 Tsi; 1 � i � n; c1ht1; : : : ; tni �s0 c2ht1; : : : ; tni:Thus an algebra A is equationally fully abstract with reference to a congruence �i� ground equations (equations with no free variables) hold in A exactly when theyhold in �, and contextually fully abstract i� universally quanti�ed equations hold inA exactly when they hold in �.Note that we could also de�ne the notions of inequational contextual full abstrac-tion and correctness, in the obvious way.It is easy to see that contextual full abstraction implies contextual correctnessbut that the converse, in general, fails. Furthermore, contextual full abstraction (re-spectively, contextual correctness) implies full abstraction (respectively, correctness),since for every term t of sort s, t[ ] is a constant derived operator of type s. The nexttwo theorems show that full abstraction does not, in general, imply contextual fullabstraction, but that correctness does imply contextual correctness.Theorem 3.1.4 There is a signature �, a congruence � over T , and a �-fully ab-stract, complete ordered algebra that is not �-contextually fully abstract.Proof. Let � over S = f?g have the following operators:(i) 
? of type ?; and(ii) f and g of type ?! ?.Since there is only one sort, we drop the sort subscripts from carriers, relations, etc.,below. Let � be the greatest congruence over T (all terms are congruent). De�ne acomplete ordered algebra A as follows. It's domain A is the two-point cpo f?;>g,where ? v >. It's operations are de�ned by:
 = ?;f a = ?;g a = ( ? if a = ?;> if a = >:51



It is easy to see that M t = ?, for all t 2 T , and thus that A is �-fully abstract. Ifv 2 V , (fhvi)[v] and (ghvi)[v] are unary derived operators, and(fhvi)hti � (ghvi)hti;for all t 2 T , but (fhvi)A = f 6= g = (ghvi)A;showing that A is not contextually fully abstract. 2Note that the complete ordered algebra A in the previous proof is not inductivelyreachable. In chapter 5, we will see that inductive reachability is a su�cient conditionfor full abstraction and contextual full abstraction to coincide.Theorem 3.1.5 Let � be a congruence over T . An algebra is �-correct i� it is�-contextually correct.Proof. Let A be an algebra. The \if" direction is trivial. For the \only if" direction,suppose c1[v1; : : : ; vn] and c2[v1; : : : ; vn] are derived operators of type s1�� � ��sn!s0,and that c1A = c2A. Then, for all ti 2 Tsi, 1 � i � n,Ms0 c1ht1; : : : ; tni = c1hMs1 t1; : : : ;Msn tni= c2hMs1 t1; : : : ;Msn tni= Ms0 c2ht1; : : : ; tni;and thus c1ht1; : : : ; tni �s0 c2ht1; : : : ; tni;since A is �-correct. 2Mulmuley has constructed a fully abstract model of the combinatory logic versionof PCF that fails to satisfy the usual equational axiom for the K combinator [Mul].This equation does hold, however, in the notion of program equivalence for PCF, andthus Mulmuley's model is not contextually fully abstract. It would be interesting to�nd other examples of fully abstract models that fail to be contextually fully abstract.
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3.2 Least Fixed Point ModelsIn this section, we say what it means for a complete ordered algebra to be a least�xed point model. This is not an intrinsic property of complete ordered algebras,but is expressed via the satisfaction of families of least �xed point constraints. Weconsider two kinds of least �xed point models: ordinary and contextual. The latteris the natural generalization of the former from terms to contexts, or, more precisely,to derived operators. We also consider the satisfaction of families of least �xed pointconstraints by 
-least substitutive pre-orderings over the term algebra.We begin by considering our example imperative programming language again.Conventionally, a model A of this language, i.e., a complete ordered algebra, shouldassign a while-loop while E do t od the meaning Fn2! wn(E; t), where wn(E; t) is the!-chain in A de�ned byw0(E; t) = ?;wn+1(E; t) = if E then (M t);wn(E; t) else skip � :This requirement can be expressed syntactically, as follows. De�ne an !-chainW n(E; t) in the ordered term algebra byW 0(E; t) = 
;W n+1(E; t) = if E then t;W n(E; t) else skip � ;so that wn(E; t) =MW n(E; t), for all n 2 !. Then we require thatM while E do t od = Gn2!MW n(E; t):This situation is quite general, and we are led to the following de�nitions.De�nition 3.2.1 A family of least �xed point constraints � is an S-indexed familyof sets such that for all s 2 S, �s � Ts � PTs, and for all ht; T 0i 2 �s, T 0 is a directedset in OT s. We write t�FT 0 instead of ht; T 0i for elements of �s.De�nition 3.2.2 Let � be a family of least �xed point constraints and A be acomplete ordered algebra. Then A is a �-least �xed point model (or A satis�es �) i�for all t�FT 0 2 �s, s 2 S, Ms t = FMs T 0.Note that if T 0 � OT s is a directed set and A is an ordered algebra then Ms T 0 �As is also a directed set. 53



The family of least �xed point constraints � for our example language would befwhile E do t od�FfW n(E; t) j n 2 ! g j E 2 Exp; t 2 T g:Next, we introduce a natural notion of closure, under the operations of the termalgebra, for families of least �xed point constraints.De�nition 3.2.3 A family of least �xed point constraints � is closed i� for all � 2 �of type s1 � � � � � sn ! s0, if ti�FT 0i 2 �si, 1 � i � n, and T 00 is a co�nal subset of�(T 01 � � � � � T 0n) then �ht1; : : : ; tni�FT 00 2 �s0.We write � for the closure of �, i.e., the least closed family of least �xed pointconstraints containing �.This closure operation is well-de�ned, because co�nal subsets of directed sets arethemselves directed. Since � is de�ned inductively, we can give proofs by inductionover �. The next lemma shows that � has the usual closure properties.Lemma 3.2.4 (i) � � �(ii) � = �(iii) if �1 � �2 then �1 � �2Proof. (i) and (ii) are immediate from the de�nition. For (iii), suppose �1 � �2.Then �1 � �2, by (i), and so �2 is a closed family that contains �1. But �1 is theleast such family, and thus �1 � �2. 2Three lemmas concerning closed families of least �xed point constraints now follow.The �rst two concern \singleton" constraints of the form t�Fftg, and the third showsthat if a complete ordered algebra satis�es a family of least �xed point constraintsthen it also satis�es the closure of that family of constraints.Lemma 3.2.5 If � is a closed family of least �xed point constraints then t�Fftg 2�s, for all t 2 Ts, s 2 S.Proof. By structural induction over T . De�ne T 0 � T by T 0s = f t 2 Ts j t�Fftg 2�s g. Suppose � 2 � has type s1 � � � � � sn ! s0, and ti 2 T 0si , 1 � i � n. Thenti�Fftig 2 �si, 1 � i � n, and, since � is closed,�ht1; : : : ; tni�Ff�ht1; : : : ; tnig = �ht1; : : : ; tni�F�(ft1g � � � � � ftng)2 �s0 :Thus �ht1; : : : ; tni 2 T 0s0, as required. 2 54



Lemma 3.2.6 The family of least �xed point constraints � de�ned by�s = f t�Fftg j t 2 Ts gis the least closed family of least �xed point constraints, i.e., � = ;.Proof. By lemma 3.2.5 it is su�cient to show that � is closed. Suppose � 2 � hastype s1 � � � � � sn! s0, and ti�Fftig 2 �si, 1 � i � n. Then,�(ft1g � � � � � ftng) = f�ht1; : : : ; tnigis the only co�nal subset of itself, and �ht1; : : : ; tni�Ff�ht1; : : : ; tnig 2 �s0 . 2Lemma 3.2.7 Let � be a family of least �xed point constraints and A be a completeordered algebra. If A satis�es � then A satis�es �.Proof. By induction over �. De�ne �0 � � by�0s = f t�FT 0 2 �s jMs t =GMs T 0 g;we must show that �0 is closed (clearly it contains �). Suppose � 2 � has types1�� � ��sn!s0, ti�FT 0i 2 �0si , 1 � i � n, and T 00 is a co�nal subset of �(T 01�� � ��T 0n).Then, Ms0 �ht1; : : : ; tni = �hMs1 t1; : : : ;Msn tni= �hGMs1 T 01; : : : ;GMsn T 0ni= G �((Ms1 T 01)� � � � � (Msn T 0n))= GMs0 �(T 01 � � � � � T 0n)= GMs0 T 00;sinceMs0 T 00 is a co�nal subset ofMs0 �(T 01�� � ��T 0n). Thus �ht1; : : : ; tni�FT 00 2 �0s0 ,as required. 2Considering our example language again, we have, e.g., that(while E do t od ; (skip;while E do t od))�FfW n(E; t); (skip;W n(E; t)) j n 2 ! gis an element of �.Next, we consider the generalization of least �xed point models from terms tocontexts, or, more precisely, to derived operators.55



De�nition 3.2.8 A family of contextual least �xed point constraints � is an S-indexed family of sets such that for all s 2 S, �s consists of a set of tripleshhv1; : : : ; vni; c; C 0i;where the vi 2 Vs0i are distinct context variables, c 2 T (fv1; : : : ; vng)s, andC 0 � OT (fv1; : : : ; vng)s is a directed set. We write c�v1;:::;vnFC 0 instead ofhhv1; : : : ; vni; c; C 0i for elements of �s. Sometimes we write c�FC 0 instead ofc�v1;:::;vnFC 0, when the variables are clear from the context.De�nition 3.2.9 Let � be a family of contextual least �xed point constraints and Abe a complete ordered algebra. Then A is a �-contextually least �xed point model (orA satis�es �) i� for all c�v1;:::;vnFC 0 2 �s, where vi 2 Vs0i, 1 � i � n, cA[v1; : : : ; vn]is the lub of f c0A[v1; : : : ; vn] j c0 2 C 0 g in [As01 � � � � � As0n !As].Note that f c0A[v1; : : : ; vn] j c0 2 C 0 g is a directed set, by lemma 2.3.23.A suitable family of contextual least �xed point constraints � for our exampleimperative language isfwhile E do v od�FfW n(E; v) j n 2 ! g j E 2 Exp g;where v 2 V is an arbitrary context variable, andW n(E; v) is the !-chain in OT (fvg)de�ned by W 0(E; v) = 
;W n+1(E; v) = if E then v;W n(E; v) else skip � :LetA be a complete ordered algebra, and de�ne an !-chainwn(E; a) inA, forE 2 Expand a 2 A, by w0(E; a) = ?;wn+1(E; a) = if E then a;wn(E; a) else skip � ;so that wn(E; a) = W n(E; v)Ahai, for all n 2 !. Thus for all E 2 Exp,while E do v odA = Gn2!W n(E; v)Ai� while E do a od = Gn2!W n(E; v)hai; for all a 2 Ai� while E do a od = Gn2!wn(E; a); for all a 2 A;
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showing that A is a �-contextually least �xed point model i� for all E 2 Exp anda 2 A, while E do a od is the lub of the !-chain wn(E; a). In contrast, A satis�es thefamily of least �xed point constraints � of our example language i� while E do a odis the lub of wn(E; a), for all denotable a 2 A and E 2 Exp.Next, we consider the natural family of least �xed point constraints generated bya family of contextual least �xed point constraints.De�nition 3.2.10 If � is a family of contextual least �xed point constraints then�?, the family of least �xed point constraints generated by �, is de�ned by: �?s is theset of all cht1; : : : ; tni�Ff c0ht1; : : : ; tni j c0 2 C 0 gsuch that c�v1;:::;vnFC 0 2 �s, vi 2 Vs0i, 1 � i � n, and ti 2 Ts0i, 1 � i � n.Lemma 2.3.23 shows that �? is well-de�ned. It is easy to see that the families �of least �xed point constraints and � of contextual least �xed point constraints thatwe have de�ned for our example language are related by � = �?.Lemma 3.2.11 If � is a family of contextual least �xed point constraints and A is acomplete ordered algebra that satis�es � then A also satis�es the family of least �xedpoint constraints �?.Proof. Let c�v1;:::;vnFC 0 2 �s, s 2 S, where vi 2 Vs0i, 1 � i � n, and ti 2 Ts0i,1 � i � n. We must show thatMs cht1; : : : ; tni = GMsf c0ht1; : : : ; tni j c0 2 C 0 g;i.e., chMs01 t1; : : : ;Ms0n tni = Gc02C0 c0hMs01 t1; : : : ;Ms0n tni;and this follows from the assumption that A satis�es �. 2On the other hand, A may satisfy �? yet fail to satisfy �. We omit the proof,which is similar to that of lemma 3.1.4. In chapter 5 we will see that ifA is inductivelyreachable and satis�es �? then it also satis�es �.This section concludes with the de�nition of when an 
-least substitutive pre-ordering over T satis�es a family of least �xed point constraints. We will use thisde�nition in chapter 5 when we give conditions for the existence of fully abstract,least �xed point models. 57



De�nition 3.2.12 Let � be a family of least �xed point constraints and � be an
-least substitutive pre-ordering over T . Then � satis�es � i� for all t�FT 0 2 �s,s 2 S, t is a lub of T 0 in hTs;�si.Note that if T 0 � OT s is a directed set and � is an 
-least substitutive pre-ordering over T then T 0 is a directed set in hTs;�si, since OT s = hTs;�
s i and�
 � �. The following lemma shows that an 
-least substitutive pre-ordering maysatisfy a family of least �xed point constraints without satisfying its closure.Lemma 3.2.13 There is a signature �, an 
-least substitutive pre-ordering � overT , and a family of least �xed point constraints � such that � satis�es � but does notsatisfy �.Proof. Let � over S = f?g have the following operators:(i) 
? and x of type ?; and(ii) f of type ?! ?.Since there is only one sort, we drop the sort subscripts from relations, etc., below.De�ne � over T by


f 
f(f 
)...xf x
f(f x)...

