
Parallel PCF has a Unique Extensional Model�Allen StoughtonComputer Science and Arti�cial IntelligenceSchool of Cognitive and Computing SciencesUniversity of SussexFalmer, Brighton BN1 9QH, EnglandAbstractWe show that the continuous function model is the unique extensional (but not necessarilypointwise ordered) model of the variant of the applied typed lambda calculus PCF that includesthe \parallel or" operation.1 IntroductionSeveral extensional models of the applied typed lambda calculus PCF are known to exist, including:(i) The continuous function model, which is order-extensional (pointwise ordered) but not equa-tionally fully abstract [Plo]. (A model is equationally fully abstract when terms are identi�ed in themodel exactly when they are operationally equivalent.)(ii) The stable function model, which is neither order-extensional nor equationally fully abstract[Ber][BCL].(iii) The terminal object of the category of equationally fully abstract, extensional models, whichis inequationally fully abstract and order-extensional [Mil][Sto2]. (A model is inequationally fullyabstract i� one term is less than another in the model exactly when the �rst is operationally lessde�ned than the second.)(iv) The initial object of the above category, which is neither inequationally fully abstract nororder-extensional [Sto2].In contrast, the only known extensional model of parallel PCF, i.e., PCF augmented with the\parallel or" operation, is the continuous function model, which is inequationally fully abstract andorder-extensional [Plo]. In fact, a result of Plotkin/Milner/Berry's shows that this model is theunique inequationally fully abstract, extensional model of parallel PCF [Ber][BCL][Mil][Plo]. Butdoes parallel PCF have extensional models that are not inequationally fully abstract or not evenequationally fully abstract? What about (necessarily non-inequationally fully abstract) extensionalmodels that are not order-extensional? The purpose of this paper is to answer these questions inthe negative.Some of the techniques used in our proof that the continuous function model is the unique exten-sional model of parallel PCF are similar to the ones used by Plotkin in his proof of the de�nabilitytheorem for parallel PCF (see lemma 4.5 of [Plo]).�Appears in Sixth Annual IEEE Symposium on Logic in Computer Science, pp. 146{151, IEEE, 1991.1



2 PreliminariesThe reader is assumed to be familiar with such standard domain-theoretic concepts as completepartial orders (cpo's), continuous functions, and !-algebraic, strongly algebraic and consistentlycomplete cpo's. Given cpo's X and Y , we write X !c Y for the cpo of all continuous functions fromX to Y , ordered pointwise.Familiarity with algebras and ordered algebras over many-sorted signatures is also assumed (see[Sto1] for an introduction to this material). Signatures contain distinguished constants 
s at eachsort s, which stand for divergence and are interpreted as least elements in ordered algebras. We useuppercase script letters (A, B, etc.) to denote algebras and the corresponding italic letters (A, B,etc.) to stand for their carriers. The initial ordered algebra consists of the initial (term) algebrawith the \
-match" ordering: one term is less than another when the second can be formed byreplacing occurrences of 
