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Abstract—We report on our research on proving the security
of multi-party cryptographic protocols using the EASYCRYPT

proof assistant. We work in the computational model us-
ing the sequence of games approach, and define honest-but-
curious (semi-honest) security using a variation of the real/ideal
paradigm in which, for each protocol party, an adversary
chooses protocol inputs in an attempt to distinguish the party’s
real and ideal games. Our proofs are information-theoretic,
instead of being based on complexity theory and computational
assumptions. We employ oracles (e.g., random oracles for hash-
ing) whose encapsulated states depend on dynamically-made,
nonprogrammable random choices. By limiting an adversary’s
oracle use, one may obtain concrete upper bounds on the
distances between a party’s real and ideal games that are
expressed in terms of game parameters. Furthermore, our
proofs work for adaptive adversaries, ones that, when choosing
the value of a protocol input, may condition this choice on their
current protocol view and oracle knowledge. We provide an
analysis in EASYCRYPT of a three party private count retrieval
protocol. We emphasize the lessons learned from completing
this proof.

I. INTRODUCTION

In this paper, we report on our research at mechanizing

the security proofs of multi-party cryptographic protocols in

the computational model. We limit ourselves to honest-but-

curious (semi-honest) security: each party of the protocol

follows the rules of the protocol, but may try to learn as

much as it can from the information coming its way—i.e.,

from its protocol view. We define security using a variation

of the simulation-based real/ideal paradigm [1], [2] in which,

for each protocol party, an adversary chooses protocol inputs

in an attempt to distinguish the party’s real and ideal games.

Intuitively, the adversary is trying to learn more from a

party’s view in the real game than it should be able to—

i.e., more than it can learn from the view produced by the

ideal game. If it cannot do this, we say that the protocol is

secure against the protocol party. More formally, the real

and ideal games for a protocol party return the boolean

judgments made by the adversary, and a security theorem

upper-bounds the absolute value of the difference between

the probabilities that the real and ideal games return true.

There are several ways to bound the distance between the

real and ideal games. One may work with upper bounds

that explicitly involve the concrete adversaries constructed

during a sequence of games proof [3]–[5]. For instance,

part of the upper bound might be the advantage of a

concrete adversary A in differentiating between the games

defining security of a pseudorandom function F (the first

game involves use of the application of F to a randomly

generated key unknown to A, whereas the second game

involves use of a uniformly random function). Another

approach is to make use of complexity theoretic assumptions

about the adversaries attempting to distinguish the real and

ideal games, assuming, e.g., that they run in probabilistic

polynomial time (PPT), in terms of a security parameter

λ. One must then prove that constructed adversaries (like

A, above) are also in the same complexity classes. E.g.,

this allows us to define and use in security theorems’ upper

bounds the advantage of a PPT adversary in differentiating

between the pseudorandom function games—i.e., the least

upper bound, across all PPT adversaries A, of the advantage

of A in differentiating between the games. Finally, one may

work with oracles (e.g., random oracles for hashing [6])

whose encapsulated states depend on dynamically-made,

random choices, and to limit an adversary’s oracle use.

This information-theoretic approach allows one to upper-

bound the distance between real and ideal games using

bounds involving game parameters, like sizes of hash tags or

limits on adversary oracle use. Combinations of the above

approaches are also possible; e.g., one may both work with

PPT adversaries and limit their usage of oracles.

An adversary’s generation of protocol inputs may be done

adaptively or non-adaptively. In the non-adaptive case, all

the inputs are generated up front, before the protocol’s exe-

cution begins, whereas in the adaptive case, when choosing

the value of a protocol input, the adversary may condition

this choice on its current protocol view and oracle knowl-

edge. Non-adaptive protocols are both easier to define and

prove secure, but adaptive protocols provide a more realistic

abstraction of the behavior of adversaries in practice.

A. Our Contributions

In our work, we are developing and employing techniques

for proving the adaptive, information-theoretic, honest-but-

curious security of cryptographic protocols in the nonpro-

grammable random oracle model [6]. We formalize our
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proofs using EASYCRYPT [7], [8], a framework for interac-

tively finding security proofs for cryptographic constructions

and protocols using the sequence of games approach [3]–

[5]. In EASYCRYPT’s logics, one may specify that an

adversary is “lossless,” i.e., always terminating, but there is

no more precise way of bounding its execution time, either

asymptotically or concretely. On the other hand, limiting an

adversary’s oracle access is straightforward in EASYCRYPT,

making it fruitful to work information-theoretically.

In this paper, we present as a case study the security proof

of a simple secure database protocol that we call PCR, for

“Private Count Retrieval” (see Section III). This protocol

raises many of the issues that will arise in more complex

protected database search protocols [9], including:

• working with multiple protocol parties, each with their

own security guarantees;

• expressing a protocol in such a way that it can be

specialized to the real games for the different protocol

parties;

• expressing ideal games parameterized by simulators,

whose job is to construct parties’ views given the

limited information provided by the ideal games;

• coping with adaptive adversaries;

• working with oracles having encapsulated random state,

and constraining oracle use by adversaries;

• calculating concrete upper bounds on the distance be-

tween pairs of cryptographic games;

• carrying out cryptographic reductions;

• reasoning up to failure (up to bad reasoning);

• working with complex relational invariants; and

• removing redundant hashing.

B. Paper Outline

The remainder of the paper is organized as follows. We

begin by surveying the relevant literature (Section II). Next

we define the PCR Protocol (Section III), say what it means

for PCR to be secure (Section IV), and state the theorems

expressing security against the protocol parties (Section V).

This is followed by a brief survey of EASYCRYPT (Sec-

tion VI). Section VII describes the EASYCRYPT formal-

ization of the PCR Protocol, along with the definitions on

which it is based. Sections VIII–X consider the EASYCRYPT

formalizations of the proofs of security against the Client,

Server and Third Party. In Section XI, we summarize the

results of our PCR case study, taking stock of what was

learned. And in Section XII, we look forward to the next

steps of our research program.

II. RELATED WORK

Numerous cryptographic constructions and protocols have

been proved secure using EASYCRYPT, including OAEP

[10], Merkle-Damgård [11], a core part of the TLS Hand-

shake Protocol [12], RSA-PSS [13], one-round key exchange

protocols [14] and padding-based encryption [15]. In con-

trast to these protocols, our PCR protocol involves three

parties and multiple rounds of interaction.

CRYPTOVERIF [16] is another tool for finding sequence

of games proofs in the computational model. This highly

automated tool attempts to synthesize intermediate games.

CRYPTOVERIF has been successfully applied to an aspect

of SSH’s Transport Layer Protocol [17], as well as to the

Kerberos network authentication system [18]. But CRYP-

TOVERIF’s automated nature is a two-edged sword: it makes

some proofs very easy, but complex proofs of multi-party

cryptographic protocols are outside its scope.

Cryptographic algorithms and protocols may also be

proved secure in the computation model using Petcher and

Morrisett’s Foundational Cryptography Framework (FCF)

[19], which is shallowly embedded in the Coq proof assistant

[20]. Petcher and Morrisett reported in [21] on using FCF to

prove the security of a two-party protected database search

protocol from [22]. In this protocol, databases are finite maps

sending document indices (integers) to sets of keywords. A

query q is a keyword, and is a request for the set of indices i
such that q is an element of i’s keyword set. In the protocol,

the Client holds a database, but sends it to the Server in

encrypted form (as what is called a TSet). When the Client

wants the answer to a database query, it sends an encrypted

form of the query (an stag) to the Server, which is able to

return to the Client the query’s answer, also in encrypted

form. The goal of the protocol is for the Server to learn

almost nothing about the database and queries through its

interaction with the Client.

Petcher and Morrisett define the security of this protocol

using the real/ideal paradigm, but they only prove security

against the Server, because the Client owns the database and

proposes the queries. They work with a non-adaptive adver-

sary, one that proposes both the database and all queries,

up front. And they employ pseudorandom functions, rather

than working in the random oracle model. The upper bound

of their security theorem involves the concrete adversaries

constructed during their sequence of games proof. They

note that, were they to tackle the adaptive version of their

protocol, they would work in the random oracle model.

There is a large literature on protected database search

protocols with non-mechanized proofs. We refer interested

readers to the following surveys for more information: [9],

[23].

III. PCR PROTOCOL

In this section, we define the PCR protocol. It involves

three parties: a Server, which holds a database, a Client,

which makes queries about the database, and an untrusted

Third Party (TP), which mediates between the Server and

Client. A database is one-dimensional: it consists of a list

of elements (which may be anything). Each query is also
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Figure 1. PCR Protocol Operation

an element, and is a request for the count of the number of

times it occurs in the database.