,and let x�Ff
; f 
; f(f 
); : : :g be the only element of �. Clearly � satis�es �. Onthe other hand, (f x)�Fff 
; f(f 
); : : :g is an element of �, but (f x) is not a lubof ff 
; f(f 
); : : :g in �. 2
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Chapter 4Example Correct ModelsIn this chapter, we study two programming languages within our framework. The�rst is PCF, and the second is TIE, an imperative language with explicit storageallocation and higher and recursive types. We give denotational semantics for bothof these languages, de�ne notions of program ordering and equivalence from thesemodels in a uniform manner, and show that the models are inequationally correctwith reference to these notions of program ordering. In contrast, the model of PCFis already known not to be fully abstract and we conjecture that neither is our modelof the second language.A comprehensive treatment of these languages would include the characterizationof their notions of program ordering and equivalence in terms of operational semantics.This was done for PCF in [Plo1] and [BerCurL�ev], and appears to be feasible for oursecond language.4.1 De�ning Notions of Program OrderingWe begin by describing the technique for de�ning notions of program ordering andequivalence, as abstractions of models, that we use in sections 4.3 and 4.4, and thatforms the basis for our positive results of chapter 7. Given a complete ordered algebraA, an 
-least substitutive pre-ordering over T is de�ned as follows. First, a set ofprogram sorts P � S is selected, and the terms of sort p 2 P are designated asprograms. Next, a notion of program behaviour is de�ned by giving a continuousfunction h:AjP ! B, for a P -indexed family of cpo's B of program behaviours, andde�ning the behaviour of a program t of sort p to be hp(Mp t). Finally, one term isde�ned to be less than another i� the behaviour of the �rst is less than that of the
59



second, in all program contexts. We then take the congruence over T that is inducedby this substitutive pre-ordering as our notion of program equivalence, so that twoterms are equivalent i� they have the same behaviour in all program contexts.The following lemma formalizes this technique, using the contextualization oper-ation Rc of de�nition 2.2.24.Lemma 4.1.1 Suppose A is a complete ordered algebra and h:AjP !B is a contin-uous function, for P � S and B a P -indexed family of cpo's. De�ne a pre-ordering� over AjP by a1 �p a2 i� hp a1 vp hp a2;and a pre-ordering � over T jP byt1 �p t2 i�Mp t1 �p Mp t2:Then �c is an 
-least substitutive pre-ordering over T , �c is a unary-substitutiveinductive pre-ordering over A, andt1 �cs t2 i�Ms t1 �cs Ms t2;for all t1; t2 2 Ts, s 2 S. Furthermore, A is �c-inequationally correct.Proof. Everything except the �nal claim follows from lemma 2.3.36, since � = �his inductive. For the inequational correctness of A, simply note that ifMs t1 vs Ms t2then Ms t1 �cs Ms t2 (as �c is inductive), and thus t1 �cs t2. 2The unary-substitutive inductive pre-ordering �c can be seen as the semanticanalogue of �c, and its existence forms the basis for the positive results of chapter 7.Note that if � is the equivalence relation over T jP that is induced by � then �c isthe congruence over T induced by �c, and thus A is also �c-correct.4.2 A Metalanguage for Denotational SemanticsIn sections 4.3 and 4.4, we make use of a mostly standard metalanguage for de�n-ing cpo's and their elements that is taken from [Plo3], with minor variations. Thefollowing brief description is mainly intended to �x notation.If P1 and P2 are cpo's then P1 ! P2 is the cpo of continuous functions from P1to P2 (i.e., [P1 ! P2]). If x is a variable of type P1 and E is an expression of typeP2 then �x:P1: E is the usual lambda abstraction of type P1 ! P2. If E1 has type60



P1 ! P2 and E2 has type P1 then E1E2 is the application of E1 to E2 of type P2.Function space formation associates to the right and function application associatesto the left.If P1; : : : ; Pn, n � 0, are cpo's then P1 � � � � � Pn is their product (see de�nition2.3.5) and P1+ � � �+Pn is their separated sum (the least elements are not identi�ed).We use tupling notation hE1; : : : ; Eni and the projection functions �i to constructand select, respectively, elements of P1 � � � � � Pn. In addition, for an expression Eof type P1 � � � � � Pn, we writelet x1:P1; : : : ; xn:Pn be E in E 0as an abbreviation for(�x1:P1: � � � �xn:Pn: E 0)(�1 E) � � � (�nE):As usual, ini:Pi ! P1 + � � �+ Pn is the i'th (nonstrict) injection function, and iffi:Pi ! P 0, 1 � i � n, are continuous functions then [f1; : : : ; fn]:P1 + � � �+ Pn ! P 0is the strict continuous function such that [f1; : : : ; fn](ini p) = fi p, for all 1 � i � nand p 2 Pi. For an expression E of type P1 + � � �+ Pn and expressions E 0i of type P 0,1 � i � n, case E in x1:P1: E 01; : : : ; xn:Pn: E 0nis an abbreviation for [�x1:P1: E 01; : : : ; �xn:Pn: E 0n]E:We also consider the product Qx2X Px of arbitrary X-indexed families of cpo's P ,which consists of the product of the underlying sets, ordered componentwise. Suchproducts are manipulated using the projection (�[x]) and updating (�[p=x]) operationsthat were de�ned in section 2.1.For a set S, S? is the at cpo S [ f?g, for some ? =2 S. For an operationf :S1 � � � � � Sn ! S 0 over sets, we also write f for the unique extension of f toS1? � � � � � Sn? ! S 0? that is strict in each argument, individually. In particular,we make use of the bistrict extensions of addition, +:N �N !N , and the equalityoperation over the natural numbers, =:N �N ! Tr . De�ne a predecessor functionpred :N?!N? by pred x = ( x� 1 if x 2 (N � f0g);? if x = ? or x = 0:We can use the theory developed in [SmyPlo] (and also [Plo3]) in order to solverecursive domain equations involving !, �, + and �, up to order-isomorphism.61



For any cpo P , if�then�else�:Tr? � P � P ! Pis the usual conditional function (strict in its �rst argument), and for cpo's P1 andP2, ifdef�then�:P1 � P2 ! P2is de�ned by ifdef p1 then p2 = ( ? if p1 = ?;p2 otherwise:Finally, �x:P:E is an abbreviation for (�x �x:P:E), where �x : (P ! P ) ! P isthe usual least �xed point operation, and let x:P be E in E 0 is an abbreviation for((�x:P:E 0)E).4.3 The Programming Language PCFIn this section, we study the programming language PCF within our framework. Twomajor variants of PCF are considered in the literature: the �rst is based upon thetyped lambda calculus, and studied in [Plo1] and [BerCurL�ev], and the second is basedupon typed combinatory logic, and studied in [Mil2] and [Mul]. The combinatory formlacks the intuitive appeal of the lambda calculus version, but is technically easier towork with, since it avoids the complexities of bound variables. Because our theorygives no formal status to bound variables and their scopes, it is more e�ective forus to work with the combinatory form of PCF. An indication of how we could havetreated the lambda calculus version|with less success|can be found in the followingsection, which considers an imperative language that is based upon the typed lambdacalculus.We begin by de�ning the syntax of PCF, i.e., its signature. The sorts of thissignature consist of PCF's types.De�nition 4.3.1 The set of sorts S is least such that:(i) nat 2 S,(ii) bool 2 S, and(iii) s1 ! s2 2 S if s1 2 S and s2 2 S.The set of program sorts P � S is fnat ; boolg. We let the sort constructor! associateto the right.
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Note that every sort is of the form s1!� � �! sn!p, for n � 0, si 2 S, 1 � i � n,and p 2 P .De�nition 4.3.2 The signature � over S has the following operators:(i) 
s of type s,(ii) �s1;s2 of type (s1 ! s2)� s1 ! s2,(iii) Ks1;s2 of type (s1 ! s2 ! s1),(iv) Ss1;s2;s3 of type ((s1 ! s2 ! s3)! (s1 ! s2)! s1 ! s3),(v) Ys of type ((s! s)! s),(vi) tt and � of type bool ,(vii) n of type nat , for n 2 !,(viii) succ and pred of type (nat ! nat),(ix) zero? of type (nat ! bool),(x) if nat of type (bool ! nat ! nat ! nat), and(xi) if bool of type (bool ! bool ! bool ! bool),for all s; si 2 S, where the compound sorts are parenthesized in order to avoid confu-sion. Thus � is a binary operator, and all of the other operators are nullary. We dropthe sort su�xes from the operators when they are clear from the context, and let �associate to the left.De�nition 4.3.3 Let I be an S-indexed family of disjoint countably-in�nite sets ofidenti�ers. We confuse the family I with the set of all identi�ers Ss2S Is. For anidenti�er x 2 I, we write sort(x) for the unique s 2 S such that x 2 Is.Form a signature �+ by adding nullary operators x of type s, for all x 2 Is, s 2 S,to �. The set of identi�ers that occur in an term t of T�+ is denoted by ID(t). Wewrite T + and T+ for T�+ and T�+, respectively.Note that for all t 2 T+s , ID(t) = ; i� t 2 Ts.De�nition 4.3.4 For x 2 Is1 and t 2 T+s2 , the abstraction operation [x]t 2 T+s1!s2 isde�ned by structural recursion:(i) [x]x = Ss;s!s;s �Ks;s!s �Ks;s, for x 2 Is;(ii) [x]t = Ks2;s1 � t, if x =2 ID(t), for x 2 Is1 , and t 2 T+s2 ; and(iii) [x](t1 � t2) = Ss1;s3;s2 � [x]t1 � [x]t2, if x 2 ID(t1 � t2), for x 2 Is1 , t1 2 T+s3!s2 andt2 2 T+s3 .In the literature [x]t is sometimes written ��x: t, or even �x: t. The reader shouldremember that identi�er abstraction is not a formal part of our language, and cannot63



be treated as a derived operator. In fact, t is not a subterm of [x]t, whenever x 2ID(t). It is easy to see that ID([x]t) = ID(t)� fxg, for all terms t of T+.Next, we present the natural continuous function model E of PCF.De�nition 4.3.5 Let E be the complete ordered algebra whose carrier is de�ned byEnat = N?;Ebool = Tr?;Es1!s2 = Es1 ! Es2 ;and whose operations are de�ned by
s = ?Ese1 �s1;s2 e2 = e1 e2Ks1;s2 = �e1:Es1: �e2:Es2 : e1Ss1;s2;s3 = �e1:Es1!s2!s3 : �e2:Es1!s2: �e3:Es1 : e1 e3 (e2 e3)Ys = �e:Es!s: �e0:Es: e e0tt = tt� = �n = nsucc = �n:N?: n+1pred = predzero? = �n:N?: n=0if nat = �b:Tr?: �n1:N?: �n2:N?: if b then n1 else n2if bool = �b:Tr?: �b1:Tr?: �b2:Tr?: if b then b1 else b2:De�nition 4.3.6 An algebra A is combinatorial (or is a combinatory algebra) i�(i) Ks1;s2 � a1 � a2 = a1, for all a1 2 As1 and a2 2 As2; and(ii) Ss1;s2;s3 � a1 � a2 � a3 = a1 � a3 � (a2 � a3), for all a1 2 As1!s2!s3, a2 2 As1!s2 anda3 2 As1 .De�nition 4.3.7 An algebra A is extensional i� for all a1; a2 2 As1!s2, if a1 � a0 =a2 � a0, for all a0 2 As1 , then a1 = a2. An ordered algebra A is order-extensional i�for all a1; a2 2 As1!s2 , if a1 � a0 vs2 a2 � a0, for all a0 2 As1 , then a1 vs1!s2 a2.Clearly, any order-extensional ordered algebra is also extensional.64



De�nition 4.3.8 An ordered algebra A is standard i�(i) 
boolA, ttA and � A are distinct and form all of Abool , and a1 vbool a2 i�a1 = 
bool or a1 = a2;(ii) 
natA and nA, n 2 !, are distinct and form all of Anat , and a1 vnat a2 i�a1 = 
nat or a1 = a2; and(iii) for all n 2 !, the following equations (equalities between derived operationsof A) hold: succ � 
nat = 
natsucc � n = n+ 1pred � 
nat = 
natpred � (n+ 1) = npred � 0 = 
natzero? � 
nat = 
boolzero? � 0 = ttzero? � (n+ 1) = �if nat � 
bool � v1 � v2 = 
natif nat � tt � v1 � v2 = v1if nat � � � v1 � v2 = v2if bool � 
bool � v01 � v02 = 
boolif bool � tt � v01 � v02 = v01if bool � � � v01 � v02 = v02:Note that n is not a context variable in the above equations. It is easy to see thatE is a standard, order-extensional, combinatory algebra.Next, we develop tools for evaluating terms that are constructed by the identi�erabstraction operation.De�nition 4.3.9 Given a �-algebra A, de�ne a �+-algebra A+, as follows. Itscarrier is de�ned by A+s = EnvA! As;where the set EnvA of environments is Qx2I Asort(x). For all nullary operations � 2 �,de�ne � � = �;
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for all � 2 EnvA. For identi�ers x 2 Is, s 2 S, de�nex � = �[x];for all � 2 EnvA. For a1 2 A+s1!s2, a2 2 A+s1 and � 2 EnvA, de�ne(a1 � a2)� = (a1 �) � (a2 �):We write M+ for MA+: T + !A+.Lemma 4.3.10 Let A be an algebra.(i) For all t 2 Ts and � 2 EnvA, Ms t =M+s t �.(ii) For all t 2 T+s and �1; �2 2 EnvA, if �1[x] = �2[x], for all x 2 ID(t), thenM+s t �1 =M+s t �2.Proof. Both parts are standard structural inductions. 2Lemma 4.3.11 Let A be a combinatory algebra. For all x 2 Is1, t 2 T+s2 , � 2 EnvAand a 2 As1 , (M+s1!s2 [x]t �) � a =M+s2 t �[a=x]:Proof. A standard structural induction, using lemma 4.3.10 (ii). 2Now, we de�ne a family of contextual least �xed point constraints � for PCF,and prove that a complete ordered algebra satis�es � i� the constant Y is the usualleast �xed point operation. An immediate consequence is that E is a �-contextuallyleast �xed point model.De�nition 4.3.12 The family of contextual least �xed point constraints � is de�nedby �s = f(Y � v)�FfY n j n 2 ! gg;for some v 2 Vs!s, where the !-chain Y n in OT (fvg)s is de�ned byY 0 = 
;Y n+1 = v � Y n:
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Lemma 4.3.13 A complete ordered algebra A is a �-contextually least �xed pointmodel i� for all a 2 As!s, Y � a = Gn2! an(?);where the !-chain an(?) in As is de�ned bya0(?) = ?;an+1(?) = a � an(?):Proof. A simple induction on n shows that for all n 2 !, Y nhai = an(?), for alla 2 As!s. Thus,(Y � v)A = Gn2! Y nA i� (Y � a) = Gn2! Y nhai; for all a 2 As!si� (Y � a) = Gn2! an(?); for all a 2 As!s;as required. 2Note that E also satis�es the family of least �xed point constraints �?, by lemma3.2.11.Next, we de�ne notions of program ordering and equivalence for PCF. We takethe terms of program sort as programs, EjP as the cpo of program behaviours, andde�ne the behaviour of a program to be its meaning.De�nition 4.3.14 De�ne a pre-ordering � over EjP bye1 �p e2 i� e1 vp e2;and a pre-ordering � over T jP byt1 �p t2 i�Mp t1 �p Mp t2:Let � be the equivalence relation over T jP that is induced by �.By lemma 4.1.1, �c is an 
-least substitutive pre-ordering over T , �c is a unary-substitutive inductive pre-ordering over E ,t1 �cs t2 i�Ms t1 �cs Ms t2;for all t1; t2 2 Ts, s 2 S, and E is �c-inequationally correct. Furthermore, �c is thecongruence over T induced by �c, and E is �c-correct.We now recall Plotkin's theorem that E is not �c-fully abstract, and thus is not�c-inequationally fully abstract, since the \parallel or" (por) function is not de�nablein PCF. 67



De�nition 4.3.15 Let bbb be the sort bool ! bool ! bool . De�ne terms portest i 2Tbbb!nat , for i = 1; 2, byportest i = [x](if nat � (x � tt � 
bool )� (if nat � (x � 
bool � tt)� (if nat � (x � � � � )� 
nat� i )� 
nat)� 
nat):Let por 2 Ebbb be unique such that por tt ? = tt , por ? tt = tt and por � � = � .It easy to see that for all i 2 f1; 2g and e 2 Ebbb, (Mbbb!nat portest i) � e is equalto i i� e = por , and is equal to ? i� e 6= por .Lemma 4.3.16 (i) �E jP = �cjP(ii) �E jP = �cjPProof. (i) Since �E � �c, it is su�cient to show that �cp � �E p, for all p 2 P . Ift1 �cp t2 then t1 �p t2, because of the existence of projection derived operators v[v] oftype p! p, and thus Mp t1 vp Mp t2, i.e., t1 �Ep t2.(ii) Immediate from (i). 2Theorem 4.3.17 (i) For all t1; t2 2 Ts1!s2, if t1 � t0 �cs2 t2 � t0, for all t0 2 Ts1, thent1 �cs1!s2 t2.(ii) For all t1; t2 2 Ts1!s2 , if t1 � t0 �cs2 t2 � t0, for all t0 2 Ts1, then t1 �cs1!s2 t2.Proof. (i) follows from the adaptation of theorem 3.5.9 of [Ber1] (proposition 4.1.3of [Ber2]) to our version of PCF, and (ii) follows immediately from (i). 2Lemma 4.3.18 por is not denotable.Proof. Follows from the adaptation of the stability theorem (2.8.8) of [Ber1](theorem 3.6.5 of [BerCurL�ev]) to our version of PCF. 2From lemma 4.3.18 and the fact that Ebbb is �nite, and thus has no nontrivialdirected subsets, we can conclude that E is not inductively reachable.Lemma 4.3.19 portest1 �cbbb!nat portest268