 in the �rst by terms. An ordered algebra is called complete i� its carrieris a cpo and operations are continuous, and an order-isomorphism over complete ordered algebrasis a homomorphism that is a surjective order-embedding on the underlying cpo's.For technical simplicity, we have chosen to work with a combinatory logic version of parallelPCF with a single ground type �, whose intended interpretation is the natural numbers. From theviewpoint of the conditional and parallel or operations, non-zero and zero are interpreted as trueand false, respectively.The syntax of parallel PCF is speci�ed by a signature, the sorts of which consist of parallel PCF'stypes. The set of sorts S is least such that(i) � 2 S, and(ii) s1 ! s2 2 S if s1 2 S and s2 2 S.As usual, we let ! associate to the right. De�ne �n, for n 2 !, by: �0 = � and �n+1 = �! �n. Thesignature � over S has the following operators:(i) 
s of type s,(ii) Ks1 ;s2 of type (s1 ! s2 ! s1),(iii) Ss1 ;s2;s3 of type ((s1 ! s2 ! s3)! (s1 ! s2)! s1 ! s3),(iv) Ys of type ((s! s)! s),(v) n of type �, for n 2 !,(vi) Succ and Pred of type (�! �),(vii) Ifs of type (�! s! s! s),(viii) POr of type (�2),(ix) �s1;s2 of type (s1 ! s2) � s1 ! s2,where the compound sorts are parenthesized in order to avoid confusion. Thus � (application) is abinary operator, and all of the other operators are nullary. In keeping with standard practice, weusually abbreviate M �N to M N , and let application associate to the left.A model A of parallel PCF is a complete ordered algebra such that the following conditions hold:(i) A� is the at cpo 0A 1A 2A?� � � �@@@ ���;



(ii) For all a1 2 As1 and a2 2 As2 , Ks1;s2 a1 a2 = a1;(iii) For all a1 2 As1!s2!s3 , a2 2 As1!s2 and a3 2 As1 , Ss1;s2;s3 a1 a2 a3 = a1 a3 (a2 a3);(iv) For all a 2 As!s, Ys a is the least �xed point of the continuous function over As that arepresents;(v) For all a 2 A�, Succ a is equal to ?, if a = ?, and is equal to a+ 1, if a 2 !;(vi) For all a 2 A�, Pred a is equal to ?, if a = ?, is equal to 0, if a = 0, and is equal to a � 1,if a 2 ! � f0g;(vii) For all a1 2 A� and a2; a3 2 As, Ifs a1 a2 a3 is equal to ?, if a1 = ?, is equal to a2, ifa1 2 ! � f0g, and is equal to a3, if a1 = 0;(viii) For all a1; a2 2 A�, POr a1 a2 is equal to 1, if either a1 2 ! � f0g or a2 2 ! � f0g, is equalto 0, if a1 = 0 and a2 = 0, and is equal to ?, otherwise;(ix) For all a1; a2 2 As1!s2 , if a1 a = a2 a, for all a 2 As1 , then a1 = a2.We require that a model A be a complete ordered algebra so that each As is a cpo with leastelement 
s and the application operations �s1;s2:As1!s2 � As1!As2 are continuous. Condition (iv)says that the recursion constants Ys are least �xed point operations, and conditions (ii) and (iii)require that models be combinatory algebras. Condition (i) says that A� is the at cpo of naturalnumbers, and conditions (v){(viii) require that the operations on A� behave as expected. Finally,condition (ix) says that models are extensional and has been included in the de�nition of modelsince we have no need to consider non-extensional models in the sequel.Application is left-strict in all models A since ?s1!s2 vs1!s2 Ks2;s1 ?s2, and thus ?s1!s2 a vs2Ks2 ;s1 ?s2 a = ?s2, for all a 2 As1 . It is easy to see that if a1; a2 2 As1!