We assume the parties do not collude with each other. The

goal is for:

• the Client to learn only the counts for its queries, not

anything else about the database;

• the Server to learn only the number of queries made

by the Client, not which queries are made or what their

counts are; and

• the TP to learn nothing about the database and queries

other than certain element patterns (see below for what

this means).

The Protocol’s operation involves interaction with an

Environment, as illustrated in Figure 1. Because we are

working with honest-but-curious security, we find it more

convenient for control flow to be driven by the Protocol,

instead of by the Environment.

The Server randomly generates a secret, sec, and shares

it with the Client, but not the TP. The Server requests a

database from the Environment. If the request is refused, the

Protocol terminates. Otherwise the Server randomly shuffles

the database db, and turns the result into a hashed database

hdb, which it sends to the TP. Each element, elem , of db is

turned into the hash of (elem , sec). Then the Client enters its

query processing loop. At each iteration, it requests a query,

qry , from the Environment. If the request is refused, the

Protocol terminates. Otherwise the Client hashes (qry , sec),
and asks the TP for the number of occurrences, count , of

this hash tag, tag , in hdb . The Client then supplies count

to the Environment. Before the Protocol terminates, it asks

the Environment what value the Protocol should return, and

then returns this value as its overall result.

Secrets and hash tags are bit strings of length sec len

and tag len, respectively, which are tunable parameters of

the protocol. Hashing is done using a random oracle [6],

consisting of a finite map to which new input/output pairs

are added, dynamically. Element/secret pairs are mapped

to hash tags, which are chosen uniformly randomly. The

oracle’s state is encapsulated: the Protocol (and Adversary

and Simulator—see Section IV)) may only interact with it

via the act of hashing. There is no way to check whether

a given element/secret pair is already in the domain of the

oracle’s map; consequently, it is irrelevant to users of the

oracle whether the pair has already been assigned a hash

tag.

Normally, the set of all elements will be much bigger

than the set of all hash tags; in fact, the former set will

typically be infinite, whereas the latter has size 2tag len. If a

hash collision occurs, the Client’s results may be inflated.

E.g., if the database consists of distinct elements x and y,

but (x, sec) and (y, sec) hash to the same hash tag, then the

count for query x will be 2 not 1. But—assuming tag len

is large enough and the numbers of unique elements in the

database and unique queries processed are small enough—

hash collisions will be very unlikely. Thus, the Client should

learn the correct counts of all the queries it processes.

Because the database is shuffled before being turned

into a hashed database, and since hashing is not efficiently

invertible and the TP will be unlikely to guess sec (assuming

sec len is big enough), the TP should only learn element

patterns, not actual elements, from its interactions with the

Server and Client. In particular, it will not learn anything

about the order of the database (e.g., if the database begins

with two occurrences of an element, the TP will not learn

this fact).

IV. DEFINITION OF SECURITY FOR PCR

We formalize security of the PCR protocol using the

real/ideal paradigm. For each protocol party (Server, Client

and Third Party), we have a pair of cryptographic games: a

“real” game and an “ideal” game. The real games are based

on the protocol as described above, where everything the

party sees is recorded in its “view.” The ideal game for a

given party is designed so as to make it obvious that the

party does not learn anything it should not, but where the

party’s view and random oracle state—as viewed through

the lens of its hashing procedure—may still be simulated

from the available information.

The real game for a given protocol party is parameterized

by an Adversary with access to the random oracle. The

Adversary plays the role of the Environment mentioned

above when explaining the operation of the protocol. When

the Adversary is called, the current value of the party’s

protocol view is passed to it. Upon the Protocol’s final

call to the Adversary, asking it for a final value to return,

the Adversary returns a final boolean judgment, which the

Protocol then returns as its final result. The Adversary is

allowed to maintain state between the calls to it. When the

Client processes a query provided by the Adversary, the

Adversary is not informed of the result of the query, but

is simply told that the query was processed (and what the

party’s view is at this point). Of course the Client’s view

does include the counts for all queries processed.

The ideal game for a protocol party is parameterized

by both the party’s Adversary and a Simulator. The job

of the simulator is to try to make the Adversary think it

is interacting with the real game: the Simulator constructs
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the party’s view and random oracle state given the limited

information provided by the ideal game. This architecture

is illustrated in Figure 2. We can usefully think of the

Simulator as being inside the ideal game, which acts as an

intermediary between it and the Adversary.

When we talk about what a given party learns about the

database and queries supplied by the Adversary in the real or

ideal game, we are referring to what the Adversary can learn

from the values of the party’s view that are passed back to it,

as well as from its interactions with the random oracle. One

may think of the party as being “woken up” upon each call

of the Adversary. E.g., even after the Server has completed

its construction of the hashed database, at each iteration of

the Client’s query processing loop, the Server is woken up,

reminded of its current view, and allowed to interact with the

random oracle. Consequently, the Server learns the number

of queries that are processed by this loop.

Because we work information-theoretically, when assess-

ing the information leakage of a party’s ideal game, we do

not have to scrutinize the party’s Simulator (e.g., it cannot

learn more about the database or queries by brute force

computation). Consequently, the Simulator will be part of

the proof —rather than the specification—of security.

A. Server’s Ideal Game and Simulator

In the Server’s ideal game, the Simulator must construct

the Server’s view without being given any information by

the ideal game. For the real and ideal games to be indis-

tinguishable, the ideal game must still have a Client loop

in which the Adversary is allowed to propose a sequence of

queries, which are ignored by the ideal game. Consequently,

the Server learns nothing about the Client’s queries, other

than their number.

The Simulator for the Server that we use in our proof

works as follows. When the ideal game tells it to initialize

itself, it generates the secret, sec, and then initializes its view

to record not only the generation of sec, but also its sharing

with the Client (which happens in the real game, but not in

the ideal one). The Simulator’s processing of a database db

proceeds just as in the real game, including the shuffling of

the database, the hashing of database elements (paired with

sec), and the updating of the view.

B. Third Party’s Ideal Game and Simulator

In the TP’s ideal game, the protocol operates normally—

with the Simulator playing the role of the TP—except for a

crucial difference:

there is no shared Server/Client secret, and the

Server and Client do their element hashing in a

private random oracle, one the TP and Adversary

do not have access to.

Because the database is shuffled before being turned into

a hashed database, the TP learns nothing about the order

of the Server’s database, but does learn1 the database’s size.

And it learns how many queries are processed by the Client.

But otherwise it only learns element patterns. If no hash

collisions occur in the private random oracle, it can tell how

many distinct elements occur in the database, and how many

times each one occurs in the database, as well as when

the Client repeats a query, and how many times a query

is in the database—all without knowing anything about the

actual identities of the database elements and queries. But,

because hash collisions in the private random oracle are

possible—and become more probable as the numbers of

unique database elements and distinct queries increase—

there may be false positives. E.g., it may think the database

has an element occurring 5 times, but it may actually have

one element occurring 3 times, and another occurring 2

times.

The Simulator for the TP that we use in our proof behaves

like the TP of the real game, recording in its view its receipt

of the hashed database, hdb, as well as the result of its

processing of each request from the ideal game for it to

count the number of occurrence of a hash tag, tag , in hdb.

C. Client’s Ideal Game and Simulator

In the Client’s ideal game, the database (which does not

need to be shuffled first) is turned into an “elements’ counts”

map detailing the number of times each element of the

database occurs in the database. The Client’s Simulator may

ask the ideal game (passing the current Client view along

with the request) for the next query along with its count.

The ideal game responds to such a request by asking the

Adversary for its next query. If the Adversary refuses (it

will propose no more queries), this refusal is passed on to

the Simulator. Otherwise, the proposed query is looked up

in the elements’ counts map, and the resulting count—or 0,

if the query is not in the map’s domain—is returned, along

with the query, to the Simulator. Consequently, the Client

learns nothing about the database other than the counts of

the queries it proposes.

The Simulator for the Client that we use in our proof

works as follows. When told by the ideal game to initialize

1When talking about what a party can learn in the ideal game, we are
assuming the Simulator faithfully records what it learns in the party’s view.
Otherwise, the party may learn even less.
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itself, it generates the secret, sec, and initializes its view

to record that this secret was received. Its query processing

loop requests a query, elem , and its count, count , from the

ideal game, recording elem’s receipt or the refusal of the

request in its view, and terminating if the request is refused.

Otherwise, it hashes (elem , sec), producing a hash tag, tag ,

and adds (elem , tag , count) to the view.