Proof. By lemma 4.3.18, por is not denotable, and thusMEnat(portest1 � t) = ? =MEnat(portest2 � t);for all t 2 Tbbb. Then, by lemma 4.3.16,portest1 � t �cnat portest2 � t;for all t 2 Tbbb, and the result follows by theorem 4.3.17. 2Theorem 4.3.20 E is not �c-fully abstract.Proof. The terms portest1 and portest2 are distinguished by �E , since they yielddi�erent values when applied to por , but are identi�ed by �c, by lemma 4.3.19. 24.4 TIE: A Typed Imperative Programming Lan-guageIn this section, we study a programming language called TIE, for Typed ImperativeExpressions. TIE is strongly typed, expression-oriented and imperative: every termin the language is an expression of a �xed type, (potentially) yielding a value of thattype, but expressions can have side e�ects, and thus are evaluated in a �xed order.The language has higher and recursive types, as well as reference types and explicitstorage allocation. Procedures, i.e., values of higher type, can be returned as theresults of other procedures, as well as stored in storage locations of appropriate type.Thus an implementation of TIE cannot follow a simple stack discipline, in the sense of[HalMeyTra], but must retain scopes in a heap. With the exception of not includingnondeterminism, our language is thus a good deal more general and uniform than thetyped imperative language of [HalMeyTra].We begin by de�ning TIE's syntax, i.e., its signature. The sorts of this signatureconsist of TIE's types.De�nition 4.4.1 Let SVar be a countably in�nite set of sort variables. The setSExp of sort expressions is least such that:(i) 1 2 SExp,(ii) � 2 SExp if � 2 SVar ,(iii) ref s 2 SExp if s 2 SExp,
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(iv) s1 � s2; s1 + s2; s1 ! s2 2 SExp if s1; s2 2 SExp, and(v) ��: s 2 SExp if � 2 SVar and s 2 SExp.Here � is a variable binding operator, and we have the usual notions of free and boundoccurrences of variables in expressions, as well as open and closed expressions. Wewrite [s1=�]s2 for the substitution of s1 for all of the free occurrences of � in s2, wherebound variables are renamed, as necessary, to avoid capturing. In the following, weidentify sort expressions up to the renaming of bound variables, in the usual way.The set of sorts S consists of the closed sort expressions, and the set of programsorts P � S consists of the sorts that do not involve the sort constructors ref and!, i.e., the ones built up from 1, �, + and recursion.De�nition 4.4.2 Let I be an S-indexed family of disjoint countably in�nite sets ofidenti�ers. We confuse the family I with the set of all identi�ers Ss2S Is. For anidenti�er x 2 I, we write sort(x) for the s 2 S such that x 2 Is.De�ne a signature � over S with the following operators:(i) 
s of type s,(ii) x of type s, for x 2 Is,(iii) ? of type 1,(iv) new s of type s! (ref s),(v) :=s of type (ref s)� s! s,(vi) conts of type (ref s)! s,(vii) �s of type (ref s)� (ref s)! (1+ 1),(viii) pair s1;s2 of type s1 � s2 ! (s1 � s2),(ix) �rst s1;s2 of type (s1 � s2)! s1,(x) seconds1;s2 of type (s1 � s2)! s2,(xi) in�rsts1;s2 of type s1 ! (s1 + s2),(xii) inseconds1;s2 of type s2 ! (s1 + s2),(xiii) case��rstx�secondy�esacs3 of type (s1 + s2) � s3 � s3 ! s3, for x 2 Is1and y 2 Is2,(xiv) �x;s2 of type s2 ! (s1 ! s2), for x 2 Is1 ,(xv) �s1;s2 of type (s1 ! s2)� s1 ! s2,(xvi) in��: s of type ([��: s=�]s)! (��: s), for ��: s 2 S,(xvii) out��: s of type (��: s)! ([��: s=�]s), for ��: s 2 S,(xviii) ;s1;s2 of type s1 � s2 ! s2, and(xix) recx of type s! s, for x 2 Is,for all s; si 2 S, where compound sorts are parenthesized in order to avoid confusion.Thus, e.g., �rst and � are unary operators, whereas pair and � are binary operators.70



We drop the sort subscripts from the operators when no confusion can occur, and let� and ; associate to the left and right, respectively.The operators case, � and rec bind identi�ers:case t1 �rstx t2 secondy t3 esacbinds x in t2 and y in t3, and �x t and recx t bind x in t. We have the usual notionsof bound and free occurrences of identi�ers in terms, and of open and closed terms.We write [t1=x]t2 for the substitution of t1 for all of the free occurrences of x in t2,where bound variables are renamed, when necessary, to avoid capturing.The sort 1 is intended to contain a single element, ?. Elements of reference sorts,ref s, are pointers to storage locations, which are created (and initialized) by new ,modi�ed by assignment (:=), and accessed by cont (contents). The product (�),sum (+) and function (!) sorts have their usual meanings and associated operators,where function application (�) is intended to be by-name, instead of by-value. Thesort bool = 1+ 1 can be seen as the booleans; �s of type (ref s)� (ref s)! bool is atest for equality between pointers to storage locations. Recursive sorts are de�ned via�, and, e.g., nat = ��: (1+ �) is the natural numbers. The in and out operators areused to package and unpackage elements of recursive sorts. The sequencing operator(;) evaluates its �rst argument, discards its value (but not its side e�ects) and yieldsthe result of evaluating its second argument. Finally, the operator rec is used to giverecursive de�nitions in the usual way. For example, recx x and 
 are intended to beequivalent. With the exception of the the case, � and � operators, the arguments ofoperators are evaluated from left to right. Only one of the second and third argumentsof the case operator is evaluated, depending upon the value of the �rst, and neitherthe only argument of � nor the second argument of � is ever evaluated (the latter,since application is by-name).The usual operators over the derived sorts bool and nat can be de�ned as derivedoperators in TIE. For example, in�rst ? and insecond ? are the nullary derived oper-ators of type bool that stand for true and false, respectively, and for any s 2 S, aderived operator if�then�else�� [v1; v2; v3]of type bool � s� s! s can be de�ned by(�w(�x(�y case w �rst z x secondz y esac))) � v1 � v2 � v3;for arbitrary identi�ers w 2 Ibool , x; y 2 Is and z 2 I1. The case expression must beabstracted and then applied to the context variables in order to prevent the capture of71



any occurrences of the identi�er z in the second and third arguments of the derivedconditional. The suitability of this de�nition is thus dependent upon applicationbeing by-name instead of by-value.Derived operators for strict (call-by-value) lambda abstraction and variable dec-laration can be de�ned, as follows. For s1; s2 2 S and x 2 Is1, let �x[v] of types2 ! (s1 ! s2) be �x case (in�rst x) �rstx v secondy 
 esac;for some y 2 I1. For s1; s2 2 S and x 2 Iref s1, letletvar x be�in�ni [v1; v2]of type s1 � s2 ! s2 be (�x v2) � (new v1):It is essential that strict lambda abstraction be used when de�ning letvar .Next, we de�ne a model L of TIE, beginning with its semantic domains.De�nition 4.4.3 The S-indexed family of cpo's Val of values, together with theS-indexed family of order-isomorphisms �, is the initial solution, in the sense of[SmyPlo], of the in�nite system of simultaneous isomorphism equations�1:Val1 �= f?g?;�ref s:Val ref s �= N?;�s1�s2 :Vals1�s2 �= Val s1 � Val s2;�s1+s2 :Vals1+s2 �= Val s1 + Val s2 ;�s1!s2 :Val s1!s2 �= Comps1 ! Comps2 ;���: s:Val��: s �= Val [��: s=�]s;for all s; si 2 S, where Comps, for computation, isSto! (Val s � Sto);and Sto, for store, is Ys2S[(N?! Val s)�N?]:De�ne the cpo Env of environments to beYx2I Compsort(x):
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The names of storage locations are, simply, natural numbers. A store � 2 Sto consists,for each s 2 S, of a pair hf; ni, where f :N?! Val s and n 2 N?. In the semanticsgiven below, we follow the convention that n is the least available location in f . Wewrite empty for the store with no locations allocated:empty [s] = h?; 0i; for all s 2 S:De�nition 4.4.4 The complete ordered algebra L is de�ned as follows. Its carrierL is de�ned by Ls = Env ! Comps = Env ! Sto! (Val s � Sto);for all s 2 S. Thus a term t 2 Ts, when evaluated in an environment � 2 Env anda store � 2 Sto, produces a value v 2 Val s and a new store �0 2 Sto. Divergence(nontermination) is indicated by �0 being ?; the value v is only meaningful when�0 6= ?.The operations of L are now de�ned below:
s = ?Ls ;x = ��:Env : �[x](x 2 Is);? = ��:Env : ��: Sto: h��11 ?; �i;new s l = ��:Env : ��: Sto:let v:Val s; �0: Sto be (l � �)in ifdef �0then let f :N?! Val s; n:N? be �0[s]in h��1(ref s) n;�0[h�n0:N?: if n0=n then v else (f n0);n+ 1i=s]i;l1 :=s l2 = ��:Env : ��: Sto:let v1:Val ref s; �0: Sto be (l1 � �)in let v2:Val s; �00: Sto be (l2 � �0)in ifdef �00then let f :N?! Val s; n:N? be �00[s]in hv2;�00[h�n0:N?: if n0 = (�ref s v1) then v2 else (f n0);ni=s]i; 73



cont s l = ��:Env : ��: Sto:let v:Val ref s; �0: Sto be (l � �)in let f :N?! Val s; n:N? be �0[s]in h(f (�ref s v)); �0i;l1 �s l2 = ��:Env : ��: Sto:let v1:Val ref s; �0: Sto be (l1 � �)in let v2:Val ref s; �00: Sto be (l2 � �0)in h��11+1 (if (�ref s v1) = (�ref s v2)then in1(��11 ?)else in2(��11 ?));�00i;l1 pair s1;s2 l2 = ��:Env : ��: Sto:let v1:Val s1; �0: Sto be (l1 � �)in let v2:Val s2; �00: Sto be (l2 � �0)in h��1s1�s2 hv1; v2i; �00i;�rst s1;s2 l = ��:Env : ��: Sto:let v:Val s1�s2; �0: Sto be (l � �)in h�1(�s1�s2 v); �0i;second s1;s2 l = ��:Env : ��: Sto:let v:Val s1�s2; �0: Sto be (l � �)in h�2(�s1�s2 v); �0i;in�rst s1;s2 l = ��:Env : ��: Sto:let v:Vals1 ; �0: Sto be (l � �)in h��1s1+s2(in1 v); �0i;inseconds1;s2 l = ��:Env : ��: Sto:let v:Vals2 ; �0: Sto be (l � �)in h��1s1+s2(in2 v); �0i;case l1 �rstx l2 secondy l3 esacs3 = ��:Env : ��: Sto:let v:Vals1+s2; �0: Sto be (l1 � �)in case (�s1+s2 v)in v1:Val s1: (l2 �[��: Sto: hv1; �i=x] �0);v2:Val s2: (l3 �[��: Sto: hv2; �i=y] �0)(x 2 Is1; y 2 Is2); 74



�x;s2 l = ��:Env : ��: Sto:h��1s1!s2(��:Comps1: (l �[�=x]));�i (x 2 Is1);l1 �s1;s2 l2 = ��:Env : ��: Sto:let v:Vals1!s2; �0: Sto be (l1 � �)in (�s1!s2 v (l2 �) �0);in��: s l = ��:Env : ��: Sto:let v:Val [��: s=�]s; �0: Sto be (l � �)in h��1��: s v; �0i;out��: s l = ��:Env : ��: Sto:let v:Val��: s; �0: Sto be (l � �)in h���: s v; �0i;l1 ;s1;s2 l2 = ��:Env : ��: Sto:let v:Val s1; �0: Sto be (l1 � �)in (l2 � �0);recx l = �l0:Ls: ��:Env : (l �[(l0 �)=x])(x 2 Is):As is usual for models of languages with block structure, terms are assigned mean-ings in L with the help of environments. It is important to remember that completeordered algebras, in general, will not have environments as part of their formal struc-ture. This is a signi�cant limitation of our theory.Note that for all x 2 Is, s 2 S, the elements 
s and recx x of Ls are equal.The obvious principle of extensionality under application is not valid in L, as thefollowing example shows. Let x 2 Is, s 2 S, and consider the elements �x;s
s and
s!s of Ls!s. They are unequal, since for any � 2 Env and � 2 Sto, �2((�x
) � �) =�. One the other hand, for any l 2 Ls, � 2 Env and � 2 Sto,((�x
) � l) � � = �s!s(��1s!s(��:Comps:
 �[�=x])) (l �) �= 
 �[(l �)=x] �= ?= �s!s? (l �)?= (
 � l) � �;75