���!sm!s0 for m � 0, thena1 = a2 i� a1 x1 � � � xm = a2 x1 � � � xm for all xi 2 Asi , 1 � i � m.The continuous function model is the unique model A such that A� = !?, As1!s2 = As1 !c As2for all s1; s2 2 S, application is function application and nA = n for all n 2 !.Next, we de�ne several combinators that will be required below. We confuse use and mentionfor these combinators: given a combinator C, we also write C for its denotation in any model thatmay be at hand.For s 2 S, we write Is for the term Ss;s!s;sKs;s!sKs;sof sort s! s. I is the identity operation in all models.We code lambda abstractions in terms of the S, K and I combinators, in the standard way.For s 2 S, de�ne approximations Y ns to Ys of sort (s! s)! s byY 0s = 
(s!s)!s; Y n+1s = Ss!s;s;s Is!s Y ns ;so that Y ns is an !-chain in the initial ordered algebra, and thus in all models.Following [Mil][Ber][BCL], we can de�ne syntactic projections 	ns of sort s! s, for all n 2 ! ands 2 S, by 	n� = Y n�!� F; 	ns1!s2 = �xy:	ns2 (x(	ns1 y));where F of sort (�! �)! �! � is �xy: If y(Succ(x(Pred y)))0:



Expanding the abstractions, one can see that the 	ns form an !-chain in the initial ordered algebra.Furthermore, in any model A, the 	ns represent an !-chain of continuous projections (retractionsless than the identity function) with �nite image whose lub is the identify function. Thus each As isa strongly algebraic (SFP) cpo whose set of isolated elements is Sn2! Ans , where we write Ans for thesubposet of As whose elements are f	ns a j a 2 As g. Clearly An� = f?; 0; 1; : : :; n� 1g, A0s = f?sgand Ans � Ams if n � m. It is useful to note that for all a 2 As1!���!sm!s0 , a 2 Ans1!���!sm!s0 i�a x1 � � � xm = 	n(a(	n x1) � � � (	n xm))for all xi 2 Asi . Given sorts s1 and s2, we de�ne an !-chain ns1;s2 2 (As1 !c As2 )!c (As1 !c As2)of continuous projections with �nite image whose lub is the identity function by ns1;s2 f x = 	ns2 � (f(	ns1 � x)):This demonstrates that As1 !c As2 is also strongly algebraic.Although POr is not isolated in any model, it is uniformly interde�nable in all models with	2 POr , which is isolated.Let the equality test Eq of sort �2 beY (�zxy: If x(If y (z(Pred x)(Pred y)) 0)(Not y));where Not of sort �! � is �x: If x 0 1.For n 2 !, de�ne operators Andn of sort �n by: And0 = 1 andAndn+1 = �xy1 � � �yn: If x (Andn y1 � � � yn) 0:From [Sto3], we know that we can de�ne the parallel if operator, PIf , of sort �3 by PIf = Y�4 H 0,where H of sort �4! �4 is de�ned byH = �fwxyz: If (POr (PAnd (Eq y w) (Eq z w))(PAnd x (Eq y w))(PAnd (Not x) (Eq z w)))w(f (Succ w)x y z):Here, we have extended POr to three arguments in the obvious way, and PAnd of sort �2 is the\parallel and" operation, dual to POr :PAnd = �xy:Not (POr (Not x) (Not y)):Then, for all models A and a1; a2; a3 2 A�, PIf a1 a2 a3 is equal to a2 u a3, if a1 = ?, is equal to a2,if a1 2 ! � f0g, and is equal to a3, if a1 = 0.



3 Standard ModelsLet � be the least reexive relation over S such thats0 � s1 ! s2 if s0 � s1 or s0 � s2:Then � is a partial ordering, and we read s � s0 as s is a subsort of s0.Let s 2 S. A model A is(i) s-order-extensional i� for all s1; s2 2 S such that s1 ! s2 � s and a1; a2 2 As1!s2,a1 v a2 i� a1 x v a2 x for all x 2 As1 ; and(ii) s-standard i� it is s-order-extensional and for all s1; s2 2 S such that s1 ! s2 � s andf 2 As1 !c As2 , there is a (unique) a 2 As1!s2 such that a � x = f x for all x 2 As1 .We say that a