D. Definitions of Security Against the Protocol Parties

The protocol is said to be secure against a given party

iff the Adversary cannot distinguish the party’s real and

ideal games, i.e., the probabilities of the games returning

true differ by a negligible amount. The idea is that, because

the ideal protocol for a given party is secure by construction,

and the Adversary is incapable of differentiating the games,

the real protocol should also be considered secure. It is

important to note that the Adversary must make its boolean

judgments one protocol at a time—i.e., it is not given the

results of runs of both protocols and allowed to try to tell

them apart.

An Adversary’s strategy for distinguishing a party’s real

and ideal games cannot in general be turned into a way for

the party to learn more than it should be able to; for one

thing, the party is not able to unilaterally choose both the

database and sequence of queries (indeed the TP chooses

neither). But any strategy for such over-learning should

translate into an Adversarial strategy for distinguishing the

real/ideal games, and so the lack of a viable Adversarial

strategy will imply the lack of a way for the party to over-

learn.

Because the Adversary chooses the database and queries,

our definition of security against a given party is at least

as strict as a definition saying that for all databases and

sequences of queries, the results of running the real and

ideal games are indistinguishable. But our Adversaries may

adaptively condition their protocol input choices based on

their interactions with the random oracle, and—in the Server

and Client cases—on the dynamically generated Server/-

Client secret, and so our security definition is strictly more

restrictive than a universally quantified one. This models

the fact that the Server and Client are capable of letting

the shared Server/Client secret influence—intentionally or

not—their choices of database and queries.

V. SECURITY THEOREMS FOR PCR

In this section, we informally state the theorems express-

ing security against the Server, Third Party and Client. To

obtain strong security against the TP and Client, we must

limit the Adversary.

A. Security Against Server

For the Server, we are able to prove perfect security—i.e.,

that the real and ideal games are equally likely to return

true. And we can do this without imposing any restrictions

on the Adversary, not even that its procedures are lossless,

i.e., always terminate.

The only challenging aspect of this proof is dealing with

the hashing done in the Client’s query processing loop of

the real game (but not in the ideal game). The hash tags

resulting from this hashing are only put in the Client’s view,

and so from the Server’s perspective they are redundant. But

at each iteration of the query processing loop, and also at

protocol termination, the Adversary has black box access to

the random oracle. Thus we must prove that the Adversary

cannot tell whether the redundant hashing was actually done.

B. Security Against Third Party

For the Third Party, the Adversary can differentiate the

real and ideal games with high probability2 if it succeeds

in guessing the Server/Client shared secret, sec, of the

real game. More precisely, because it proposes a sequence

elem1, . . . , elemn of queries to the games, it can work

through the bit strings of length sec len, looking for a

secret sec′ such that the hash tags produced by hashing the

(elem i, sec
′) in the random oracle match the corresponding

hash tags appearing in the TP’s view. This will succeed in

the real game, but will be unlikely to succeed in the ideal

game (where the elements were hashed using the private

random oracle on elements).

Consequently, to obtain strong security against the TP,

we must impose some limit on the amount of hashing done

by the Adversary. We have opted to impose a limit, limit,

on the number of distinct inputs the Adversary may hash

before being given a dummy result when new hashing inputs.

Then we are able to upper-bound the absolute value of the

difference in the probabilities of the real and ideal games

returning true by

limit/2sec len,

a fairly tight upper bound on the probability that no more

than limit random choices of bit strings of length sec len

will successfully guess the Server/Client shared secret. The

parameters limit and sec len may be tuned so as to make our

upper bound arbitrarily small.

For a reason that will be made apparent in Section X,

we must also assume the Adversary’s procedures are always

terminating, and we must limit the number of iterations of

the Client’s query processing loop to a constant qrys max,

ensuring termination of that loop. Consequently, the TP

knows there will never be more queries than qrys max.

C. Security Against Client

The Client receives the Server/Client shared secret, sec,

at the beginning of the real game, just before the Adversary

is asked to produce a database. Thus the shared secret is

part of the Client view that is passed to the Adversary when

2We are assuming the TP’s Simulator is the one described in Subsec-
tion IV-B, which is the one we use in our proof.
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the Adversary is asked to produce a database. The Adversary

can distinguish the real and ideal games3 by finding a certain

kind of hash collision, or arranging for the Server or Client

in the real game to cause that kind of hash collision:

• Suppose it can find distinct elements elem and elem ′

such that (elem , sec) and (elem ′, sec) hash to the

same hash tag, tag . Then it can choose [elem ] as the

database, so that [tag] becomes the Server’s hashed

database. And it can choose elem ′ as the only query,

which will have a count of 1 in the real game, but a

count of 0 in the ideal game.

• It can choose a database consisting of a list of distinct

elements whose size is more than 2tag len, the number of

distinct hash tags. This will force the hashed database

produced by the real game’s Server to have one or more

duplicate elements, so that using the elements of the

database as queries, one by one, will result in at least

one query with a count of more than one in the real

game, but a count of exactly one in the ideal game.

• If the Adversary chooses [elem] as the database, it can

choose n distinct elements other than elem as queries.

In the ideal game, all these queries will have counts

of 0, but if n is big enough, the chance of the real

game giving one of the queries a non-zero count will

be non-negligible.

Consequently, we must not only impose a limit on the hash-

ing done by the Adversary, but also limit both the number

of distinct elements in a database chosen by the Adversary,

and the number of distinct queries it may propose. For a

reason that will be explained below, we will actually limit

the number of times the Adversary may propose any query,

making the Adversary avoid proposing duplicate queries if

it does not want to incur the cost.

We impose a hashing “budget,”

budget = adv budget + db uniqs max + qrys max,

on the Adversary, where budget is no more than the number

2tag len of distinct hash tags, and:

• adv budget is the number of distinct elements the

Adversary may hash itself without being considered

“over budget” (except when asked to deliver its final

boolean judgment, when it is not subject to budgeting

as collisions caused at that point are harmless);

• db uniqs max is the maximum number of unique ele-

ments allowed in a database proposed by the Adversary;

and

• qrys max is a limit on the number of times the Adver-

sary may ask to have a query processed.

If the Adversary exceeds its own hashing budget

(adv budget) before proposing its database, or if it proposes

a database with more unique elements than db uniqs max,

3We are assuming the Client’s Simulator is the one described in Subsec-
tion IV-C, which is the one we use in our proof.

then the real and ideal games will skip the Client’s query

processing loop (which would be carried out by the Simula-

tor, in the ideal game). And if, during the query processing

loop, the Adversary (cumulatively) exceeds its own hashing

budget, or if the Adversary asks more than qrys max times

to have a query processed, then the query processing loop

will be terminated early (in the case of the ideal game,

this is done by refusing the Simulator’s request for another

query/count pair).

Then we are able to upper-bound the absolute value of the

difference in the probabilities of the real and ideal games

returning true by

(budget ∗ (budget − 1))/2tag len.

This is two times a fairly tight upper bound on the prob-

ability that no more than budget random choices of hash

tags will result in a duplication. The reason for the factor

of two will be explained in Section VIII. The parameters

adv budget, db uniqs max, qrys max and tag len may be

tuned so as to make our upper bound arbitrarily small.

For a reason that will be made apparent in Section VIII,

we must also assume the Adversary’s procedure’s are always

terminating. We also need that the Client’s query processing

loop always terminates, but this is guaranteed by our use of

qrys max. (If we had only counted unique queries toward

the qrys max part of the hashing budget, termination would

not have been ensured.)

Note that some of hashing done by the Adversary, the

Server (in the real game), and the Client (in the real game)

or Client’s Simulator (in the ideal game) may overlap (i.e.,

an element/secret pair may be queried that is already in

the oracle’s map). Furthermore, in the ideal game, the

db uniqs max part of the hashing budget is unused—in a

sense wasted. But by keeping the different parts of the

budget separate, we ensure the Adversary uses its budget at

the same rate in both games, as well as that the Client’s query

loop runs the same number of times in both games. Because

databases with more than db uniqs max unique elements are

rejected, the Client knows that the database has no more than

db uniqs max elements.

VI. INTRODUCTION TO EASYCRYPT

In EASYCRYPT, cryptographic games (probabilistic pro-

grams) are modeled as modules, which consist of procedures

and global variables. Procedures are written in a simple

imperative language featuring while loops and random as-

signments.

EASYCRYPT has four logics: a probabilistic, relational

Hoare logic, relating pairs of procedures; a probabilistic

Hoare logic allowing one to prove facts about the probability

of a procedure’s execution resulting in a postcondition

holding; an ordinary Hoare logic; and an ambient higher-

order logic for proving general mathematical facts, as well as

for connecting judgments from the other logics. For instance,
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one may use the probabilistic, relational Hoare logic to

prove an equivalence between the boolean-returning main

procedures of two modules whose postcondition says the

procedures’ results are equal, and then use the ambient logic

to prove that the two procedures are equally likely to return

true. One may prove facts involving abstract modules, e.g.,

ones representing adversaries.