and thus, for all l 2 Ls, (�x
) � l = 
 � l, by extensionality in the metalanguage. Iview the lack of extensionality as an expected property of models of TIE, rather thanas a defect of L.Since application is by-name instead of by-value, we can give an equivalent de�-nition of the operation rec that does not explicitly mention environments.Lemma 4.4.5 An equivalent de�nition of the operation rec isrecx l = �l0:Ls: (�x;s l) �s;s l0(x 2 Is):Proof. For l; l0 2 Ls, � 2 Env and � 2 Sto,((�x l) � l0) � � = �s!s (��1s!s ��:Comps: (l �[�=x])) (l0 �) �= l �[(l0 �)=x] �:Thus for all l; l0 2 Ls, (�x l) � l0 = ��:Env : ((�x l) � l0) �= ��:Env : (l �[(l0 �)=x]);by extensionality and �-conversion. 2The previous lemma motivates the following de�nition of a family of contextualleast �xed point constraints for TIE.De�nition 4.4.6 The family of contextual least �xed point constraints � is de�nedby �s = f (recx v)�Ff recnx j n 2 ! g j x 2 Is g;for some v 2 Vs, where the !-chain recnx in OT (fvg)s is de�ned byrec0x = 
;recn+1x = (�x v) � recnx:The next lemma shows that a complete ordered algebra is a �-contextually least�xed point model i� rec is the expected least �xed point operation. An immediateconsequence is that L is a �-contextually least �xed point model.
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Lemma 4.4.7 A complete ordered algebra A is a �-contextually least �xed pointmodel i� for all x 2 Is, s 2 S,recx a = Gn2! rnx(a); for all a 2 As;where the !-chain rnx(a) in As is de�ned by:r0x(a) = ?;rn+1x (a) = (�x a) � rnx(a):Proof. A simple induction over n shows that for all n 2 !, recnxhai = rnx(a), for alla 2 As. Thus,(recx v)A = Gn2! recnxA i� (recx a) = Gn2! recnxhai; for all a 2 Asi� (recx a) = Gn2! rnx(a); for all a 2 As;as required. 2Now, we de�ne notions of program ordering and equivalence for TIE. It is naturalto take the closed terms of program sort as programs, Val jP as the cpo of programbehaviours, and to de�ne the behaviour of a program to be the result of evaluating itin the unde�ned environment and empty store.De�nition 4.4.8 The continuous function h:LjP !Val jP is de�ned by:hp l = let v:Valp; �: Sto be (l? empty) in ifdef � then v:The behaviour of a program t 2 Tp is then hp(Mp t). De�ne a relation �0 over T by:t1 �0s t2 i� for all derived operators c[v] of type s! p, p 2 P , such that both cht1iand cht2i are closed, hp(Mp cht1i) vValp hp(Mp cht2i):Let �0 = �0 \ �0.It is easy to see that the terms ? and if true then ? else x � of sort 1 are assignedequal meanings by L, and thus are equivalent under �0. This shows that programscan be equivalent to nonprograms, or, in other words, that the property of being aprogram is not preserved by �0, but must be explicitly veri�ed to hold after applying
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�0 transformations to a program. This situation is normal for languages with blockstructure.Although �0 and �0 are obviously reexive and substitutive, their transitivity isnot immediately clear, since if t1 �0s t2 �0s t3 and cht1i and cht3i are closed, it doesnot follow that cht2i is also closed, as can be seen from the example of the previousparagraph. Furthermore, lemma 4.1.1, and thus much of the theory developed inchapters 5 and 7, does not directly apply to �0 and �0, since this lemma makes nomention of identi�ers and their scopes. Fortunately, we can give alternative de�nitionsof these relations via lemma 4.1.1, thus showing their transitivity in the process. Weproceed as follows. Take the set of all terms of program sort as programs, Val jP(again) as the cpo of program behaviours, and de�ne the behaviour of a programt 2 Tp to be hp(Mp t), for the function h de�ned above.De�nition 4.4.9 De�ne a pre-ordering � over LjP byl1 �p l2 i� hp l1 vValp hp l2;and a pre-ordering � over T jP byt1 �p t2 i�Mp t1 �p Mp t2:Let � be the equivalence relation over T jP that is induced by �.Then, by lemma 4.1.1, �c is an 
-least substitutive pre-ordering over T , �c is aunary-substitutive inductive pre-ordering over L,t1 �cs t2 i�Ms t1 �cs Ms t2;for all t1; t2 2 Ts, s 2 S, and L is �c-inequationally correct. Furthermore, �c is thecongruence over T that is induced by �c, and L is �c-correct.Lemma 4.4.10 For every �nite set of identi�ers X � I and sort s 2 S, there is aderived operator cX [v] of type s! s such that for all t 2 Ts, none of the identi�ers inX are free in cXhti, all of the free identi�ers (if any) of cXhti are also free in t, andMs cXhti? =Ms t?:Proof. By induction on the size of X. For the case jXj = 0, simply let cX [v] = v.For the induction step, suppose X = Y [ fzg, for z 2 Is0, and let cX [v] be(�z;s cY ) �s0;s 
s0 :78



Let t 2 Ts. Clearly cX has the desired identi�er closure properties, and for all � 2 Sto,Ms cXhti? � = ((�z (Ms cY hti)) � ?)? �= �s0!s(��1s0!s(��:Comps0:Ms cY hti?[k=z]))? �= Ms cY hti?[?=z] �= Ms cY hti? �= Ms t? �:The lemma then follows by extensionality. 2Lemma 4.4.11 �0 = �c and �0 = �cProof. The latter equality will follow from the former, and clearly �c � �0. Forthe opposite inclusion, suppose that t1 �0s t2, and let c[v] be a derived operator oftype s! p, p 2 P . By lemma 4.4.10, there is a derived operator c0[v0] of type p! psuch that both c0hcht1ii and c0hcht2ii are closed, andMp c0hchtiii? =Mp chtii?;for i = 1; 2. Thus c0hci[v] is a derived operator of type s! p, andhp(Mp cht1i) = hp(Mp (c0hci)ht1i) v hp(Mp (c0hci)ht2i) = hp(Mp cht2i);by the assumption that t1 �0s t2. 2I conjecture that L is not �c-fully abstract (and thus not �c-inequationally fullyabstract) since M1 (new ?); ? 6=M1 ?;but it appears that (new ?); ? �c1 ?:In the remainder of this section, we investigate a call-by-value version of TIE.First, the isomorphism equations for ! that are used in the de�nition of Val shouldbe changed to �s1!s2:Val s1!s2 �= Val s1 ! Comps2 ;for all s1; s2 2 S. Second, the de�nitions of the operations � and � should be changedto 79



�x;s2 l = ��:Env : ��: Sto:h��1s1!s2(�v:Vals1 : (l �[��: Sto: hv; �i=x]));�i (x 2 Is1);andl1 �s1;s2 l2 = ��:Env : ��: Sto:let v1:Val s1!s2; �0: Sto be (l1 � �)in let v2:Val s1; �00: Sto be (l2 � �0)in (�s1!s2 v1 v2 �00):Now both arguments of � are evaluated, the �rst followed by the second.Unfortunately, the change from call-by-name to call-by-value has at least threeunpleasant consequences. The �rst is that the derived conditional operator (givenimmediately after the de�nition of TIE's signature) is no longer suitable, and I con-jecture that no replacement exists.The second is that we lose lemma 4.4.5, and thus the family of contextual least�xed point constraints � is not appropriate for the changed language; again, theredoes not appear to be a suitable replacement. As a partial solution to this problem,we might consider making do with a family of (ordinary) least �xed point constraints.Unfortunately, we run into problems again, since the following \de�nition" of a familyof least �xed point constraints � is invalid:�s = f recx t�Ff recnx t j n 2 ! g j x 2 Is; t 2 Ts g;where recnx t is de�ned by rec0x t = 
;recn+1x t = [recnx t=x]t:Due to the renaming of identi�ers that is involved in substitution, recnx t is not alwaysan !-chain in OT s.The third problem is that we loose the proofs of lemmas 4.4.10 and 4.4.11, andthe relations �0 and �c (and thus �0 and �c) appear, in fact, to be unequal. Moreseriously, it is unclear whether �0 and �0 are even transitive. Consider the terms ?and x; ? of sort 1, for x 2 I��: �. It is easy to see that they are distinguished by �c1,since h1(M1 (x; ?)) = ? 6= (��11 ?) = h1(M1 ?):80



On the other hand, I see no way of causing x; ? to diverge in a closed context, withoutalso causing ? to diverge in that context, and thus it seems that they are equivalentunder �01. Here, it is essential that the sort ��: � is uninhabited, i.e., that there doesnot exist a closed, convergent, term t of sort ��: �, since if such a t did exist then ourpair of terms would be distinguished by the context c[v] = recx (v; t). Perhaps an adhoc solution to this problem can be found by disallowing uninhabited types.I hope that some of these problems can be solved by giving identi�ers and theirscopes formal signi�cance in signatures, and working with models that have environ-ments as part of their formal structure. In such a theory, terms would be identi�edup to the renaming of bound variables, solving the problem with �. Perhaps theproblem of de�ning derived operators can be solved by working with two kinds ofderived operators: ones that can capture free identi�ers and ones that cannot. Theother problems seem more di�cult, and may require more changes, but I hope thatthis proposal is a step in the right direction.
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Chapter 5Conditions for the Existence ofFully Abstract ModelsIn this chapter, we give necessary and su�cient conditions for the existence of correctand fully abstract, least �xed point, complete ordered algebras. As usual, we considerthe three kinds of correctness and full abstraction, equational (ordinary), inequationaland contextual, and the two kinds of least �xed point models, ordinary and contextual.The condition for the existence of inequationally fully abstract, (ordinarily) least �xedpoint, complete ordered algebras is the cornerstone of these results: it is developed�rst, using a general term model construction, and the other conditions are derivedfrom it. The condition for the existence of equationally fully abstract, least �xed pointmodels will be employed in chapter 6 to show that such models do not exist for twonatural nondeterministic programming languages. The condition for the existence ofinequationally fully abstract, least �xed point models will be used in chapter 7 todevelop a useful model-theoretic condition, which is used to show the existence ofinequationally fully abstract models for the languages introduced in chapter 4.We also prove theorems concerning the existence of initial objects and the nonex-istence of terminal objects in various categories of correct and fully abstract, least�xed point, complete ordered algebras, and show the existence of nonisomorphic in-ductively reachable, inequationally fully abstract, least �xed point, complete orderedalgebras.As an aid to understanding and appreciating these results, we begin by consideringthe simpler case of inequationally correct and fully abstract ordered algebras. In thefollowing, let � be an 
-least substitutive pre-ordering over T . Clearly OT is initialin the category of �-inequationally correct ordered algebras, together with monotonic
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homomorphisms, and, by theorem 2.4.15, OT =� is initial in the full subcategory of�-inequationally fully abstract ordered algebras. By corollary 2.4.18, every reachableordered algebra A is order-isomorphic to OT =�A. Thus OT =� is the unique (up toorder-isomorphism) reachable, �-inequationally fully abstract, ordered algebra and,again by theorem 2.4.15, it is terminal in the category of reachable, �-inequationallycorrect, ordered algebras, together with monotonic morphisms.As we will see in the following sections, the situation is considerably more compli-cated for least �xed point, complete ordered algebras and continuous homomorphisms.5.1 Inequational Full AbstractionIn this section, we give a necessary and su�cient condition for the existence of �-inequationally fully abstract, �-least �xed point, complete ordered algebras, andshow that if the category of such ordered algebras and continuous homomorphisms isnonempty that it has an initial object.Theorem 5.1.4 is the main result: a �-inequationally fully abstract, �-least �xedpoint, complete ordered algebra exists i� � satis�es �. The \only if" direction of thistheorem is straightforward. For the \if" direction, we construct a �-inequationallyfully abstract, �-least �xed point, complete ordered algebra I(�;�) via the quoti-enting and completion constructions of section 2.4. The ordered algebra OT =� is�-inequationally fully abstract and satis�es the constraints of � but is not, in gen-eral, complete, and thus we must embed it into a complete ordered algebra in sucha way that at least the lub's corresponding to the constraints of � are preserved. Itis not always possible to preserve all existing lub's in this process, and the most wecan do, in general, is preserve exactly the lub's corresponding to �. Furthermore,by preserving only the necessary lub's, we succeed in producing an initial object inthe category of �-inequationally fully abstract, �-least �xed point, complete orderedalgebras, together with continuous homomorphisms.Lemma 5.1.1 Suppose � is a closed family of least �xed point constraints and �is an 
-least substitutive pre-ordering over T that satis�es �. De�ne an S-indexedfamily � of sets of subsets of OT=� by�s = f qt s T 0 j t�FT 0 2 �s g:Then � is a family of subsets of OT =�, and OT =� is �-complete.
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Proof. Clearly � consists of sets of directed subsets of OT=�. Let a 2 (OT=�)s,s 2 S; we must show that fag 2 �s. Since qt is surjective, there is a t 2 OT s suchthat qt s t = a. Furthermore, by lemma 3.2.5, t�Fftg 2 �s, and thusfag = fqt s tg = qt s ftg 2 �s:Now, suppose � 2 � has type s1 � � � � � sn! s0 and ti�FT 0i 2 �si, 1 � i � n. Then,�((qts1 T 01)� � � � � (qtsn T 0n)) = qt s0 �(T 01 � � � � � T 0n)2 �s0;since �ht1; : : : ; tni�F�(T 01 � � � � � T 0n) 2 �s0 :Thus, � is indeed a family of subsets of OT =�.Suppose t�FT 0 2 �s, s 2 S; we must show that qt s T 0 has a lub in (OT=�)s. Byassumption, t is a lub of T 0 in hTs;�si, and thus, by corollary 2.4.17, qts t is the lubof qts T 0 in (OT=�)s. Suppose � 2 � has type s1 � � � � � sn ! s0 and ti�FT 0i 2 �si ,1 � i � n. Then,�hG qt s1 T 01; : : : ;G qtsn T 0ni = �hqt s1 t1; : : : ; qt sn tni= qt s0 �ht1; : : : ; tni= G qt s0 �(T 01 � � � � � T 0n)= G �((qt s1 T 01)� � � � � (qt sn T 0n)):Thus OT =� is indeed �-complete. 2We now give a de�nition that is based upon lemma 5.1.1 and theorem 2.4.2.De�nition 5.1.2 Let � be a closed family of least �xed point constraints and � bean 
-least substitutive pre-ordering over T that satis�es �. The complete orderedalgebra I(�;�) is de�ned to be (OT =�)�, where � is de�ned as in the statement oflemma 5.1.1.Theorem 5.1.3 Suppose � is a closed family of least �xed point constraints and �is an 
-least substitutive pre-ordering over T that satis�es �.(i) I(�;�) is a �-inequationally fully abstract, �-least �xed point, complete or-dered algebra.(ii) If A is a �0-inequationally fully abstract, �-least �xed point, complete orderedalgebra, for an 
-least substitutive pre-ordering �0 over T such that � � �0, thenthere is a unique continuous homomorphism h: I(�;�)!A.84



Proof. Let � be the family of subsets of OT =� that was de�ned in the statementof lemma 5.1.1. OT OT =�
A

(OT =�)�qt
MA MA=�em (MA=�)�-@@@@@@@R ?

- ����������	We begin by showing (i). Clearly (OT =�)� is a complete ordered algebra. To seethat it is �-inequationally fully abstract, let t1; t2 2 Ts, s 2 S. Then,t1 �s t2 i� qts t1 vs qt s t2i� ems(qt s t1) vs ems(qt s t2);since em is an order-embedding. To see that (OT =�)� satis�es �, suppose thatt�FT 0 2 �s, s 2 S. By assumption, t is a lub of T 0 in hTs;�si, and thus, by corollary2.4.17, qt s t = F qt s T 0. Then,ems(qt s t) = emsG qts T 0 = G ems(qts T 0);since em is �-continuous.Next, we consider (ii). If t1; t2 2 S, s 2 S, thent1 �s t2 ) t1 �0s t2 )Ms t1 vs Ms t2:Thus (y) there is a unique monotonic homomorphism MA=� from OT =� to A suchthat (MA=�) � qt = MA. Furthermore, MA=� is �-continuous, since if t�FT 0 2 �s,s 2 S, then (MA=�)sG qt s T 0 = (MA=�)s(qt s t)= MAs t= GMAs T 0= G(MA=�)s(qt s T 0):Thus (z) there is a unique continuous homomorphism (MA=�)� from (OT =�)� to Asuch that (MA=�)� � em = MA=�. For uniqueness, suppose h: (OT =�)� !A is a85



continuous homomorphism. By the initiality of OT , we know that (h�em)�qt =MA,and thus by (y) that h � em =MA=�. The fact that h = (MA=�)� then follows from(z). 2Theorem 5.1.4 Suppose � is a family of least �xed point constraints and � is an
-least substitutive pre-ordering over T . A �-inequationally fully abstract, �-least�xed point, complete ordered algebra exists i� � satis�es �.Proof. The \if" direction follows immediately from theorem 5.1.3. For the \only if"direction, suppose A is a�-inequationally fully abstract, �-least �xed point, completeordered algebra. By lemma 3.2.7, A also satis�es �. Suppose t�FT 0 2 �s, s 2 S.Then Ms t = FMs T 0, and thus t is an ub of T 0 in hTs;�si. Suppose t00 is also an ubof T 0. Then Ms t00 is an ub of Ms T 0, and so Ms t vs Ms t00. But this, in turn, impliesthat t �s t00, showing that t is a lub of T 0 in hTs;�si, as required. 2Corollary 5.1.5 If the category of �-inequationally fully abstract, �-least �xed point,complete ordered algebras, together with continuous homomorphisms, is nonemptythen it has an initial object, I(�;�).Proof. Immediate from theorems 5.1.3 and 5.1.4. 2We conclude this section with the corollary that I(�;�) is always inductivelyreachable. Thus, if the category of inductively reachable �-inequationally fully ab-stract, �-least �xed point, complete ordered algebras, together with continuous ho-momorphisms, is nonempty then it has I(�;�) as an initial object.Corollary 5.1.6 If � is a closed family of least �xed point constraints and � is an
-least substitutive pre-ordering over T that satis�es � then I(�;�) is inductivelyreachable.Proof. By lemma 2.3.33, it is su�cient to show that I(�;�) and R(I(�;�)) areorder-isomorphic. Since I(�;�) is initial in the category of �-inequationally fullyabstract, �-least �xed point, complete ordered algebras, together with continuoushomomorphisms (corollary 5.1.5), it is su�cient to show that R(I(�;�)) is also initialin this category. It is easy to see that R(I(�;�)) is a �-inequationally fully abstract,�-least �xed point, complete ordered algebra, since R(I(�;�)) � I(�;�). Let i bethe inclusion from R(I(�;�)) to I(�;�), so that i is a continuous homomorphismfrom R(I(�;�)) to I(�;�). Suppose A is a �-inequationally fully abstract, �-least�xed point, complete ordered algebra, and let h: I(�;�)!A be the unique continuoushomomorphism. Then h� i is the unique continuous homomorphism from R(I(�;�))to A, by lemma 2.3.31. 2 86