model is order-extensional (respectively, standard) i� it is s-order-extensional (re-spectively, s-standard) for all s 2 S.By the above de�nitions, all models are �-order-extensional and �-standard, and if A is s-order-extensional (respectively, s-standard) and s0 � s, then A is s0-order-extensional (respectively, s0-standard). It is easy to see that the continuous function model is standard.Proposition 3.1 If A and B are standard models, then there is a unique order-isomorphism fromA to B.Proof. Routine. The order-isomorphism can be de�ned by recursion on S. 2Lemma 3.2 (Milner) If A is an s-order-extensional model, then As is a Scott domain, i.e., aconsistently complete, !-algebraic cpo.Proof. First, de�ne glb operators Infs of sort s! s! s byInf� = �xy: If (Eq x y)x
;Infs1!s2 = �xyz: Infs2(x z)(y z);and show by induction on s 2 S that if A is s-order-extensional, then Infs a1 a2 is the glb of a1 anda2 for all a1; a2 2 As. The result then follows from the fact that strongly algebraic cpo's with binaryglb's have lub's of all consistent pairs, i.e., are consistently complete. See [Mil] (or lemma 5.5 of[Sto2]). 2Lemma 3.3 Suppose that A is an s1- and s2-standard model such that(i) for all isolated a1; a2 2 As1!s2 , a1 v a2 i� a1 x v a2 x for all x 2 As1 ; and(ii) for all isolated f 2 As1 !c As2 , there is an isolated a 2 As1!s2 such that a � x = f x for allx 2 As1 .Then A is s1 ! s2-standard.Proof. We begin by showing that A is s1 ! s2-order-extensional. Suppose that a1; a2 2 As1!s2and a1 x v a2 x for all x 2 As1 . Suppose toward a contradiction that a1 6v a2. Then, sincea1 = Fn2! 	n a1, there exists a least n 2 ! such that 	n a1 6v a2. Then, for all x 2 Ans1 ,	n a1 x v a1 x v a2 x = Gm2!(	m a2 x);



and, since 	n a1 x is isolated, there is a least mx � n such that 	n a1 x v 	mx a2 x. But Ans1 is�nite, and thus we can let l be the greatest mx such that x 2 Ans1 . Clearly, l � n and 	n a1 x v	mx a2 x v 	l a2 x for all x 2 Ans1 , and thus	n a1 x = 	n a1 (	n x)v 	l a2 (	n x)v 	l a2 (	l x)= 	l a2 xfor all x 2 As1 . But then (i) implies that 	n a1 v 	l a2, in contradiction to the fact that 	n a1 6v a2.Now, suppose that f 2 As1 !c As2 . By (ii) and the s1! s2-order-extensionality of A, there is an!-chain an 2 As1!s2 of isolated elements such that an �x =  ns1;s2 f x for all x 2 As1 . But then it iseasy to see that (Fn2! an) � x = f x for all x 2 As1 . 2Lemma 3.4 If A is an s1! s2-standard model, then two elements a1; a2 2 As1!s2 are inconsistenti� there is an x 2 As1 such that a1 x and a2 x are inconsistent.Proof. The \if" direction is obvious. For the \only if" direction, suppose toward a contradictionthat there is no such x. Then we can de�ne an h 2 As1 !c As2 by hx = (a1 � x) t (a2 � x), since As2is consistently complete (lemma 3.2). Furthermore, there is an a0 2 As1!s2 such that a0 � x = hxfor all x 2 As1 , since A is s1! s2-standard. But a0 is the lub of a1 and a2 since A is s1! s2-order-extensional|a contradiction. 2Lemma 3.5 If A is an s-order-extensional model, then for all isolated elements a 2 As, there is aunique [a] 2 As!� such that [a]x = � 1 if x w a;? if x 6w a:Proof. By induction on S. For the base case �, we can de�ne [?�] = �x: 1 and[n] = �x: If (Eq nx) 1