Proofs are carried out using tactics, which transform

the current proof goal into zero or more subgoals. Simple

ambient logic goals may be automatically proved using

SMT solvers. Once found, an EASYCRYPT proof script

can be replayed step-by-step, or checked in batch-mode.

Proofs may be structured as sequences of lemmas, and

EASYCRYPT’s theories may be used to group definitions,

modules and lemmas together. Theories may be specialized

using a process called cloning. Abstract theories must be

cloned before they can be used. Requiring (require) a theory

makes it available for use; but it must also be imported

(import) for its definitions and lemmas to be usable without

being qualified by the theory name.

EASYCRYPT has a fairly small trusted computing base

(TCB). Its core proof engine is comprised of about 5,000

lines of OCaml code, implementing well-studied logics

proven correct [24] using the Coq proof assistant [20].

Almost all of EASYCRYPT’s library of mathematical and

cryptographic theories is outside the TCB. When solving

goals using SMT solvers, one may specify the list of

previously proven EASYCRYPT lemmas the solvers may use.

The remainder of this section details the EASYCRYPT def-

initions used in the rest of the paper. EASYCRYPT provides

the types bool, int and real with the expected constants and

operations. If exp denotes a natural number, then exp%r

denotes the corresponding real number. The unit type, unit,

has only one element, (). EASYCRYPT has tuple (product)

types written with * and function types written with → , so

that, e.g., int * bool→ int→ real is the type of functions from

integer/boolean pairs to functions from integers to reals.

EASYCRYPT provides an option type, 'a option, where 'a

is a type variable, which may be instantiated with any type.

This type is defined as a concrete datatype:

type 'a option = [None | Some of 'a].

None and Some are its constructors, and its values are None

and the results of applying Some to the values of type 'a.

The operator oget : 'a option→ 'a transforms an input of the

form Somex to x; when given None, it returns an unknown,

but fixed, value of type 'a. Types in EASYCRYPT are always

nonempty.

EASYCRYPT provides list types, 'a list. E.g., [0; 1; 2] is

the int list consisting of the first three natural numbers. ++

is list concatenation. The operator size : 'a list→ int com-

putes the number of elements in a list. The operator

nth : 'a→ 'a list→ int→ 'a option selects the ith element of a

list (counting from 0); it returns the first (default) argument

when i is out of range. The operator trim : 'a list→ int→ 'a list

deletes the ith element of a list (leaving the list as is if i is

out of range).

EASYCRYPT provides finite set types, 'a fset. There

are the expected operations on finite sets, including

mem : 'a fset→ 'a→ bool: mem xs y tests whether y is an

element of xs.

EASYCRYPT provides finite map types, ('a, 'b) fmap. E.g.,

(int, bool) fmap is the type of finite maps from integers to

booleans. map0 is the empty map. To look up the value of

an element x in a map m whose range has type t, one uses

the notation m.[x], which results in a value of type t option,

giving None when x is not in m’s domain. To update a

map m so that it sends x to y but is otherwise unchanged,

one uses the notation m.[x→ y]. The operators dom and rng

transform a map to its domain and range (finite sets).

EASYCRYPT provides a type 'a distr of probability distri-

butions of type 'a. A distribution is lossless iff the sum of the

weights of all element of its support is 1%r. A distribution is

uniform iff every element of the type has an equal weight in

the distribution. E.g., if n ≤ m, then [n ..m] is the uniform

and lossless distribution on the set of all integers that are at

least n and no more than m.

In EASYCRYPT’s programming language, ordinary vari-

able assignments are written with ← and procedure call

assignments are written with <@:

x← x + 1;
x <@ M.f(x * 2);

There is a shorthand notation for updating maps via assign-

ments:

mp← mp.[x← y];

may be abbreviated to

mp.[x]← y;

If d is a distribution, then

x <$ d;

means to assign to x a value from d, respecting the weights

of elements in d. Choosing a value from a distribution that

is not lossless may fail, terminating the program.

VII. EASYCRYPT FORMALIZATION OF PCR PROTOCOL

In this section, we present the formalization in EASY-

CRYPT of the PCR Protocol. We also give the definitions

supporting this formalization and the statements of security

against the protocol’s parties.
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A. Supporting Definitions

The operator num uniqs : 'a list→ int returns the number

of unique elements in a list. We have a type elem of

elements—a tunable parameter to our games, which may

be instantiated with any type. elem default : elem is some

element. We have a type sec of secrets whose elements

are bit strings of length sec len—a tunable parameter to

our games. The uniform and lossless probability distribution

on secrets is called sec distr. And we have a type tag of

hash tags whose elements are bit strings of length tag len—

a tunable parameter to our games. The tag consisting of

all zeros is called zeros tag. The uniform and lossless

probability distribution on tags is called tag distr.

The type elems counts consists of finite “elements’

counts” maps from elements to integers (thought of as

counts):

type elems counts = (elem, int) fmap.
op empty ec : elems counts = map0.
op get count (cnts : elems counts) (elem : elem) : int =

if mem (dom cnts) elem then oget cnts.[elem] else 0.
op incr count (cnts : elems counts) (elem : elem) : elems counts =

if mem (dom cnts) elem
then cnts.[elem← oget(cnts.[elem]) + 1]
else cnts.[elem← 1].

Thus: empty ec is the empty elements’ counts map;

get count is a function for looking up an element’s count

in an elements’ counts map, getting 0 when the element is

not in the map; and incr count increments an element’s count

in an elements’ counts map, setting its value to 1 when it

was not already in the map.

We have a module with a procedure for randomly shuf-

fling lists:

module Shuffle = {
proc shuffle(xs : elem list) : elem list = {

var ys : elem list; var i : int;
ys← [ ];
while (0 < size xs) {

i <$ [0 .. size xs − 1]; (* pick random index into xs *)
ys← ys ++ [nth elem default xs i];
xs← trim xs i;
}
return ys;
}
}.

B. Random Oracles

We provide an abstract theory RandomOracle defining ran-

dom oracles. To use an abstract theory, one must first clone

it, instantiating (some) of its types, operators and predicates

in the process, and yielding a (non-abstract, and so usable)

theory. RandomOracle is parameterized by: a type input;

an operator (constant) output len : int that is constrained to

be a natural number; a type output with exactly 2output len

elements; an operator output default : output; and an operator

output distr : output distr that is the uniform and lossless

distribution on output. RandomOracle defines a module type

(interface) OR:

module type OR = {
proc init() : unit
proc hash(inp : input) : output }.

An implementation of OR provides procedures init and hash,

with the specified types, and the standard implementation is

module Or : OR = {
var mp : (input, output) fmap

proc init() : unit = { mp← map0; }

proc hash(inp : input) : output = {
if (! mem (dom mp) inp) {

mp.[inp] <$ output distr;
}
return oget mp.[inp];
}
}.

Or has a global variable mp, consisting of a finite map from

values of type input to values of type output. The procedure

init initializes mp to the empty map. The procedure hash

first tests whether its input inp is not in mp’s domain. If

the answer is “no,” it simply returns inp’s value in mp.

Otherwise, it updates mp, associating with inp a random

value of type output, and then returns that random value.

RandomOracle also defines two wrappers for random

oracles, each in its own abstract theory. The Limited abstract

theory is parameterized by limit : int, which is constrained

to be a natural number. It implements the limited random

oracle, which is parameterized by an implementation O of

OR, and has the form:

module LOr(O : OR) : OR = { . . . }.

Its hash procedure uses O to do hashing, but keeps track

of the inputs it has previously hashed. When the set of

previously hashed inputs reaches size limit, it continues to

use O to hash elements of the set, but returns output default

on fresh inputs (without changing the set or calling O). Its

init function does not call O.init.

The Counted abstract theory is parameterized by

budget : int, which is constrained to be a natural number.

It provides a new module type of counted random oracles:

module type COR = {
proc init() : unit
proc chash(inp : input) : output
proc hash(inp : input) : output
proc within budget() : bool }.

Here chash stands for “counted” hashing, whereas hash

stands for ordinary hashing. Its implementation has the form:

module COr(O : OR) : COR = { . . . }.
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The procedure hash simply calls O.hash. The procedure

chash keeps track of the elements it has seen while within

budget, only counting inputs not previously seen toward the

budget. It also notes when it goes over budget, i.e., a new

input was presented when the budget was already exhausted.

But unlike LOr’s hash, even when it is over budget, it keeps

using O to do hashing. The within budget procedure tests

whether the oracle is within its budget.