5.2 More Existence ResultsThis section consists of two corollaries of theorem 5.1.4. In the �rst, we show thatinequationally fully abstract, complete ordered algebras always exist and give a nec-essary and su�cient condition for the existence of inequationally correct, least �xedpoint, complete ordered algebras. In the second, we give necessary and su�cientconditions for the existence of equationally fully abstract (respectively, equationallycorrect), least �xed point, complete ordered algebras, and equationally fully abstract,complete ordered algebras, as well as showing that equationally correct, completeordered algebras always exist.Corollary 5.2.1 Let � be an 
-least substitutive pre-ordering over T and � a familyof least �xed point constraints.(i) A �-inequationally fully abstract, complete ordered algebra exists.(ii) A �-inequationally correct, �-least �xed point, complete ordered algebra existsi� there exists an 
-least substitutive pre-ordering �0 over T such that �0 � � and�0 satis�es �.Proof. (i) By lemma 3.2.6, the least closed family of least �xed point constraints,;, consists of exactly the singleton constraints t�Fftg, t 2 Ts, s 2 S. Thus � satis�es;, and the result follows by theorem 5.1.4.(ii) ()) Suppose A is a �-inequationally correct, �-least �xed point, completeordered algebra. Then �A � �. Further, A is �A-inequationally fully abstract,and thus, by theorem 5.1.4, �A satis�es �. (() By theorem 5.1.4, there is a �0-inequationally fully abstract, �-least �xed point, complete ordered algebra, and, since�0 � �, A is �-inequationally correct. 2It is easy to �nd arti�cial examples of � and � such that no �-inequationally cor-rect, �-least �xed point, complete ordered algebras exist. It would be quite surprising,however, if natural examples existed.Corollary 5.2.2 Let � be a congruence over T and � be a family of least �xed pointconstraints.(i) A �-fully abstract, �-least �xed point, complete ordered algebra exists i� thereis an 
-least substitutive pre-ordering � over T such that � = � \ � and � satis�es�. (ii) A �-fully abstract, complete ordered algebra exists i� there is an 
-leastsubstitutive pre-ordering � over T such that � = � \ �.87



(iii) A �-correct, �-least �xed point, complete ordered algebra exists i� there isan 
-least substitutive pre-ordering � over T such that � \ � � � and � satis�es�. (iv) A �-correct, complete ordered algebra exists.Proof. (i) ()) Suppose A is a �-fully abstract, �-least �xed point, completeordered algebra. Then � = �A \ �A. Further, A is �A-inequationally fully abstract,and thus, by theorem 5.1.4, �A satis�es �. (() By theorem 5.1.4, there exists a �-inequationally fully abstract, �-least �xed point, complete ordered algebra A, and,since � = � \ �, A is �-fully abstract.(ii) Follows from (i), with � = ;.(iii) ()) Suppose A is a �-correct, �-least �xed point, complete ordered algebra.Then �A � �. Further, A is �A-fully abstract, and thus, by (i), there is an 
-leastsubstitutive pre-ordering � over T such that� \ � = �A � �and � satis�es �. (() Let �0 = � \ �. By (i), there exists a �0-fully abstract,�-least �xed point, complete ordered algebra A, and, since�0 = � \ � � �;A is �-correct.(iv) Since �
 is a partial ordering, �
 \ �
 is the least congruence over T (nodistinct terms are congruent). Thus �
 \ �
 � �, and the result follows by applying(iii), with � = �
 and � = ;. 2By lemma 2.2.13, we know that not every congruence � over T is induced by an
-least substitutive pre-ordering, and thus, by corollary 5.2.2 (ii), �-fully abstract,complete ordered algebras do not always exist. It is unclear whether there are nat-urally occurring congruences that are not induced by such pre-orderings. Similarly,it is not di�cult to �nd arti�cial examples of � and � such that no �-correct, �-least �xed point, complete ordered algebras exist. It would be surprising, however, ifnatural examples existed.Corollary 5.2.2 (i) is the basis for the negative results of chapter 6.
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5.3 Contextual Full Abstraction and Least FixedPoint ModelsIn this section, we show that inductively reachable, �-fully abstract, �?-least �xedpoint, complete ordered algebras, for congruences � over T and families of contextualleast �xed point constraints �, are also �-contextually fully abstract, �-contextuallyleast �xed point, complete ordered algebras. Thus �-contextually fully abstract, �-contextually least �xed point, complete ordered algebras exist exactly when �-fullyabstract, �?-least �xed point, complete ordered algebras do.Theorem 5.3.1 Suppose A is an inductively reachable complete ordered algebra and� is a congruence over T . Then A is �-fully abstract i� A is �-contextually fullyabstract.Proof. The \if" direction is obvious. (The hypothesis of inductive reachabil-ity is not needed.) For the \only if" direction, �rst note that, by theorem 3.1.5,A is �-contextually correct. Thus, we need only show that for all derived opera-tors c1[v1; : : : ; vn] and c2[v1; : : : ; vn] of type s1 � � � � � sn ! s0: if c1ht1; : : : ; tni �s0c2ht1; : : : ; tni, for all ti 2 Tsi, 1 � i � n, then c1A = c2A. We show this by inductionon the arity n of c1 and c2. The case n = 0 holds since A is �-fully abstract. For theinduction step, suppose that c1[v1; : : : ; vn+1] and c2[v1; : : : ; vn+1] are derived operatorsof type s1�� � ��sn+1!s0, and that c1ht1; : : : ; tn+1i �s0 c2ht1; : : : ; tn+1i, for all ti 2 Tsi,1 � i � n+ 1. We show by induction over Asn+1 that for all an+1 2 Asn+1,c1ha1; : : : ; an+1i = c2ha1; : : : ; an+1i; for all ai 2 Asi; 1 � i � n: (5.1)Let A0 be the set of all an+1 2 Asn+1 such that (5.1). Suppose t 2 Tsn+1; we must showthat Msn+1 t 2 A0. Then (c1hv1; : : : ; vn; ti)[v1; : : : ; vn] and (c2hv1; : : : ; vn; ti)[v1; : : : ; vn]are derived operators of type s1 � � � � � sn! s0, and, by the inductive hypothesis onn, for all ai 2 Asi , 1 � i � n,c1ha1; : : : ; an;Msn+1 ti = (c1hv1; : : : ; vn; ti)ha1; : : : ; ani= (c2hv1; : : : ; vn; ti)ha1; : : : ; ani= c2ha1; : : : ; an;Msn+1 ti:Now, suppose D � A0 is a directed set; we must show that FD 2 A0. Supposeai 2 Asi, 1 � i � n. Then,c1ha1; : : : ; an;GDi = G c1(fa1g � � � � � fang �D)89



= G c2(fa1g � � � � � fang �D)= c2ha1; : : : ; an;GDi;since A is complete. 2Theorem 5.3.2 If � is a family of contextual least �xed point constraints and A isan inductively reachable complete ordered algebra then A satis�es � i� A satis�es thefamily of least �xed point constraints �?.Proof. The \only if" direction follows by lemma 3.2.11. For the \if" direction,it is su�cient to show that for all distinct context variables vi 2 Vs0i, 1 � i � n,c 2 T (fv1; : : : ; vng)s and directed sets C 0 � OT (fv1; : : : ; vng)s: ifMs cht1; : : : ; tni = Gc02C0Ms c0ht1; : : : ; tni;for all ti 2 Ts0i, 1 � i � n, then cA = Gc02C0 c0A:We show this by induction on n. The case n = 0 is trivial. For the induction step,suppose that vi 2 Vs0i, 1 � i � n+1, c 2 T (fv1; : : : ; vn+1g)s, C 0 � OT (fv1; : : : ; vn+1g)sis a directed set, andMs cht1; : : : ; tn+1i = Gc02C0Ms c0ht1; : : : ; tn+1i;for all ti 2 Ts0i, 1 � i � n + 1. We show by induction over As0n+1 that for allan+1 2 As0n+1 ,cha1; : : : ; an+1i = Gc02C0 c0ha1; : : : ; an+1i; for all ai 2 As0i; 1 � i � n: (5.2)Let A0 be the set of all an+1 2 As0n+1 such that (5.2). Suppose t0 2 Ts0n+1; we mustshow that Ms0n+1 t0 2 A0. Then,chv1; : : : ; vn; t0i 2 T (fv1; : : : ; vng)s;and f c0hv1; : : : ; vn; t0i j c0 2 C 0 g � OT (fv1; : : : ; vng)s
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is a directed set. Further, for all ti 2 Ts0i, 1 � i � n,Ms(chv1; : : : ; vn; t0i)ht1; : : : ; tni = Ms cht1; : : : ; tn; t0i= Gc02C0Ms c0ht1; : : : ; tn; t0i= Gc02C0Ms(c0hv1; : : : ; vn; t0i)ht1; : : : ; tni:Thus, by the inductive hypothesis on n,cha1; : : : ; an;Ms0n+1 t0i = (chv1; : : : ; vn; t0i)ha1; : : : ; ani= Gc02C0(c0hv1; : : : ; vn; t0i)ha1; : : : ; ani= Gc02C0 c0ha1; : : : ; an;Ms0n+1 t0i;for all ai 2 As0i, 1 � i � n. Now, suppose D � A0 is a directed set; we must showthat FD 2 A0. Let ai 2 As0i , 1 � i � n. Then,cha1; : : : ; an;GDi = Gd2D cha1; : : : ; an; di= Gd2D Gc02C0 c0ha1; : : : ; an; di= Gc02C0 Gd2D c0ha1; : : : ; an; di= Gc02C0 c0ha1; : : : ; an;GDi;as required. 2Corollary 5.3.3 Suppose � is a congruence over T and � is a family of contextualleast �xed point constraints. If A is a �-fully abstract, �?-least �xed point, completeordered algebra then R(A) is a �-contextually fully abstract, �-contextually least �xedpoint, complete ordered algebra.Proof. Since R(A) � A, R(A) is also a �-fully abstract, �?-least �xed point,complete ordered algebra. The result then follows from theorems 5.3.1 and 5.3.2. 2Corollary 5.3.4 Suppose � is a congruence over T and � is a family of contex-tual least �xed point constraints. Then, there exists a �-contextually fully abstract,�-contextually least �xed point, complete ordered algebra i� there exists a �-fullyabstract, �?-least �xed point, complete ordered algebra i� there exists an 
-least sub-stitutive pre-ordering � over T such that � = � \� and � satis�es �?.Proof. Immediate from lemma 3.2.11, corollary 5.3.3 and corollary 5.2.2 (i). 291



5.4 Categorical PropertiesIn this section, we prove theorems concerning the existence of initial objects and thenonexistence of terminal objects in various categories of correct and fully abstract,least �xed point, complete ordered algebras, and show the existence of nonisomor-phic inductively reachable, inequationally fully abstract, least �xed point, completeordered algebras.To begin with, we name the categories we will be considering. Let L(�) be thecategory of �-least �xed point, complete ordered algebras, together with continuoushomomorphisms. De�ne the following full subcategories of L(�).Category ObjectsC(�;�) �-correctFA(�;�) �-fully abstractIC(�;�) �-inequationally correctIFA(�;�) �-inequationally fully abstractIn addition, let RL(�), RC(�;�), RFA(�;�), RIC(�;�), and RIFA(�;�) be thefull subcategories of L(�), C(�;�), etc., whose objects are inductively reachable.Note that FA(�;�) (respectively, RFA(�;�)) is a subcategory of C(�;�) (respec-tively, RC(�;�)), and IFA(�;�) (respectively, RIFA(�;�)) is a subcategory ofIC(�;�) (respectively, RIC(�;�)).In section 5.1, we learned that if the category IFA(�;�) is nonempty then it hasan initial object, I(�;�). We now prove analogous theorems for our other categories.Theorem 5.4.1 shows that L(�) always has an initial object A, and that if C(�;�)(respectively, IC(�;�)) is nonempty then it also has A as an initial object.Theorem 5.4.1 Suppose � is a family of least �xed point constraints and let �0 bethe least 
-least substitutive pre-ordering over T that satis�es �.(i) I(�0;�) is initial in L(�).(ii) If C(�;�) is nonempty, for a congruence � over T , then it has I(�0;�) asan initial object.(iii) If IC(�;�) is nonempty, for an 
-least substitutive pre-ordering � over T ,then it has I(�0;�) as an initial object.Proof. We begin by showing that such a �0 exists. Let X be the set of all �such that � is an 
-least substitutive pre-ordering over T that satis�es �. Then Xis nonempty, since the greatest 
-least substitutive pre-ordering over T (every term
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is less than every other term) satis�es �, and it is easy to see that TX is the least
-least substitutive pre-ordering over T that satis�es �.(i) Clearly I(�0;�) is an object of L(�). Suppose A is also a �-least �xed point,complete ordered algebra. Then A is �A-inequationally fully abstract, and, by lemma3.2.7, A satis�es �. By theorem 5.1.4, �A satis�es �, and thus, by the leastness of�0, �0 � �A. The existence of the unique continuous homomorphism from I(�0;�)to A then follows from theorem 5.1.3.(ii) By (i), it is su�cient to show that I(�0;�) is an object of C(�;�), i.e.,that it is �-correct. Let �0 = �0 \ �0. Then I(�0;�) is �0-fully abstract, andthus it is su�cient to show that �0 � �. By corollary 5.2.2 (iii), there is an 
-leastsubstitutive pre-ordering � over T such that � \ � � � and � satis�es �. Then,by the leastness of �0, �0 � �, and thus�0 = �0 \ �0 � � \ � � �:(iii) By (i), it is su�cient to show that I(�0;�) is an object of IC(�;�), i.e., thatit is �-inequationally correct. Thus it is su�cient to show that �0 � �. By corollary5.2.1 (ii), there is an 
-least substitutive pre-ordering �0 over T such that �0 � �and �0 satis�es �. Then, by the leastness of �0, �0 � �0, and thus �0 � �. 2Theorem 5.4.2 Suppose � is a family of least �xed point constraints and � is acongruence over T . If FA(�;�) is nonempty then it has I(�0;�) as an initial object,where �0 is the least 
-least substitutive pre-ordering over T such that �0 satis�es �and � = �0 \ �0.Proof. We begin by showing that such a �0 exists. Let X be the set of all 
-leastsubstitutive pre-orderings over T that satisfy � and induce �. Then X is nonempty,by corollary 5.2.2 (i), and it is easy to see that TX may be taken as �0.Clearly I(�0;�) is an object of FA(�;�). Suppose A is also a �-fully abstract,�-least �xed point, complete ordered algebra. Then � = �A \ �A, and, by theorem5.1.4, �A satis�es �. By the leastness of �0, �0 � �A, and thus, by theorem 5.1.3,there is a unique continuous homomorphism from I(�0;�) to A. 2We now turn our attention to the subcategories of inductively reachable objects:RC(�;�), RFA(�;�), RIC(�;�) and RIFA(�;�). Since I(�;�) is always in-ductively reachable, all of these categories have initial objects whenever they arenonempty.The next theorem shows, perhaps surprisingly, that RIFA(�;�) can have noni-somorphic objects. 93