; for n 2 !:Now, suppose that the result holds for s1; s2 2 S and that A is s1 ! s2-order-extensional. Ifa 2 As1!s2 is isolated, then a 2 Ans1!s2 for some n 2 !. Let u1; : : : ; um be an enumeration of Ans1 ,so that a ui 2 Ans2 for all 1 � i � m. We can then de�ne[a] = �x:Andm ([a u1](xu1)) � � � ([a um](xum));since A is s2-order-extensional. If x w a, then xui w a ui for all i, and thus [a]x = 1. Alternatively, ifx 6w a, then there exists a y 2 As1 such that x y 6w a y. But then x(	n y) 6w a(	n y), since otherwisewe would have x y w x(	n y) w a(	n y) = a y:Thus [a]x = ?. 2Lemma 3.6 If A is an s-standard model, then for all inconsistent pairs of isolated elements a1; a2 2As, there is a unique [a1; a2] 2 As!� such that[a1; a2]x =8<: 1 if x w a1;0 if x w a2;? if x 6w a1 and x 6w a2:



Proof. By induction on S. For the base case �, de�ne[n;m] = �x: If (Eq xn)1(If (Eq xm) 0
);for all n;m 2 ! such that n 6= m. Now, suppose that the result holds for s1; s2 2 S and that A iss1!s2-standard. If a1; a2 2 As1!s2 is an inconsistent pair of isolated elements, then a1; a2 2 Ans1!s2for some n 2 !. Lemma 3.4 tells us that there exists an x 2 As1 such that a1 x; a2 x 2 Ans2 areinconsistent. Thus we can de�ne [a1; a2] = �h: If ([a1 x; a2 x](hx))([a1]h)(If ([a2]h) 0
);by lemma 3.5 and the inductive hypothesis. 2As the reader may have noticed, we have made no use of parallel or so far, and thus everythingthat we have proved will also hold for models of ordinary, sequential PCF. The proof of the nextlemma does require the existence of parallel or, however, and that lemma and the following theoremand corollary do not hold for models of sequential PCF.Given a model A, n 2 ! and s1; : : : ; sm 2 S for m � 1, we de�ne a poset Ans1;:::;sm as follows.Its elements are the partial functions f from Ans1 � � � � � Ansm to An� that are consistent in thesense that if hha1; : : : ; ami; li 2 f and hha01; : : : ; a0mi; l0i 2 f for l; l0 2 !, then either l = l0 orthere is an i such that ai and a0i are inconsistent in Ansi (or, equivalently, in Asi). The elementsof Ans1;:::;sm are ordered by: f � g i� dom f = dom g and fha1; : : : ; ami v gha1; : : : ; ami wheneverha1; : : : ; ami 2 dom f . If f 2 Ans1;:::;sm and ha1; : : : ; ami 2 dom f , then we write f n ha1; : : : ; ami forthe element f j(dom f) � fha1; : : : ; amig of Ans1;:::;sm .We say that an f 2 Ans1;:::;sm represents an a 2 Ans1!���!sm!� i� for all hx1; : : : ; xmi 2 Ans1 �� � ��Ansm and l 2 An� �f?g, a x1 � � � xm = l i� there exists a hx01; : : : ; x0mi 2 dom f such that x0i v xifor all i and fhx01; : : : ; x0mi = l. It is easy to see that any f 2 Ans1;:::;sm represents at most onea 2 Ans1!���!sm!�, since if a1 and a2 are represented by f , thena1 x1 � � � xm = a2 x1 � � � xmfor all xi 2 Ansi , and thus a1 = a2.Lemma 3.7 Suppose n 2 !, s1; : : : ; sm 2 S for m � 1 and A is a model that is si-standard forall i. Then for all f 2 Ans1;:::;sm , there exists a unique bf 2 Ans1!���!sm!� that is represented by f .Furthermore, if f � g, then bf v bg, for all f; g 2 Ans1;:::;sm .Proof. If n = 0, then both elements of Ans1;:::;sm represent the single element of Ans1!���!sm!�, ?.So, assume that n � 1.We show by induction on k 2 ! that for all f; g 2 Ans1;:::;sm , if jf j = k and f � g, then bf andbg exist and bf v bg. The base case k = 0 is obvious since ; represents ?. So, assume that the resultholds for k, jf j = k + 1 and f � g. There are two cases to consider.