For use in the PCR Protocol definition, and in the Server,

Third Party and Client proofs, we clone RandomOracle, mak-

ing substitutions for the parameters of the abstract theory,

proving that the substitutions have the required properties

(the “realization” part), and calling the resulting theory RO:

clone RandomOracle as RO with
type input← elem * sec, op output len← tag len,
type output← tag, op output default← zeros tag,
op output distr← tag distr

proof *. (* realization *) · · · (* end *)

Now RO.Or is our random oracle. It hashes element/secret

pairs to hash tags, and its limited random oracle wrapper

returns the all zeros tag when a fresh input is hashed but

the hashing limit was already reached.

C. Protocol Definition

We define the types of databases and hashed databases:

type db = elem list. type hdb = tag list.

The protocol views for the three parties have types

type server view = server view elem list.
type tp view = tp view elem list.
type client view = client view elem list.

where the elements of server view elem, tp view elem and

client view elem document events “seen” by the parties—

e.g., that the Server received the database, or that it shuffled

the database.

The PCR Protocol is defined as a module parameterized

by an Environment Env with module type:

module type ENV = {
proc * init and get db() : db option
proc get qry() : elem option
proc put qry count(cnt : int) : unit
proc final() : bool }.

The procedure init and get db initializes the Environment

(that is what the asterisk mandates), and tries to get a

database from it; None means refusal. The procedure get qry

tries to get a query from the Environment; None means

the Environment has refused—by convention, it is done

providing queries. The procedure put qry count tells the

Environment the count corresponding to last query pro-

cessed. And the procedure final finalizes the environment,

and returns the Environment’s boolean judgment.

At the top-level, Protocol looks like

module Protocol (Env : ENV) = {
module Or = RO.Or
var sv : server view var tpv : tp view var cv : client view
var server sec : sec var server hdb : hdb
var tp hdb : hdb var client sec : sec · · ·

proc main() : bool = {
var db opt : db option; var b : bool;
init views(); Or.init(); server gen sec(); client receive sec();
db opt <@ Env.init and get db();
if (db opt 6= None) {

server hash db(oget db opt);
tp receive hdb();
client loop();
}
b <@ Env.final();
return b;
}
}.

The module has an abbreviation for the random oracle, as

well as global variables for: the three parties’ views; the

secret generated by the Server and the Client’s copy of it;

and the hashed database produced by the Server and the TP’s

copy of it. The main procedure initializes all three views to

be empty lists, initializes the random oracle, asks the Server

to generate the secret (storing it in server sec and updating

its view), asks the Client to receive that secret (storing it

in client sec and updating its view; it gets the secret by

asking the Server for it, which updates the Server’s view),

and then asks the Environment to initialize itself and produce

a database. If the Environment complies, the database is

passed to the Server, which shuffles it (using Shuffle.shuffle),

and turns it into a hashed database, server hdb, all the while

updating its view. Back in main, the TP receives the hashed

database (storing it in tp hdb, and updating its view; it

obtains it by asking the Server for it), and then the Client

query processing loop runs. After that loop terminates, the

Environment is asked for a final boolean judgment, which

main returns as its result. If the Environment refuses to

produce a database, main skips to the finalization step.

The Client’s query processing loop is:

proc client loop() : unit = {
var cnt : int; var tag : tag; var qry opt : elem option;
var not done : bool← true;
while (not done) {

qry opt <@ Env.get qry();
cv← cv ++ [cv got qry qry opt];
if (qry opt = None) { not done← false; }
else {

tag <@ Or.hash((oget qry opt, client sec));
cnt <@ tp count tag(tag);
cv← cv ++ [cv query count(oget qry opt, tag, cnt)];
Env.put qry count(cnt);
}
}
}

The code should be self-explanatory, and it is worth com-

paring it with the description of the query processing loop

from Section III. Note how the Environment is asked for a
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query, and informed of the query’s count. Also note how

the Client’s view, cv, is updated. The TP’s tp count tag

procedure is what you would expect: it simply counts the

number of times its argument hash tag appears in its copy

of the hashed database, tp hdb, returning that count, and

updating its view.

VIII. PROOF OF SECURITY AGAINST CLIENT

In this section, we consider the proof of security against

the Client. As explained in Subsection V-C, the Client’s

Adversary is subjected to a hashing budget with three parts:

the hashing it can do directly (adv budget), the hashing it

can make the Server do (db uniqs max), and the hashing it

can make the Client do (qrys max):

op adv budget : int.
axiom adv budget ge0 : 0 ≤ adv budget.
op db uniqs max : int.
axiom db uniqs max ge0 : 0 ≤ db uniqs max.
op qrys max : int.
axiom qrys max ge0 : 0 ≤ qrys max.
op budget : int = adv budget + db uniqs max + qrys max.
axiom budget ub : budget ≤ 2 ˆ tag len.

clone RO.Counted as CRO with op budget← adv budget
proof *. (* realization *) · · · (* end *)

The counted random oracle abstract theory (see Subsec-

tion VII-B) is cloned with adv budget as its budget, with

the resulting theory being called CRO. It uses RO.Or to do

its hashing.

The Adversary’s module type for the Client is defined by:

module type ADV(O : CRO.COR) = {
proc * init and get db(cv : client view) : db option {O.chash}
proc get qry(cv : client view) : elem option {O.chash}
proc qry done(cv : client view) : unit {O.chash}
proc final(cv : client view) : bool {O.hash} }.

This should look similar to the Environment (Env) module

type of Subsection VII-C, but there are important differ-

ences. First, an Adversary is parameterized by a counted ran-

dom oracle, O. The annotations in set braces at the end of the

procedure specifications say that the Adversary’s first three

procedures may only do counted hashing (O.chash), whereas

its final procedure may only do ordinary hashing (O.hash).

Second, put qry count has been replaced by qry done, which

simply tells the Adversary that the processing of the most

recent query has finished. Third, all procedures pass the

Client’s view, and nothing more, to the Adversary.

The Client’s real game, GReal, is listed in Figure 3. First,

three module abbreviations are given: Or is the random

oracle, COr is the counted random oracle derived from Or,

and A is the resulting of connecting the Adversary to COr

(so the Adversary’s calls to the procedures of its parameter

O will be translated into calls to COr’s procedures). It then

declares an Environment, Env, whose procedures call the

corresponding procedures of A, passing them the current

Client view. Finally, GReal’s main procedure simply calls

module GReal(Adv : ADV) : GAME = {
module Or = RO.Or module COr = CRO.COr(Or)
module A = Adv(COr)

module Env : ENV = {
var qrys ctr : int

proc init and get db() : db option = {
var db opt : db option; var adv within budg : bool;
qrys ctr← 0; COr.init();
db opt <@ A.init and get db(Protocol.cv);
if (db opt 6= None) {

adv within budg <@ COr.within budget();
if (db uniqs max < num uniqs(oget db opt) ∨

!adv within budg) { db opt← None; }
}
return db opt;
}

proc get qry() : elem option = {
var qry opt : elem option; var adv within budg : bool;
qry opt <@ A.get qry(Protocol.cv);
if (qry opt 6= None) {

adv within budg <@ COr.within budget();
if (qrys ctr < qrys max ∧ adv within budg) {

qrys ctr← qrys ctr + 1;
}
else { qry opt← None; }
}
return qry opt;
}

proc put qry count(cnt : int) : unit = { A.qry done(Protocol.cv); }

proc final() : bool = {
var b : bool; b <@ A.final(Protocol.cv); return b;
}
}

proc main() : bool = {
var b : bool; b <@ Protocol(Env).main(); return b;
}
}.

Figure 3. Client’s Real Game

Protocol(Env)’s main procedure (so Protocol’s calls to its

argument’s procedures go to those of Env), returning what

it returns.

Env has a global variable qrys ctr that keeps track of the

number of queries that have been processed. The proce-

dure init and get db initializes qrys ctr and COr. (Protocol

initializes Or.) Note how it returns None if the Adversary

proposes a database with too many distinct elements, or

if it exceeds its hashing budget. The procedure get qry

increments qrys ctr each time a query is processed. Note

how it returns None when the query processing limit has

been exceeded or the Adversary has exceeded its budget.

The Client’s ideal game is parameterized by a Simulator

that keeps track of the Client’s view, and communicates with

the ideal game via the following interface:

module type SIG = {
proc get qry count(cv : client view) : (elem * int) option
proc qry done(cv : client view) : unit }.
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SIG stands for “Simulator’s interface to Ideal Game”. The

Simulator calls get qry count to request the next query along

with its count. And it calls qry done to tell the ideal game

it is done processing the most recently received query. The

Simulator itself has the following interface:

module type SIM(O : RO.OR, SIG : SIG) = {
proc * init() : unit { }
proc get view() : client view { }
proc client loop() : unit {O.hash SIG.get qry count SIG.qry done} }.