Theorem 5.4.3 There is a signature �, an 
-least substitutive pre-ordering � overT and a family of least �xed point constraints � such that RIFA(�;�) has noniso-morphic objects.Proof. Let � over S = f?g consist of the following nullary operators: 
?, x andn, n 2 !. Since there is only one sort, we drop the sort subscripts from carriers,relations, etc., below. De�ne ordered algebras A and B as follows. Their carriers arede�ned by

A

01...
x

B

01...
yx

,so that x = FA ! and y = FB !. Their operations are interpreted by themselves. Itis easy to see that A and B are non order-isomorphic inductively reachable, completeordered algebras. Furthermore, �A = �B. Thus the theorem holds with � = �A and� = ;. 2We now consider the existence of terminal objects in our categories of inductivelyreachable objects. Theorem 5.4.4 shows that RFA(�;�) can be nonempty yet lacka terminal object. Thus, even when RFA(�;�) is nonempty, RC(�;�) can lack aterminal object. The situation is less clear forRIFA(�;�) andRIC(�;�). Theorem5.4.5 shows that RIC(�;�) can lack a terminal object, even when RIFA(�;�) isnonempty. It is open, however, whether RIFA(�;�) always has a terminal objectwhenever it is nonempty; I conjecture that it always does.Theorem 5.4.4 There is a signature �, a congruence � over T and a family ofleast �xed point constraints � such that RFA(�;�) is nonempty but lacks a terminalobject. 94



Proof. Let � over S = f?g consist of the nullary operators 
?, x and y. Sincethere is only one sort, we drop the sort subscripts from carriers, relations, etc., below.De�ne ordered algebras A and B as follows. Their carriers are de�ned by
A

xy

B

yx ,and their operations are interpreted by themselves. Clearly A and B are inductivelyreachable complete ordered algebras. Furthermore, �A = �B, and, in particular,x 6�A y. Thus A and B are RFA(�;�) objects, where � = �A and � = ;. Suppose,toward a contradiction, that C is terminal inRFA(�;�), and let f :A!C and g:B!Cbe the unique continuous homomorphisms. But thenMC x = f x vC f y =MC yand MC y = g y vC g x =MC x;showing that MC x =MC y|a contradiction. 2Theorem 5.4.5 There is a signature �, an 
-least substitutive pre-ordering � overT and a family of least �xed point constraints � such that RIFA(�;�) is nonemptybut RIC(�;�) lacks a terminal object. In particular, there is a RIC(�;�) object thatcannot be collapsed, via a continuous homomorphism, to any RIFA(�;�) object.Proof. Let � over S = f?g consist of the following nullary operators: 
?, x, yand n, n 2 !. Since there is only one sort, we drop the sort subscripts from carriers,relations, etc., below. De�ne � over T by
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01
...xy

,and let � = ;. Then I(�;�) is a RIFA(�;�) object. De�ne an ordered algebra Aas follows. Its carrier is de�ned by


01
...y x
�������

��
,and its operations are interpreted by themselves. It is easy to see that A is aninductively reachable complete ordered algebra. Furthermore, A is �-inequationallycorrect, and thus is a RIC(�;�) object. Suppose, toward a contradiction, that Bis a RIFA(�;�) object, and that h:A! B is a continuous homomorphism. ThenMB y = FMB !. By inequational full abstraction, MB x is an ub of MB !, and thusMB y vB MB x. But this implies that y � x|a contradiction. Finally, supposetoward a contradiction that RIC(�;�) has a terminal object, C. Then C is �-inequationally fully abstract, since RIFA(�;�) is nonempty. But, by the above, thisyields a contradiction. 2Conjecture 5.4.6 The category RIFA(�;�) always has a terminal object, wheneverit is nonempty.My reasons for making this conjecture are largely negative: my attempts at �ndinga counterexample have failed. To prove the conjecture, it would be su�cient to96



show that inequational full abstraction is preserved by arbitrary coproducts in thecategory of inductively reachable complete ordered algebras, together with continuoushomomorphisms. Then the terminal object would be the coproduct of representativesof all of the isomorphism classes inRIFA(�;�). (The number of isomorphism classesin RIFA(�;�) is bounded, since every element of an inductively reachable completeordered algebra is the lub of a (not necessarily directed) set of denotable elements.)
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Chapter 6Negative ResultsThis chapter consists of proofs of the nonexistence of fully abstract models of twonondeterministic imperative programming languages: one with random assignmentand the other with in�nite output streams. We give operational semantics for theselanguages, de�ne notions of program equivalence in terms of these semantics, anduse the condition for the existence of equationally fully abstract, least �xed point,complete ordered algebras given in chapter 5 in order to prove the negative results.No model-theoretic reasoning is involved in these proofs.The language with random assignment is taken from [AptPlo] (with minor vari-ations). Our proof of the nonexistence of fully abstract models of this language is asimpli�cation of theirs. Our treatment of the language with in�nite output streams ismotivated by Abramsky's negative result for a nondeterministic applicative languagewith in�nite streams [Abr3].6.1 A Language with Random AssignmentIn this section, we study a nondeterministic imperative programming language withrandom assignment statements (x:=?), which nondeterministically choose naturalnumbers and assign them to identi�ers. The language also includes binary nonde-terministic choice (or), which nondeterministically selects one of its arguments to beexecuted, as well as the usual null (skip), assignment (x:=n, etc.), sequencing (;),conditional and iteration statements. We begin by de�ning the language's syntax,i.e., its signature.
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De�nition 6.1.1 Let I be a countably in�nite set of identi�ers, and the set of booleanexpressions Exp be f x�0 j x 2 I g [ f x6�0 j x 2 I g:De�ne a signature � over S = f?g with the following operators:(i) 
?, skip, x:=n, x:=x+1, x:=x�1, x:=y and x:=? of type ?, for all x; y 2 Iand n 2 !;(ii) while E do�od of type ?! ?, for all E 2 Exp; and(iii) ; , or , and if E then�else�� of type ?� ?! ?, for all E 2 Exp.We let ; and or associate to the right, and drop the single sort ? from carriers,relations, etc., below.De�nition 6.1.2 Let the set of states Sta be I!N . For � 2 Sta, x 2 I and n 2 N ,de�ne �[x] 2 N and �[n=x] 2 Sta by:�[x] = � x;�[n=x] y = ( n if y = x;� y otherwise:De�ne an evaluation map for boolean expressions E :Exp! Sta! Tr by:E x�0 � = ( tt if �[x] = 0;� if �[x] 6= 0;E x6�0 � = ( tt if �[x] 6= 0;� if �[x] = 0:De�nition 6.1.3 We de�ne a transition system for our language as follows. Its setof con�gurations � is (T � Sta) [ Sta. Its transition relation ! is the least binaryrelation over � satisfying the following conditions, for all x; y 2 I, n 2 !, E 2 Exp,t; t1; t01; t2 2 T and �; �0 2 Sta: h
; �i ! h
; �i;hskip; �i ! �;hx:=n; �i ! �[n=x];hx:=x+1; �i ! �[�[x] + 1=x];hx:=x�1; �i ! �[�[x]� 1=x] (�[x] 6= 0);hx:=x�1; �i ! � (�[x] = 0);99



hx:=y; �i ! �[�[y]=x];hx:=?; �i ! �[n=x];hwhile E do t od ; �i ! ht;while E do t od ; �i (E E � = tt);hwhile E do t od ; �i ! � (E E � = � );ht1; �i ! ht01; �0iht1; t2; �i ! ht01; t2; �0i; ht1; �i ! �0ht1; t2; �i ! ht2; �0i;ht1 or t2; �i ! ht1; �i; ht1 or t2; �i ! ht2; �i;hif E then t1 else t2 � ; �i ! ht1; �i (E E � = tt);hif E then t1 else t2 � ; �i ! ht2; �i (E E � = � ):De�nition 6.1.4 The family !n, n 2 !, of binary relations over � is de�ned by:1 !0 2 i� 1 = 2;1 !n+1 2 i� 1 !n 0 ! 2; for some 0 2 �:We say that  may diverge, written  ", i� there exists a ~ 2 �! such that ~0 = ,and ~i ! ~i+1, for all i 2 !.Thus, 1 !? 2 i� there exists an n 2 ! such that 1 !n 2.Next, we de�ne notions of program behaviour and equivalence for our language.De�nition 6.1.5 The evaluation mapO:T ! Sta !P(Sta [ f?g)(for some ? =2 Sta) is de�ned by:O t � = f �0 j ht; �i !? �0 g [ f? j ht; �i " g:De�ne an equivalence relation � over T by:t1 � t2 i� O t1 = O t2:Thus, �c is a congruence over T . The next lemma shows that � is already acongruence.Lemma 6.1.6 �c = � 100



Proof. By lemma 2.2.25, it is su�cient to show that � is substitutive. We onlyshow substitutivity under ; and while E do�od , leaving the or and if E then�else��cases, which are simpler, to the reader.For ;, suppose that t1 � t01 and t2 � t02; we must show that t1; t2 � t01; t02. By thesymmetry of �, it is su�cient to show thatht1; t2; �i !? �0ht01; t02; �i !? �0 ; for all �; �0 2 Sta; (6.1)and ht1; t2; �i "ht01; t02; �i " ; for all � 2 Sta: (6.2)For (6.1), if ht1; t2; �i !? �0 then there is a �00 such that ht1; �i !? �00 and ht2; �00i !?�0. Thus, from the assumption that ti � t0i, i = 1; 2, it follows that ht01; �i !? �00and ht02; �00i !? �0, and thus that ht01; t02; �i !? �0. For (6.2), if ht1; t2; �i " theneither ht1; �i " or there is a �0 such that ht1; �i !? �0 and ht2; �0i ". In the �rst case,ht01; �i ", by the assumption, and thus ht01; t02; �i ". In the second case, ht01; �i !? �0and ht02; �0i ", showing that ht01; t02; �i ".For while E do�od , E 2 Exp, suppose that t � t0; we must show thatwhile E do t od � while E do t0 od :By the symmetry of �, it is su�cient to show thathwhile E do t od ; �i !? �0hwhile E do t0 od ; �i !? �0 ; for all �; �0 2 Sta; (6.3)and hwhile E do t od ; �i "hwhile E do t0 od ; �i " ; for all � 2 Sta: (6.4)For (6.3), it is su�cient to show that for all n 2 !,hwhile E do t od ; �i !n �0hwhile E do t0 od ; �i !? �0 ; for all �; �0 2 Sta:We prove this by course of values induction over n. Suppose thathwhile E do t od ; �i !n �0:If E E � = � then � = �0 andhwhile E do t0 od ; �i !? �0:101



So, assume that E E � = tt . Then there is a �00 and an m < n such that ht; �i !? �00,hwhile E do t od ; �i ! ht;while E do t od ; �i!? hwhile E do t od ; �00i;and hwhile E do t od ; �00i !m �0:The result then follows from the assumption that t � t0 and the inductive hypothesison m. For (6.4), note that for all � and ~ 2 �!, if ~0 = hwhile E do t od ; �i, and~i ! ~i+1, for all i 2 !, then either ht; �i " or there exists an i > 0 and a �0 such thatht; �i !? �0 and ~i = hwhile E do t od ; �0i. Thus, if hwhile E do t od ; �i " then we canchoose a ~0 2 �! such that ~00 = hwhile E do t0 od ; �i, and ~0i ! ~0i+1, for all i 2 !. 2Next, we de�ne a family of least �xed point constraints � for our language, andprove that complete ordered algebras satisfy � i� they give the usual least �xed pointmeanings to while-loops.De�nition 6.1.7 Let the family of least �xed point constraints � befwhile E do t od�FfW n(E; t) j n 2 ! g j E 2 Exp; t 2 T g;where W n(E; t) is the !-chain in OT de�ned byW 0(E; t) = 
;W n+1(E; t) = if E then t;W n(E; t) else skip � :Lemma 6.1.8 A complete ordered algebra A is a �-least �xed point model i� for allE 2 Exp and t 2 T , M while E do t od = Gn2!wn(E; t);where wn(E; t) is the !-chain in A de�ned byw0(E; t) = ?;wn+1(E; t) = if E then (M t);wn(E; t) else skip � :Proof. A simple induction on n shows that for all n 2 !, M W n(E; t) = wn(E; t),and thusM while E do t od = Gn2!M W n(E; t) i� M while E do t od = Gn2!wn(E; t);as required. 2 102



We can now prove the main result of this section: there is no fully abstract, least�xed point model for our programming language.Theorem 6.1.9 There does not exist a �-fully abstract, �-least �xed point, completeordered algebra.Proof. Suppose, toward a contradiction, that such an ordered algebra does exist.Then, by corollary 5.2.2 (i), there is an 
-least substitutive pre-ordering � over Tsuch that � = � \ � and � satis�es �. Let the term t bex:=?;while x6�0 do x:=x�1 od ;and the !-chain t0n in OT be de�ned byx:=?;W n(x6�0; x:=x�1):Then t is a lub of t0n in hT;�i, since t�Ff t0n j n 2 ! g 2 � and � satis�es �. Butt � x:=0, t00 � 
 and t0n+1 � x:=0 or 
, for all n 2 !, which implies that x:=0 isa lub of f
; x:=0 or 
g in hT;�i, and thus that x:=0 � x:=0 or 
|a contradiction.2 An apparently stronger result is actually proved in [AptPlo]: there does not exista �-least �xed point, complete ordered algebra A, together with a continuous fullabstraction function, i.e., a continuous function h from A to a cpo B with the propertythat t1 � t2 i� h(M t1) = h(M t2);for all t1; t2 2 T . Corollary 7.1.2 shows, however, that if a full abstraction functionexists for a least �xed point model of a programming language then a fully abstract,least �xed point model also exists for that language. Thus their result follows, by alanguage-independent corollary, from theorem 6.1.9.On the other hand, the negative result of [AptPlo] is stronger than ours in thefollowing respect. As an essential part of our theory, we have included the constant
 in our language, and required that it be interpreted as the least element of anymodel. Furthermore, it is easy to see that any term that diverges in all states, suchas x:=0;while x�0 do skip od ;is equivalent to 
, and thus must also have the value ? in any model. Thus ourtheorem 6.1.9 leaves open the possibility that a fully abstract, least �xed point modelexists in which such divergent terms have a non-? meaning. The negative result of[AptPlo] shows, however, that no such models exist.103