It is parameterized by both the random oracle O and the

interface SIG to the ideal game. It has procedures for ini-

tialization and obtaining the current view—neither of which

are allowed to access either O or SIG. But its client loop

procedure has access to both O and SIG. We do not need to

limit the Simulator’s access to O—doing more hashing will

not help it learn more about the database.

The Client’s ideal game, GIdeal, is listed in Figure 4. It

is parameterized by both the Adversary Adv and Simulator

Sim. It has a procedure count db for turning the database

into an elements’ counts map, stored in the global variable

db elems cnts. Its submodule SIG implements the Simula-

tor’s interface to the ideal game, and S is an abbreviation

for the connection of Sim to the random oracle and SIG.

The main procedure of GIdeal initializes the queries counter,

Simulator, random oracle and counted random oracle, before

asking the Adversary for a database, passing it the view

provided the the Simulator. As in the real game, if the

Adversary refuses to provide a database, or proposes a

database with too many distinct elements, or exceeds its

budget, the game proceeds on to calling the Adversary’s

final procedure. Otherwise it first uses count db to turn the

database into the elements’ counts map, and then invokes the

Simulator’s Client loop. The get qry count procedure of SIG

is much like the procedure get qry of the submodule Env of

the real game. But instead of returning (Some of) a query,

it returns the query along with its count in the elements’

counts map (0, if it is not in the map’s domain).

The lemma expressing security against the Client is:

lemma GReal GIdeal :
exists (Sim <: SIM{GReal, GIdeal}),
forall (Adv <: ADV{GReal, GIdeal, Sim}) &m,
(forall (O <: CRO.COR{Adv}),
islossless O.chash⇒ islossless Adv(O).init and get db)⇒

(forall (O <: CRO.COR{Adv}),
islossless O.chash⇒ islossless Adv(O).get qry)⇒

(forall (O <: CRO.COR{Adv}),
islossless O.chash⇒ islossless Adv(O).qry done)⇒

(forall (O <: CRO.COR{Adv}),
islossless O.hash⇒ islossless Adv(O).final)⇒

`|Pr[GReal(Adv).main() @ &m : res] −
Pr[GIdeal(Adv, Sim).main() @ &m : res]| ≤

(budget * (budget− 1))%r / (2 ˆ tag len)%r.

It is existentially quantified by a Simulator Sim, and the

restriction on SIM restricts Sim to be a module that cannot

interact with GReal or GIdeal either directly or indirectly

module GIdeal (Adv : ADV, Sim : SIM) : GAME = {
module Or = RO.Or module COr = CRO.COr(Or)
module A = Adv(COr)

var db elems cnts : elems counts var qrys ctr : int

proc count db(db : db) : unit = {
var i : int; var elem : elem;
db elems cnts← empty ec; i← 0;
while (i < size db) {

elem← nth elem default db i;
db elems cnts← incr count db elems cnts elem;
i← i + 1;
}
}

module SIG : SIG = {
proc get qry count(cv : client view) : (elem * int) option = {

var qry opt : elem option;
var qry cnt opt : (elem * int) option;
var adv within budg : bool; var cnt : int;
qry opt <@ A.get qry(cv);
if (qry opt = None) { qry cnt opt← None; }
else {

adv within budg <@ COr.within budget();
if (qrys ctr < qrys max ∧ adv within budg) {

qrys ctr← qrys ctr + 1;
cnt← get count db elems cnts (oget qry opt);
qry cnt opt← Some (oget qry opt, cnt);
}
else { qry cnt opt← None; }
}
return qry cnt opt;
}

proc qry done(cv : client view) : unit = { A.qry done(cv); }
}

module S = Sim(Or, SIG)

proc main() : bool = {
var db opt : db option; var b : bool; var adv within budg : bool;
var cv : client view;
qrys ctr← 0; S.init(); Or.init(); COr.init();
cv <@ S.get view(); db opt <@ A.init and get db(cv);
if (db opt 6= None) {

adv within budg <@ COr.within budget();
if (num uniqs(oget db opt) ≤ db uniqs max ∧

adv within budg) {
count db(oget db opt); S.client loop();
}
}
cv <@ S.get view(); b <@ A.final(cv); return b;
}
}.

Figure 4. Client’s Ideal Game

(except, of course, through its arguments O and SIG). After

the existential quantifier comes the universal quantification

over all Adversaries Adv not interacting with GReal, GIdeal

and Sim, and all initial memories &m. The rest of the lemma

is conditioned on the procedures of Adv being lossless

(always terminating). In the conclusion,

Pr[GReal(Adv).main() @ &m : res]

is the probability of GReal(Adv).main returning true when
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module (Sim : SIM) (O : RO.OR, SIG : SIG) = {
var cv : client view var sec : sec

proc init() : unit = { sec <$ sec distr; cv← [cv got sec sec]; }

proc get view() : client view = { return cv; }

proc client loop() : unit = {
var tag : tag; var qry : elem; var cnt : int;
var qry cnt opt : (elem * int) option;
var not done : bool← true;
while (not done) {

qry cnt opt <@ SIG.get qry count(cv);
if (qry cnt opt = None) {

not done← false; cv← cv ++ [cv got qry None];
}
else {

(qry, cnt)← oget qry cnt opt;
cv← cv ++ [cv got qry (Some qry)];
tag <@ O.hash((qry, sec));
cv← cv ++ [cv query count(qry, tag, cnt)];
SIG.qry done(cv);
}
}
}
}.

Figure 5. Client’s Simulator

started with memory &m, and

Pr[GIdeal(Adv, Sim).main() @ &m : res]

is the probability of GIdeal(Adv, Sim).main returning true

when started with &m. As expected, the upper-bound on

the distance between these two probabilities is expressed

in terms of budget and tag len.

When proving GReal GIdeal, we implement the Simulator

by the module given in Figure 5. Its initialization procedure

generates the secret, in contrast to in the real game, where

the Server is responsible for doing this.

The Client proof uses a BudgetedRandomOracle abstract

subtheory of RandomOracle providing budgeted random

oracles, which implement the interface

module type BOR = {
proc init() : unit
proc adv bhash(inp : input) : output
proc adv within budget() : bool
proc server bhash(inp : input) : output
proc client bhash(inp : input) : output
proc hash(inp : input) : output }.

providing ordinary hashing, plus budgeted hashing proce-

dures for the adversary, server and client, each subject to

their own parts adv budget, serv budget and clnt budget of

a total hashing budget, budget, that is no more than the

number of elements in output. adv bhash and server bhash

only debit their parts of the budget when called with unseen

inputs, but each call to client bhash counts toward its part

of the budget.

There are two implementations of this interface: a first,

BOr, in which hashing collisions may occur, as usual; and a

second, BOrInj, in which, as long as hash is not called and

all three parts of the hashing budget are (individually) within

budget, the oracle’s map stays injective, i.e., collision-free.

We work with switching adversaries

module type SWADV(O : BOR) = {
proc * main() : bool {O.adv bhash O.adv within budget

O.server bhash O.client bhash O.hash} }.

and have a game GSwitching(SWAdv, O) that takes in a

switching adversary SWAdv and a budgeted random oracle

O, and whose main function initializes O, and then returns

SWAdv’s boolean judgment on O. Our version of the usual

switching lemma bounds the distance between games involv-

ing BOr and BOrInj. It is proved using reasoning up to failure,

which requires the losslessness of the switching adversary.

EASYCRYPT’s failure event lemma is used to upper-bound

the possibility of failure with

(budget ∗ (budget − 1))/2output len+1,

a fairly tight upper bound on the probability that no

more than budget random choices of output values will

result in a duplication. In the Client proof, we clone

BudgetedRandomOracle, substituting adv budget for it-

self, db uniqs max for serv budget, and qrys max for

clnt budget. (When we originally cloned RandomOracle, we

handled the substitutions for input and output, etc.)

In our sequence of games, we transition from the real

game (with the Environment inlined, and simplifications

made), in which the Server and Client use the random

oracle Or but the Adversary uses the counted random or-

acle COr derived from Or, to a game using the collision-

possible budgeted random oracle, BOr. Then we transi-

tion to using the collision-free-while-under-budget budgeted

random oracle, BOrInj, incurring the above upper bound

(with tag len substituted for output len) as a penalty. In

more detail, we define a concrete switching adversary

SWAdv in such a way that the Client’s game involving

BOr can be connected with GSwitching(SWAdv, BOr), and

GSwitching(SWAdv, BOrInj) can be connected with the game

involving BOrInj. The requirement that the switching ad-

versary be lossless explains why the security theorem for

the Client requires the losslessness of the Adversary’s pro-

cedures, and why the number of queries proposed by the

Adversary must be limited. This is how reductions are

carried out in EASYCRYPT.