6.2 A Nondeterministic Language with In�niteOutput StreamsIn this section, we study a nondeterministic imperative programming language withoutput statements (output x), which write the values of identi�ers into potentiallyin�nite-length output streams. Otherwise the language is the same as that of section6.1, with the exception that random assignment statements are not included.De�nition 6.2.1 Let the sets I of identi�ers and Exp of boolean expressions be thesame as in section 6.1. The signature � is also the same, with the exception thatthe family of constants x:=?, x 2 I, is replaced by the family output x, x 2 I. Theset Sta of states and its associated operations are as in de�nition 6.1.2. We de�ne atransition system for our language as follows. Its set of con�gurations � is(T � Sta �N?) [ (Sta �N?);where the element � 2 N? in a con�guration  is intended to be the output producedbefore reaching . Its transition relation ! is the least binary relation over � sat-isfying the following conditions, for all x; y 2 I, E 2 Exp, n 2 !, t; t1; t01; t2 2 T ,�; �0 2 Sta and �; �0 2 N?: h
; �; �i ! h
; �; �i;hskip; �; �i ! h�; �i;hx:=n; �; �i ! h�[n=x]; �i;hx:=x+1; �; �i ! h�[�[x] + 1=x]; �i;hx:=x�1; �; �i ! h�[�[x]� 1=x]; �i (�[x] 6= 0);hx:=x�1; �; �i ! h�; �i (�[x] = 0);hx:=y; �; �i ! h�[�[y]=x]; �i;houtput x; �; �i ! h�; � h�[x]ii;hwhile E do t od ; �; �i ! ht;while E do t od ; �; �i (E E � = tt);hwhile E do t od ; �; �i ! h�; �i (E E � = � );ht1; �; �i ! ht01; �0; �0iht1; t2; �; �i ! ht01; t2; �0; �0i; ht1; �; �i ! h�0; �0iht1; t2; �; �i ! ht2; �0; �0i;ht1 or t2; �; �i ! ht1; �; �i; ht1 or t2; �; �i ! ht2; �; �i;104



hif E then t1 else t2 � ; �; �i ! ht1; �; �i (E E � = tt);hif E then t1 else t2 � ; �; �i ! ht2; �; �i (E E � = � ):De�nition 6.2.2 The function out : �!N? is de�ned by:out ht; �; �i = �;out h�; �i = �:For  2 � and � 2 N1, we say that  may diverge with output �, written  " �, i�there is a ~ 2 �! such that ~0 = , ~i ! ~i+1, for all i 2 !, and � = Si2! out ~i.It is easy to see that out 1 � out 2 if 1 ! 2.Next, we de�ne notions of program behaviour and equivalence for our language.De�nition 6.2.3 The evaluation mapO:T ! Sta!P[(Sta �N?) [ (f?g �N1)](for some ? =2 Sta) is de�ned by:O t � = f h�0; �i j ht; �; h ii !? h�0; �i g [ f h?; �i j ht; �; h ii " � g:De�ne an equivalence relation � over T by:t1 � t2 i� O t1 = O t2:Thus, �c is a congruence over T . The next lemma shows that � is already acongruence.Lemma 6.2.4 �c = �Proof. The proof is similar to that of lemma 6.1.6, and uses the fact that if t1 � t2then ht1; �; �i !? h�0; �0i i� ht2; �; �i !? h�0; �0iand ht1; �; �i " �00 i� ht2; �; �i " �00;for all �; �0 2 Sta, �; �0 2 N? and �00 2 N1. 2De�nition 6.2.5 The while-loop approximations W n(E; t) and the family of least�xed point constraints � have the same formal de�nitions as in de�nition 6.1.7.105



We can now prove the main result of this section: there is no fully abstract, least�xed point model of our programming language.Theorem 6.2.6 There does not exist a �-fully abstract, �-least �xed point, completeordered algebra.Proof. Suppose, toward a contradiction, that such an ordered algebra does exist.By corollary 5.2.2 (i), there is an 
-least substitutive pre-ordering � over T such that� = � \ � and � satis�es �. Let the term t bex:=1;y:=0;while x6�0 do y:=y+1 or x:=0 od ;while y 6�0 do output x; y:=y�1 od ;
,so that O t � = f h?; 0ni j n 2 ! g, where 0n is the sequence of zeroes of length n. Lett0 be x:=0;while x�0 do output x od ;and de�ne an !-chain t00n in OT byx:=0;W n(x�0; output x):Then O t0 � = fh?; 0!ig, where 0! is the in�nite sequence of zeroes, and O t00n � =fh?; 0nig, for all n 2 !. Now, t or t0 is a lub of the !-chain t or t00n in hT;�i, since(t or t0)�Ff t or t00n j n 2 ! g 2 �;and � satis�es �. But t or t00n � t, for all n 2 !, and thus t or t0 � t|a contradiction.2
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Chapter 7Obtaining Fully Abstract Modelsfrom Correct ModelsIn this chapter, we investigate two approaches to obtaining fully abstract models fromcorrect ones. In section 7.1, we use the condition for the existence of inequationallyfully abstract models of chapter 5 in order to develop useful necessary and su�cientconditions involving the existence of correct models. In section 7.2, we consider thepossibility of collapsing correct models, via continuous homomorphisms, to fully ab-stract ones. We show that this is not always possible|indeed the natural continuousfunction model E of PCF provides a counterexample|but give su�cient conditionsfor the possibility of collapsing inductively reachable correct models, via continuoushomomorphisms, to inductively reachable fully abstract models, and, more generally,for collapsing the reachable inductive subalgebras of correct models to inductivelyreachable fully abstract models. Both of these approaches yield fully abstract modelsfor the languages introduced in chapter 4 and, more generally, for languages whosenotions of program ordering and equivalence are de�ned as abstractions of modelsusing the technique of section 4.1.In the case of PCF, we are able to continuously collapse R(E) to an inductivelyreachable, inequationally fully abstract, least �xed point, complete ordered algebraA. Furthermore, with some language speci�c work, we are able to show that A is(up to order-isomorphism) the only object of the category of such models, and is anorder-extensional, standard, combinatory algebra. Thus, A is Milner's fully abstractmodel, and we have a pleasing, algebraic solution to Mulmuley's problem of relatingE and A.
107



7.1 Model-Theoretic ConditionsThe following theorem gives two model-theoretic necessary and su�cient conditionsfor the existence of inequationally fully abstract, least �xed point, complete orderedalgebras. Their necessity is obvious; theorem 5.1.4 is used to show their su�ciency. Acorollary of this theorem gives two model-theoretic necessary and su�cient conditionsfor the existence of equationally fully abstract, least �xed point, complete orderedalgebras.Theorem 7.1.1 Let � be an 
-least substitutive pre-ordering over T and � be afamily of least �xed point constraints. The following conditions are equivalent.(i) A �-inequationally fully abstract, �-least �xed point, complete ordered algebraexists.(ii) There is a �-least �xed point, complete ordered algebra A, together with aninductive pre-ordering � over A, such thatt1 �s t2 i�Ms t1 �s Ms t2;for all t1; t2 2 Ts, s 2 S.(iii) There is a �-least �xed point, complete ordered algebra A, together with acontinuous function h from A to a cpo B, such thatt1 �s t2 i� hs(Ms t1) vs hs(Ms t2);for all t1; t2 2 Ts, s 2 S.Proof. We show that (ii) ) (i), (i) ) (iii) and (iii) ) (ii).(ii) ) (i) By theorem 5.1.4, it is su�cient to show that � satis�es �. Supposet�FT 0 2 �s, s 2 S. By lemma 3.2.7, A satis�es �, and thus Ms t = FMs T 0. SincevA � �, it then follows that Ms t is an ub of Ms T 0 in hAs;�si, and thus that t is anub of T 0 in hTs;�si. Suppose t00 is also an ub of T 0 in hTs;�si. Then Ms t00 is an ubof Ms T 0 in hAs;�si, and, since � is inductive,Ms t =GMs T 0 � Ms t00:Thus t �s t00, showing that t is indeed a lub of T 0 in hTs;�si.(i) ) (iii) Simply take A to be a �-inequationally fully abstract, �-least �xedpoint, complete ordered algebra, and let h be the identity function from A to B = A.
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(iii)) (ii) Let � be �h. Then,t1 �s t2 i� hs(Ms t1) vs hs(Ms t2)i� Ms t1 �s Ms t2;for t1; t2 2 Ts, s 2 S. 2Corollary 7.1.2 Let � be a congruence over T and � be a family of least �xed pointconstraints. The following conditions are equivalent.(i) A �-fully abstract, �-least �xed point, complete ordered algebra exists.(ii) There is a �-least �xed point, complete ordered algebra A, together with aninductive pre-ordering � over A, such thatt1 �s t2 i�Ms t1 (� \�)sMs t2;for all t1; t2 2 Ts, s 2 S.(iii) There is a �-least �xed point, complete ordered algebra A, together with acontinuous function h from A to a cpo B, such thatt1 �s t2 i� hs(Ms t1) = hs(Ms t2);for all t1; t2 2 Ts, s 2 S.Proof. We show that (ii) ) (i), (i) ) (iii) and (iii) ) (ii).(ii) ) (i) De�ne a pre-ordering � over T byt1 �s t2 i�Ms t1 �s Ms t2;so that � induces �. Then by lemma 2.3.36, �c is an 
-least substitutive pre-orderingover T , �c is a unary-substitutive inductive pre-ordering over A, andt1 �cs t2 i�Ms t1 �cs Ms t2;for all t1; t2 2 Ts, s 2 S. Furthermore, by lemma 2.2.26, �c also induces �. Thus,by condition (ii) of theorem 7.1.1, a �-fully abstract, �-least �xed point, completeordered algebra exists.(i) ) (iii) Simply take A to be a �-fully abstract, �-least �xed point, completeordered algebra, and let h be the identity function from A to B = A.(iii)) (ii) Simply let � = �h. 2
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Note the subtlety in the proof that condition (ii) implies condition (i) of thecorollary: the pre-ordering � is not necessarily substitutive, and thus �c, which alsoinduces �, must be used instead.Condition (iii) of corollary 7.1.2 states that there exists a correct, least �xed pointmodel, together with a continuous \full abstraction function", for a programminglanguage. It was suggested in [AptPlo] that condition (iii) might be weaker thancondition (i); the corollary shows that this is false. See the end of section 6.1 for anapplication of this result.Condition (ii) of theorem 7.1.1 is especially useful since it allows us to concludethat fully abstract models exist for the languages of chapter 4 and, more generally,for any language whose notion of program ordering is de�ned via lemma 4.1.1. Weconsider the case of PCF in detail. Let S, P , �, E , �, �, � and � be as in section4.3. We can apply condition (ii), with �?, E , �c and �c substituted for �, A, �and �, respectively, and conclude that a �c-inequationally fully abstract, �?-least�xed point, complete ordered algebra exists. Then I(�c;�?) is initial in the categoryof such complete ordered algebras, by corollary 5.1.5, is inductively reachable, bycorollary 5.1.6, and is thus a �c-contextually fully abstract, �-contextually least�xed point, complete ordered algebra, by theorems 5.3.1 and 5.3.2.Milner and Berry have shown that there exists a unique (up to order-isomorphism)extensional, combinatorial, standard, �c-inequationally fully abstract, �-contextuallyleast �xed point, complete ordered algebra A, and, furthermore, that A is order-extensional and inductively reachable, since its carrier is !-algebraic and all of its�nite (isolated) elements are denotable [Mil2][Ber1][BerCurL�ev]. In the remainderof this section, we prove a pleasing companion result: I(�c;�?) is, up to order-isomorphism, the unique inductively reachable, �c-inequationally fully abstract, �-contextually least �xed point, complete ordered algebra, and thus I(�c;�?) = A.Theorem 7.1.3 Inductively reachable, �c-fully abstract, complete ordered algebrasare combinatory algebras.Proof. By theorem 3.1.5, E is �c-contextually correct, and, by theorem 5.3.1,all inductively reachable, �c-fully abstract, complete ordered algebras A are �c-contextually fully abstract. Thus all universally quanti�ed equations (expressed bypairs of derived operators) which hold in E also hold in A. The result then followsfrom the fact that E is a combinatory algebra. 2Theorem 7.1.4 Inductively reachable, �c-inequationally fully abstract, complete or-dered algebras are standard. 110



Proof. Let A be such an ordered algebra; we must show that conditions (i){(iii) ofde�nition 4.3.8 hold.(i) Since E is standard and �E bool = �cbool , by lemma 4.3.16, it is easy to seethat 
boolA, ttA and � A are distinct and form all of Mbool Tbool , and that for alla1; a2 2 Mbool Tbool , a1 vbool a2 i� a1 = 
bool or a1 = a2. But then Abool = Mbool Tbool ,since Mbool Tbool is at and A is inductively reachable.(ii) Similar to (i).(iii) Holds since E is standard and �c-contextually correct, and A is �c-contextually fully abstract. 2From the previous two theorems, we can conclude that I(�c;�?) is a standard,combinatory algebra. We now show that it is also order-extensional, adapting tech-niques of Milner [Mil2] and Berry [Ber1] to our framework.De�nition 7.1.5 For x 2 Inat!nat and y 2 Inat , let F 2 T(nat!nat)!nat!nat be[x][y](if nat � (zero? � y) � 0 � (succ � (x � (pred � y)))):For all n 2 ! and s 2 S, de�ne 	sn 2 Ts!s by	nat0 = 
nat!nat ;	natn+1 = F �	natn ;	booln = [x]x; for x 2 Ibool ;	s1!s2n = [x][y](	s2n � (x � (	s1n � y))); for x 2 Is1!s2; y 2 Is1:For s 2 S, de�ne IDs 2 Ts!s byIDnat = Ynat!nat � F ;IDbool = [x]x; for x 2 Ibool ;IDs1!s2 = [x][y](IDs2 � (x � (IDs1 � y))); for x 2 Is1!s2; y 2 Is1:For an algebra A, we write  sn for Ms!s	sn 2 As!s and id s for Ms!s IDs 2 As!s.Expanding the identi�er abstractions, one can see that for all s 2 S, 	sn is an!-chain in OT s!s, and IDs�Ff	sn j n 2 ! g 2 (�?)s!s.From [Mil2] and [Ber1], it is known that the  sn represent a chain of projectionswith �nite range in Es!s whose lub is the identify function, which is represented byid s. In the sequel, however, we only need the following portion of this information.111



Lemma 7.1.6 (i) For all s 2 S and n 2 !, f sn � e j e 2 Es g is �nite.(ii) For all s 2 S and e 2 Es, id s � e = e. 2Lemma 7.1.7 If A is an inductively reachable, �c-fully abstract, �-contextually least�xed point, complete ordered algebra, and a 2 As, s 2 S, then a = Fn2!( sn � a).Proof. Let �0 be the family of contextual least �xed point constraints de�ned by�0s = f(IDs � v)�Ff	sn � v j n 2 ! gg;for some v 2 Vs. Then A satis�es �0, by theorem 5.3.2 and since (�0)? � �?.Furthermore, (IDs �v)A = vA, since (IDs �v)E = vE (lemma 7.1.6), E is �c-contextuallycorrect, and A is �c-contextually fully abstract. Thus for all a 2 As,a = id s � a = Gn2!( sn � a);as required. 2The proof of the following lemma makes use of the internal structure of I(�c;�?),in contrast to the other proofs of the section.Lemma 7.1.8 Let A = I(�c;�?). For all n 2 ! and a 2 As,  sn � a is denotable.Proof. Let � be the family of subsets of OT =�c that is de�ned from �? in themanner of lemma 5.1.1, so that A = (OT =�c)�. Then, for all qts T 0 2 As, sn � (qt s T 0) = (Ms!s	sn) � (qt s T 0)= (ems!s(qts!s	sn)) � (qts T 0)= cl(fqts!s	sng) � cl(qt s T 0)= cl(f (qts!s	sn) � (qt s t0) j t0 2 T 0 g) (lemma 2.4.13)= cl(f qts(	sn � t0) j t0 2 T 0 g):But f qt s(	sn � t0) j t0 2 T 0 g is �nite, since fME s(	sn � t0) j t0 2 T 0 g is �nite, by lemma7.1.6. Thus, by lemma 2.4.12, there exists a t0 2 T 0 such thatcl(f qts(	sn � t0) j t0 2 T 0 g) = cl(fqt s(	sn � t0)g)= ems(qt s(	sn � t0))= Ms(	sn � t0);as required. 2 112