This sets the stage for the hardest part of the Client proof,

which involves switching from the Server and Third Party

using a hashed database, to them using an elements’ counts

map produced by the Server from the database (whose

elements the Server still hashes), and shared with the TP

(which now accepts requests from the Client for queries to

be looked up in its map). This step uses a complex relational

invariant involving the secret, hashed database (in the first
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game), random oracle’s map, and elements’ counts map (in

the second game). Knowing that the random oracle stays

injective (subject to the budget being respected) made this

step much easier.

After that, we transition back to the collision-possible

budgeted random oracle, BOr, incurring the above penalty

a second time, and then to a game in which the Server and

Client use Or, but the Adversary uses COr.

At this point, the Server’s hashing is seen to be redundant:

the elements of the database are still hashed (paired with

the secret), but nothing is done with the resulting hash tags.

Happily, Grégoire [25] recently invented a general technique

for removing redundant hashing, which we have adapted and

reimplemented. In a RedundantHashing abstract subtheory of

RandomOracle we have module types

module type HASHING = {
proc init() : unit
proc hash(inp : input) : output
proc rhash(inp : input) : unit }.

module type HASHING ADV(H : HASHING) = {
proc * main() : bool {H.hash H.rhash} }.

We have two implementations of HASHING, both built

from a random oracle O: NonOptHashing (“non optimized

hashing”), in which rhash (“r” for redundant) hashes its

input, but discards the result; and OptHashing (“optimized

hashing”), where rhash does nothing. In both cases, hash

works normally. Then we have the following games

module GNonOptHashing(HashAdv : HASHING ADV) = {
module H = NonOptHashing(Or)
module HA = HashAdv(H)
proc main() : bool = {

var b : bool; Or.init(); b <@ HA.main(); return b;
}
}.
module GOptHashing(HashAdv : HASHING ADV) = {

module H = OptHashing(Or)
module HA = HashAdv(H)
proc main() : bool = {

var b : bool; Or.init(); b <@ HA.main(); return b;
}
}.

and a lemma saying one may move from the first game to

the second:

lemma GNonOptHashing GOptHashing
(HashAdv <: HASHING ADV{Or}) &m :

Pr[GNonOptHashing(HashAdv).main() @ &m : res] =
Pr[GOptHashing(HashAdv).main() @ &m : res].

Proving the lemma involves advanced use of EASY-

CRYPT’s eager tactics, but the intuition behind the proof is

simple: redundant hashing can be postponed until the point

where ordinary hashing makes it non-redundant, or when the

end of the game is reached and there is no point in doing it.

Finally, all that separates us from the ideal game (apart

from some inlining and bookkeeping) is that the Server is

still randomly shuffling the database before producing the

elements’ counts map. But we can use the EASYCRYPT Li-

brary’s loop iteration abstract theory to show that computing

the elements’ counts map is independent from the database’s

order.

IX. PROOF OF SECURITY AGAINST SERVER

In this section, we consider the proof of security against

the Server. The Adversary’s module type for the Server is

defined by:

module type ADV(O : RO.OR) = {
proc * init and get db(sv : server view) : db option {O.hash}
proc get qry(sv : server view) : elem option {O.hash}
proc qry done(sv : server view) : unit {O.hash}
proc final(sv : server view) : bool {O.hash} }.

Note that the Adversary is parameterized by an ordinary

random oracle.

The Server’s real game, GReal, is much simpler than that

of the Client, because the Server’s Adversary does not have

to be limited in any way.

The Server’s Simulator has this interface:

module type SIM(O : RO.OR) = {
proc * init() : unit { }
proc get view() : server view { }
proc main(db : db) : unit {O.hash} }.

Its initialization procedure generates the secret and initializes

its view to reflect not just the generation of the secret but

also its sharing with the Client (which happens in the real

game, and so must be simulated in the ideal game). Its main

procedure takes in the database and constructs the Server’s

view, which involves shuffling the database and hashing its

elements (paired with the secret).

The Server’s ideal game, GIdeal, is parameterized by

the Adversary Adv and Simulator Sim. Its main procedure

initializes Sim and the random oracle, before asking the

Adversary to propose its database. If the Adversary obliges,

main runs Sim’s main procedure on that database, and then

executes the version of the Client’s query loop in which

the Adversary’s queries are ignored. In any event, main

finishes by finalizing the Adversary and returning its boolean

judgment.

The lemma expressing security against the Server is:

lemma GReal GIdeal :
exists (Sim <: SIM{GReal, GIdeal}),
forall (Adv <: ADV{GReal, GIdeal, Sim}) &m,
Pr[GReal(Adv).main() @ &m : res] =
Pr[GIdeal(Adv, Sim).main() @ &m : res].

When proving this theorem, the only challenge is dealing

with the fact that, in the Client’s query loop, the real game

does hashing that is absent in the ideal game. That hashing

is redundant: its results are only placed in the Client’s view,

where nothing is done with them. Consequently we can
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use our abstract theory for removing redundant hashing (see

Section VIII) to complete the proof.

X. PROOF OF SECURITY AGAINST THIRD PARTY

In this section, we consider the proof of security against

the Third Party. We start by creating a private random oracle

for hashing elements, not element/secret pairs:

clone RandomOracle as Priv with
type input← elem, op output len← tag len,
type output← tag, op output default← zeros tag,
op output distr← tag distr

proof *. (* realization *) · · · (* end *)

Now Priv.Or is the private random oracle for elements.
The Adversary will have limited access to the random

oracle RO.Or (see Subsection VII-B):

op limit : int.
axiom limit ge0 : 0 ≤ limit.
clone RO.Limited as LRO with op limit← limit
proof *. (* realization *) · · · (* end *)

Thus LRO.LOr is the limited random oracle wrapper. To

ensure termination of the Client’s query loop, the Adversary

will be constrained to proposing at most qrys max queries:

op qrys max : int.
axiom qrys max ge0 : 0 ≤ qrys max.

The Adversary’s module type is

module type ADV(O : RO.OR) = {
proc * init and get db(tpv : tp view) : db option {O.hash}
proc get qry(tpv : tp view) : elem option {O.hash}
proc qry done(tpv : tp view) : unit {O.hash}
proc final(tpv : tp view) : bool {O.hash} }.

The TP’s real game, GReal, is what you would expect.

The Adversary is given access to the limited random oracle.

Its environment submodule, Env, keeps track of the number

of queries that have been processed. The init and get db

procedure of Env initializes the query counter and the limited

random oracle. Its get qry procedure returns None when the

query processing limit has already been reached.

The TP’s Simulator has the following interface:

module type SIM = {
proc * init() : unit
proc get view() : tp view
proc receive hdb(hdb : hdb) : unit
proc count tag(tag : tag) : int }.

It does not need to have access to the random oracle, in

contrast to the Simulators of the Client and Server. The

receive hdb procedure is used to give the Simulator the

hashed database produced by the Server, and the count tag

procedure lets the Client request the counts of hash tags in

that hashed database.
The TP’s ideal game, GIdeal, is parameterized by the

Adversary Adv and Simulator Sim. Adv is given access to

the limited random oracle. The game’s structure is similar

to that of GReal (after inlining and simplification), with Sim

playing the part of the TP, except that the Server and Client

do their element hashing using the private random oracle,

Priv.Or.
The lemma expressing security against the TP is:

lemma GReal GIdeal :
exists (Sim <: SIM{GReal, GIdeal}),
forall (Adv <: ADV{GReal, GIdeal, Sim}) &m,
(* losslessness of Adv's procedures *)⇒
`|Pr[GReal(Adv).main() @ &m : res] −
Pr[GIdeal(Adv, Sim).main() @ &m : res]| ≤

limit%r / (2 ˆ sec len)%r.

The restrictions on SIM and ADV are crucial—otherwise, e.g.,

the Adversary or Simulator could access Priv.Or. The lemma

is conditioned on the Adversary’s procedures being lossless,

and it upper-bounds the distance between the real and ideal

games in terms of limit and sec len.
In the proof, we must transition across a gap: in the real

game, the Server and Client hash elements paired with their

shared secret in RO.Or, whereas in the ideal game, the Server

and Client do their element hashing in Priv.Or. We bridge the

gap by employing an abstract theory SecrecyRandomOracle,

which implements two versions of secrecy random oracles:

module type SEC OR = {
proc init(sec : sec) : unit
proc lhash(inp : elem * sec) : output
proc hash(elem : elem) : output }.

Initializing a secrecy random oracle takes in a secret, sec.

Two hashing procedures are provided: lhash for limited hash-

ing (up to limit distinct inputs) of element/secret pairs, and

hash for unlimited hashing of elements. The first implemen-

tation of this interface uses a single map, as in the TP’s real

game, where hash hashes the pair of its argument elem and

sec, whereas the second implementation uses two maps—

one for lhash and one for hash, as in the TP’s ideal game.

The theory defines games using these oracles, and proves

a lemma bounding the distance between them. The idea is

that unless a secrecy random oracle adversary calls lhash

with a pair whose second component is sec (and without

first exceeding its hashing limit), it cannot tell the games

apart. The lemma is proved using reasoning up to failure,

which requires the losslessness of the secrecy random oracle

adversary. This, in turn, is why the security theorem for the

TP requires the losslessness of the Adversary’s procedures,

and why the number of queries proposed by the Adversary

must be limited.
The lemma’s proof must also bound the probability that

the failure event occurs, i.e., that lhash is passed the secret.

We do this bounding using a SecretGuessing abstract theory.

The secret guessing oracle implements this interface:

module type SG OR = {
proc init(x : sec) : unit
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Figure 6. Two-dimensional Sequences of Games

proc guess(x : sec) : unit }.

The secret guessing game initializes the oracle, giving it a

randomly generated secret. The secret guessing adversary

then has a limited number (limit) of tries to guess the

secret using the oracle’s guess procedure. The proof uses

EASYCRYPT’s probabilistic Hoare logic to upper-bound the

probability of the adversary guessing the secret by

limit/2sec len.

XI. CASE STUDY RESULTS AND LESSONS LEARNED

In this section, we summarize the results of our case study

and survey what we have learned from carrying it out.

A. On the Proof

The theorems expressing security against the Server, Third

Party and Client, along with all the definitions needed to

understand these theorems (including the definitions of the

PCR Protocol and all the real and ideal games), total about

380 lines of EASYCRYPT code. It is only this code that

must be carefully scrutinized so as to ensure the security

theorems say what they should. EASYCRYPT can be trusted

to faithfully check the approximately 5,275 lines of EASY-

CRYPT code comprising our proofs of these theorems plus

supporting theories.

To minimize our reliance on particular SMT solvers, we

have checked our proofs using two solvers: Alt-Ergo [26]

and Z3 [27]. And in every use of an SMT solver, we

have explicitly specified the previously proved EASYCRYPT

lemmas that may be used by the solver when attacking the

goal. This is good documentation, increases the speed of

proof checking, and is very helpful when proofs need to be

adapted.

The EASYCRYPT proof scripts for our case study are

available on the web at:

https://github.com/alleystoughton/PCR

B. Two-dimensional Game Structure

In the sequence of games approach, to show a relationship

between games G1 and G5 whose main procedures return

booleans, one might make use of intermediate boolean-

returning games G2, G3 and G4, as in Figure 6. Some of

these intermediate steps may show that source and target

games are equally likely to return true, but for others we will

have upper bounds on the absolute values of the differences

between the probabilities that the games return true. One

sums up these (hopefully small!) upper bounds (0 when

there is no distance between the games), getting the distance

between G1 and G5. But in EASYCRYPT, one can also

make use of reductions, giving games a vertical as well as

a horizontal structure. In the figure, we have used another

sequence of games to establish the distance between H1

and H3. Let us suppose H1 and H3 are parameterized by

an abstract adversary A of some type. We can package the

proof connecting H1 and H3 into a theory. Then if we want

to use this theory to establish the connection between G3

and G4, we clone this theory in the context of G3 and G4,

and define a concrete adversary C of the same type as A so

that G3 can be connected with H1(C), and H3(C) can be

connected with G4.

We have made important use of this vertical approach in

our security proof for PCR, using both our own theories and

theories of the EASYCRYPT Library. The reduction of Third

Party security to the security of secrecy random oracles,

which was in turn reduced to the security of secret guessing

oracles, was a prime example of this (see Section X).

C. Expressing Real and Ideal Games

An earlier version of our work suffered from the drawback

that each party’s real game had to be written out from

scratch, even though it was largely the same as the other

parties’ real games. In addition to being tedious, this allowed

for the possibility of the games being inconsistent. Thank-

fully, we now have a solution to this problem: the protocol is

formalized once and for all, complete with code maintaining

all parties’ views (one must carefully scrutinize this code to

ensure it faithfully records sufficient information for each

party’s execution to be reconstructable). The protocol is

parameterized by an Environment, with which it interacts.

The real game for a given party can then be obtained

by instantiating the environment with code connecting the

protocol to the party’s Adversary. Limits on the Adversary

can naturally be expressed in this code. Because the Protocol

Environment is adaptive, this gave us a good start toward

handling adaptive Adversaries.

As explained in Sections VIII—X, we parameterized each

party’s ideal game by both its Adversary and the party’s

Simulator, which constructs the party’s view from the limited

information given it by the ideal game. Because we are

working information-theoretically, we were able to make the

Simulators be part of the security proofs, as opposed to the

security specifications. Consequently, in each of our security

theorems, the Simulator is existentially quantified:

lemma GReal GIdeal :
exists (Sim <: SIM{GReal, GIdeal}),
forall (Adv <: ADV{GReal, GIdeal, Sim}) &m,
. . .
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The restrictions on the module types SIM and ADV express

that the Simulator, Sim, and Adversary, Adv, may not interact

with each other or the real/ideal games (except via their

module parameters). This is crucial, as otherwise we could

prove such a theorem using a Simulator that, e.g., read

variables of the ideal game—which would be unsound.

D. Limiting Adversaries

As explained in Section V, to obtain security theorems

against the Client and Third Party with small upper bounds,

we needed to limit the Adversary. For the Third Party proof

(see Section X), it sufficed to limit the number of distinct

inputs the Adversary may hash before being given a dummy

result when hashing new inputs.

For the Client proof (see Section VIII), we developed

a technique of budgeted random hashing allowing us to

transition in and out of oracles whose maps remain collision-

free as long as the budget is respected. Using this technique

allowed us to attack the key step of the Client proof—

moving from hashed databases to elements’ counts maps—

without the distraction of possible hashing collisions. We

believe this kind of technique will be essential when working

with more complex protocols.

The Client and Third Party security theorems are quan-

tified over all lossless Adversaries (ones whose procedures

always terminate). But when an Adversary runs up against a

limit imposed on it, the real/ideal game is terminated early

(Client proof) or the Adversary’s hashing stops yielding true

results (Third Party proof). Consequently, one may view

these security theorems as being quantified over all lossless

Adversaries that respect the limits that would otherwise be

imposed on them.

By using reasoning up to failure and EASYCRYPT’s

probabilistic Hoare logic and failure event lemma, we were

able to upper-bound the distances between real and ideal

games using bounds built up from game parameters (sizes of

hash tags and Server/Client secrets, limits on the Adversary).

E. Removing Redundant Hashing

Grégoire [25] recently invented a general approach to

removing redundant hashing, and we employed our imple-

mentation of a variation of his technique in both the Client

and Server proofs (see Sections VIII and IX). We believe

variations of this technique will be essential when working

with more complex protocols.

XII. NEXT STEPS

Having developed and tested techniques for proving the

information-theoretic, adaptive security of multi-party cryp-

tographic protocols involving random oracles, our next goal

is to tackle a protocol—probably a protected database search

protocol—involving encryption as well as hashing. Our idea

is to model encryption in a way similar to the random oracle:

as a construction whose encapsulated state depends upon

dynamically made random choices.

A good candidate protocol appears to be the privacy-

preserving sharing of sensitive information protocol of [28],

which uses symmetric encryption as well as four random

oracles. This protocol’s adversary is non-adaptive, and its

security proof doesn’t follow a sequence of games style. But

we are optimistic we can formulate and prove the security

of an adaptive version of the protocol using our approach.

Additionally, we plan to explore the connections between

our work and the Universal Composability (UC) model [29].

Adapting our security proofs of protocols to the UC model

would have the consequence of preserving the protocols’

security guarantees when they are combined with other

protocols. In our architecture, the Adversary/Environment

is already charged with both choosing protocol inputs and

attempting to distinguish the real and ideal games; ergo, we

believe that this extension will be feasible.
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Merkle-Damgård,” in Proceedings of the 25th IEEE Computer
Security Foundations Symposium, ser. CSF 2012. Washing-
ton, DC, USA: IEEE Computer Society, 2012, pp. 354–368.

[12] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P. Strub,
and S. Zanella Béguelin, “Proving the TLS handshake secure
(as it is),” in Proceedings of the 34th Annual Conference on
Advances in Cryptology, ser. CRYPTO 2014. Santa Barbara,
CA, USA: Springer-Verlag, 2014, pp. 235–255.

[13] G. Barthe, F. Dupressoir, P. Fouque, B. Grégoire, M. Ti-
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