Theorem 7.1.9 I(�c;�?) is order-extensional.Proof. Let A = I(�c;�?) and suppose that a1; a2 2 As1!s2 are such that (y)a1 � a0 vs2 a2 � a0, for all a0 2 As1 . By lemma 7.1.7, to show that a1 vs1!s2 a2 it issu�cient to show that  s1!s2n � a1 vs1!s2  s1!s2n � a2, for all n 2 !. By lemma 7.1.8, s1!s2n � a1 and  s1!s2n � a2 are denotable. Furthermore, for all denotable a0 2 As1 ,( s1!s2n � a1) � a0 =  s2n � (a1 � ( s1n � a0))v  s2n � (a2 � ( s1n � a0))= ( s1!s2n � a2) � a0;by (y) and since A is a combinatory algebra. Thus, by the obvious semantic restate-ment of theorem 4.3.17,  s1!s2n � a1 vs1!s2  s1!s2n � a2, as required. 2Combining theorems 7.1.3, 7.1.4 and 7.1.9, we have that I(�c;�?) is a standard,order-extensional, combinatory algebra. It remains to show the promised uniquenessresult.The following lemma, which we will also use in the next section, is taken from theproof of theorem 4.6 of [Plo1].Lemma 7.1.10 (i) If h:A!B is a homomorphism over algebras, A is extensional,and hnat and hbool are injections then h is an injection.(ii) If h:A!B is a monotonic homomorphism over ordered algebras, A is order-extensional, and hnat and hbool are order-embeddings then h is an order-embedding.Proof. We prove (ii), leaving (i), which is similar, to the reader. Let s = s1!� � �!sn! p, for n � 1, si 2 S, 1 � i � n, and p 2 P , and suppose hs a vs hs a0. Then forall ai 2 Asi, 1 � i � n,hp(a � a1 � � � � � an) = (hs a) � (hs1 a1) � � � � � (hsn an)v (hs a0) � (hs1 a1) � � � � � (hsn an)= hp(a0 � a1 � � � � � an);so that a � a1 � � � � � an vp a0 � a1 � � � � � an;since hp is an order-embedding. Thus a vs a0, since A is order-extensional. 2
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Theorem 7.1.11 I(�c;�?) is the unique (up to order-isomorphism) inductivelyreachable, �c-inequationally fully abstract, �-contextually least �xed point, completeordered algebra.Proof. Let A = I(�c;�?) and h be the unique continuous homomorphism from Ato another such ordered algebra, B. We show that h is a surjective order-embedding.Suppose that a1; a2 2 Ap, p 2 P , and hp a1 vp hp a2. Since A is standard, there existterms t1; t2 2 Tp such that Mp ti = ai, for i = 1; 2. Then,MBp t1 = hp(MAp t1) vp hp(MAp t2) =MBp t2;showing that a1 =MAp t1 vp MAp t2 = a2. Thus hnat and hbool are order-embeddings,and, by lemma 7.1.10, we can conclude that h itself is an order-embedding. It remainsto show that h is surjective. If hsA0 � Bs is directed, for A0 � As, then A0 is alsodirected, since h is an order-embedding, and thus hsFA0 = F hsA0. Thus hA is aninductive subalgebra of B, and, since B is inductively reachable, hA = B. 2Corollary 7.1.12 All inductively reachable, �c-inequationally fully abstract, �-contextually least �xed point, complete ordered algebras are standard, order-extensional, combinatory algebras.Proof. Such an ordered algebra is standard and combinatorial, by theorems 7.1.4and 7.1.3, and is order-isomorphic to I(�c;�?), by theorem 7.1.11. But I(�c;�?) isorder-extensional, by theorem 7.1.9, and order-extensionality is obviously preservedby order-isomorphisms. 27.2 Collapsing Correct Models into Fully AbstractModelsGiven a correct, least �xed point, complete ordered algebra, it is natural to considercollapsing it, via a continuous homomorphism, into a fully abstract, least �xed point,complete ordered algebra. This, of course, is not always possible, since fully abstractmodels do not always exist. But, is it always possible when such models do exist? Theanswer is \no"; in fact neither of the following conditions are su�cient to guaranteethat a �-inequationally correct, �-least �xed point, complete ordered algebra A canbe continuously collapsed into a �-inequationally fully abstract, �-least �xed point,complete ordered algebra: 114



(i) A is inductively reachable, and there exist �-inequationally fully abstract,�-least �xed point, complete ordered algebras;(ii) � is related to an inductive pre-ordering � over A according to condition (ii)of theorem 7.1.1, so that �-inequationally fully abstract, �-least �xed point, completeordered algebras exist.We shall see, however, that the conjunction of these conditions is su�cient. Theorem5.4.5 shows that (i) is not su�cient, and we now present a theorem of Plotkin's(unpublished) that shows the insu�ciency of (ii).For the next theorem and the remarks that follow, let P , S, �, E , �, �, �, �,portest i and por be as in section 4.3.Theorem 7.2.1 E cannot be collapsed, via a homomorphism, to a �c-fully abstractalgebra. In particular, E cannot be collapsed, via a continuous homomorphism, to a�c-inequationally fully abstract, �?-least �xed point, complete ordered algebra.Proof. We give two proofs of the theorem. The �rst is due to Plotkin, and thesecond to the author.(i) Suppose, toward a contradiction, that h is a homomorphism from E to a �c-fully abstract algebra A. Since E is standard and �E jP = �AjP (lemma 4.3.16), itfollows that hnat and hbool are injections, and thus that h itself is an injection, bylemma 7.1.10. But then �E = �A = �c, contradicting the fact that E is not �c-fullyabstract.(ii) It is su�cient to show that there does not exist a congruence � over E suchthat t1 �cs t2 i�Ms t1 �s Ms t2;for all t1; t2 2 Ts, s 2 S. Suppose, toward a contradiction, that such a congruence �exists. Let s0 be the sort (bool ! bool ! bool)! nat . Then,portest1 �cs0 portest2) Ms0 portest1 �s0 Ms0 portest2) Mnat 1 = (Ms0 portest1) � por �nat (Ms0 portest2) � por =Mnat 2) 1 �cnat 2;which is a contradiction. 2A consequence of this theorem is that E and �c provide an alternative proof oflemma 2.3.34; in particular, �c is unary-substitutive but not substitutive.115



Next we show that, whenever they are possible, continuous collapses can be carriedout using the inductive quotienting construction of section 2.4.Lemma 7.2.2 Let � be an 
-least substitutive pre-ordering over T , � be a familyof least �xed point constraints, A be a �-least �xed point, complete ordered algebra,and � be a substitutive inductive pre-ordering over A such thatt1 �s t2 i�Ms t1 �s Ms t2;for all t1; t2 2 Ts, s 2 S. Then A can be collapsed, via the continuous homomorphismqt, to the �-inequationally fully abstract, �-least �xed point, complete ordered algebraA==�.Proof. For the inequational full abstraction of A==�, let t1; t2 2 Ts, s 2 S. Then,t1 �s t2 i� MAs t1 �s MAs t2i� qt s(MAs t1) v(A==�)s qt s(MAs t2)i� M(A==�)s t1 v(A==�)s M(A==�)s t2:To see that A==� satis�es �, let t�FT 0 2 �s, s 2 S. Then,M(A==�)s t = qt s(MAs t)= qt sGMAs T 0= G qts(MAs T 0)= GM(A==�)s T 0;as required. 2Lemma 7.2.3 Let A be a �-least �xed point, complete ordered algebra. The followingtwo conditions are equivalent.(i) There is a �-inequationally fully abstract, �-least �xed point, complete orderedalgebra B, together with a continuous homomorphism h:A!B.(ii) There is a substitutive inductive pre-ordering � over A such that for all t1; t2 2Ts, s 2 S, t1 �s t2 i�Ms t1 �s Ms t2:
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Proof. For (i) ) (ii), let � be �h. Then � is a substitutive inductive pre-orderingover A, and for t1; t2 2 Ts, s 2 S,t1 �s t2 i� MBs t1 vs MBs t2i� hs(MAs t1) vs hs(MAs t2)i� MAs t1 �s MAs t2:For (ii)) (i), simply apply lemma 7.2.2. 2Now we are able to give a su�cient condition for the possibility of collapsing in-ductively reachable, inequationally correct models, via continuous homomorphisms,to inequationally fully abstract models, and, more generally, for collapsing the reach-able inductive subalgebras of inequationally correct models to inequationally fullyabstract models.Theorem 7.2.4 Suppose � is an 
-least substitutive pre-ordering over T , � is afamily of least �xed point constraints, A is a �-least �xed point, complete orderedalgebra, and � is an inductive pre-ordering over A with the property thatt1 �s t2 i�Ms t1 �s Ms t2;for all t1; t2 2 Ts, s 2 S. Let �0 be the restriction of �c to R(A). Then R(A) canbe collapsed, via the continuous homomorphism qt, to the inductively reachable, �-inequationally fully abstract, �-least �xed point, complete ordered algebra R(A)==�0.Proof. By lemmas 2.3.14, 2.3.12 and 2.3.35, �0 is a substitutive inductive pre-ordering over R(A), and, by lemma 2.3.37,t1 �s t2 i�Ms t1 �cs Ms t2 i�Ms t1 �0s Ms t2;for all t1; t2 2 Ts, s 2 S. Thus, by lemma 7.2.2, R(A) can be collapsed, via the con-tinuous homomorphism qt , to the �-inequationally fully abstract, �-least �xed point,complete ordered algebra R(A)==�0, and, by lemma 2.4.21, R(A)==�0 is inductivelyreachable. 2Note the following special cases of theorem 7.2.4. If� is already unary-substitutivethen R(A) can be collapsed to R(A)==�0, where �0 is simply the restriction of � toR(A). If � is unary-substitutive and A is inductively reachable then A itself can becollapsed to A==�, since � is in fact substitutive.117



Theorem 7.2.4 can be immediately applied to the languages of chapter 4 and, moregenerally, to languages whose notions of program ordering are de�ned via lemma 4.1.1.Consider, e.g., the case of PCF. Let S, �, E , �, �, � and � be as in section 4.3.Then R(E) can be collapsed, via the continuous homomorphism qt , to the inductivelyreachable, �c-inequationally fully abstract, �?-least �xed point, complete orderedalgebra R(E)==�0, where �0 is the restriction of �c to R(E). Furthermore, R(E)==�0is also �c-fully abstract, and thus, by theorems 5.3.1 and 5.3.2, is �c-contextuallyfully abstract and �-contextually least �xed point. Finally, theorem 7.1.11 allows usto conclude that R(E)==�0 is order-isomorphic to I(�c;�?), and is thus a standard,order-extensional, combinatory algebra, by corollary 7.1.12. Summarizing, we havethe following corollary.Corollary 7.2.5 R(E) can be collapsed, via a continuous homomorphism, toI(�c;�?). 2We can also prove the following equational variant of theorem 7.2.4.Corollary 7.2.6 Suppose � is a congruence over T , � is a family of least �xed pointconstraints, A is a �-least �xed point, complete ordered algebra, and h is a continuousfunction from A to a cpo B, such thatt1 �s t2 i� hs(Ms t1) = hs(Ms t2);for all t1; t2 2 Ts, s 2 S. Then R(A) can be collapsed, via the continuous homomor-phism qt, to the inductively reachable, �-fully abstract, �-least �xed point, completeordered algebra R(A)==�0, where �0 is the restriction of (�h)c to R(A).Proof. De�ne a pre-ordering � over T byt1 �s t2 i�Ms t1 (�h)sMs t2;so that � induces � (but � may not be substitutive!). Then, by lemma 2.3.36, �c isan 
-least substitutive pre-ordering over T , (�h)c is a unary-substitutive inductivepre-ordering over A, t1 �cs t2 i�Ms t1 (�h)csMs t2;for all t1; t2 2 Ts, s 2 S, and, by lemma 2.2.26, �c also induces �. The desired resultfollows by theorem 7.2.4. 2
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Chapter 8ConclusionIn the preceding chapters, we have developed a theory of fully abstract models ofprogramming languages and applied this theory to several programming languages.On the basis of these examples, it seems likely that the theory will yield proofs of theexistence or nonexistence of fully abstract models of a wide variety of programminglanguages. I expect, for example, that the existence of fully abstract models for theAlgol-like language of [HalMeyTra] can be shown using the methods of chapter 7,and that the nonexistence of fully abstract models of the fair parallel programminglanguage of [Plo2] can be shown using the techniques of chapter 6. In this �nalchapter, we consider the theory's limitations and the corresponding possibilities forfurther research.The cornerstone of the theory is its class of models: complete ordered algebras.This was a natural and rewarding choice, but there are many other important classesof models, narrower and wider, that should also be studied. Examples include: uni-versal algebras whose carriers are cpo's with additional order-theoretic structure, e.g.,consistently-complete !-algebraic cpo's; models based on weaker notions of continuity[Plo2]; categorical models [Leh][Abr2]; and models de�nable in particular metalan-guages (and thus, in a formal sense, natural). The extension of the theory to theseclasses of models will probably involve the development of new quotienting and com-pletion constructions.An essential feature of the theory is the inclusion of the unde�ned constants 
in all signatures, and the corresponding requirements that they be interpreted as ?in models, and be least elements in notions of program ordering. Unfortunately, thisfeature limits the applicability of the theory. There are programming languages, suchas the parallel programming language of [HenPlo1], whose notions of program ordering
119



do not have least elements, and, thus, whose inequationally correct models cannothave denotable least elements. (Our theory should be applicable, however, to thelanguage of [HenPlo1] minus the somewhat peculiar coroutine construct.) There mayeven be naturally occurring languages for which equationally fully abstract modelsexist, but such that there do not exist such models with denotable least elements. It isthus desirable to develop a theory in which the unde�ned constants are not required.This would be a radical departure from the current theory, however, and it is unclearhow to proceed.As we indicated in chapter 4, our treatment of programming languages with blockstructure, such as TIE and the lambda calculus variant of PCF, is only partiallysatisfactory, for the following reasons. First, we are unable to construct environmentmodels for these languages, i.e., models that have identi�er environments as formalcomponents. Second, our theory is not directly applicable to notions of programordering and equivalence that are de�ned in terms of the behaviour of closed termsof program sort, as opposed to all such terms. Third, there apparently do not existsuitable families of least �xed point constraints for certain languages with recursion,such as the call-by-value version of TIE. Removing the �rst of these defects, andgiving program identi�ers and their scopes formal status in signatures, is the �rststep toward the removal of the second and third defects.Notions of program equivalence are often de�ned as abstractions of operationalsemantics, as with the languages of chapter 6. Unfortunately, the condition for theexistence of inequationally fully abstract models of section 7.1, which was the basis forour positive results, is model-theoretic in nature and is expressed in terms of programorderings instead of equivalences. It would thus be useful to develop conditions forthe existence of fully abstract models that are directly applicable to operationallyde�ned program equivalences.In section 7.2, we gave useful su�cient conditions for the possibility of collaps-ing inductively reachable correct models, via continuous homomorphisms, to fullyabstract models, and, more generally, for collapsing the reachable inductive subal-gebras of correct models to fully abstract models. We also showed that it is notalways possible to collapse correct models in such a way. Useful su�cient conditionsfor the possibility of collapsing non-inductively reachable correct models should bedeveloped.In section 5.4, we began the study of various categories of correct and fully abstractmodels, proving theorems concerning the existence and nonexistence of initial andterminal objects, respectively. Much remains to be learned about the structure of
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these categories, and thus this study should continue. In particular, it would be niceto resolve conjecture 5.4.6.Finally, more should be learned about the internal structure of the conservativecompletions of posets and ordered algebras of section 2.4. In particular, conjecture2.4.11 should be settled.
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