(i) Suppose that there exist ha1; : : : ; ami 2 dom f and ha01; : : : ; a0mi 2 dom f such that ai and a0iare inconsistent for some i. De�neF = f n ha1; : : : ; ami; G = g n ha1; : : : ; amiand F 0 = f n ha01; : : : ; a0mi; G0 = g n ha01; : : : ; a0mi;so that, by the inductive hypothesis, bF , cF 0, bG and cG0 exist, bF v bG and cF 0 v cG0. Then, we cande�ne bf = H bF cF 0; bg = H bGcG0;where H = �yy0x1 � � �xm:PIf ([ai; a0i]xi)(y0 x1 � � � xm)(y x1 � � � xm):Then bf v bg since application is monotonic, and it is straightforward to check that bf and bg have therequired properties.(ii) Suppose that ha1; : : : ; ami 2 dom f and ha01; : : : ; a0mi 2 dom f implies that ai and a0i areconsistent for all i. Then, there is an l 2 An� �f?g such that ran f � f?; lg � ran g. (If ran g = f?g,then l can be any element of An� �f?g.) Suppose that hha1; : : : ; ami; bi 2 f and hha1; : : : ; ami; b0i 2 g,so that b v b0. De�ne f 0 = f n ha1; : : : ; ami; g0 = g n ha1; : : : ; ami;so that bf 0 and bg0 exist and bf 0 v bg0. Then we can de�nebf = H bf 0 b; bg = H bg0 b0;where H = �yzx1 � � �xm:Z (If (Andm ([a1]x1) � � � ([am]xm)) z
)(y x1 � � � xm)and Z of sort �2 stands for �xy: If (POr (Eq l x) (Eq l y)) l 
:Clearly bf v bg, and it is straightforward to check that bf and bg have the required properties. 2Theorem 3.8 All models are standard.Proof. We show that any model A is s-standard for all s 2 S, by induction on S. The base case� is immediate, so suppose that the result holds for sorts s1 and s0 = s2 ! � � � ! sm ! �. We uselemma 3.3 to show that A is s1 ! s0-standard.(i) Suppose a1; a2 2 Ans1!s0 for some n 2 ! and a1 x v a2 x for all x 2 As1 . De�ne total functionsf1; f2 2 Ans1;:::;sm by fihx1; : : : ; xmi = ai x1 � � � xm. Then f1 � f2, and thus bfi is represented by fifor i = 1; 2 and bf1 v bf2, by lemma 3.7. But ai is also represented by fi for i = 1; 2, and thusa1 = bf1 v bf2 = a2;



as required.(ii) If f 2 As1 !c As0 is isolated, then f =  ns1;s0 f for some n 2 !, so that f x = 	ns0 � (f(	ns1 �x))for all x 2 As1 . De�ne a total function f 0 2 Ans1;:::;sm by f 0hx1; : : : ; xmi = (f x1) �x2 � � � � �xm. Thenbf 0 2 Ans1!s0 is represented by f 0 (lemma 3.7), and it is easy to show that(f x1) � x2 � � � � � xm = bf 0 � x1 � � � � � xmfor all xi 2 Ansi . But this implies that f x = bf 0 � x for all x 2 Ans1 , and thus that f x = bf 0 � x for allx 2 As1 , as required. 2Corollary 3.9 The continuous function model is, up to order-isomorphism, the unique model.Proof. Immediate from theorem 3.8 and proposition 3.1. 2AcknowledgmentsThis research has bene�ted from stimulating conversations with Samson Abramsky, Robin Milnerand Andrew Pitts. Thanks are also due to Gordon Plotkin and the anonymous referees for theircomments on my extended abstract.References[Ber] G. Berry. Mod�eles Compl�etement Ad�equats et Stables des Lambda-calculs Typ�es. Th�ese deDoctorat d'Etat, Universit�e Paris VII, 1979.[BCL] G. Berry, P.-L. Curien and J.-J. L�evy. Full abstraction for sequential languages: the state ofthe art. In M. Nivat and J. Reynolds (editors), Algebraic Methods in Semantics, CambridgeUniversity Press, 1985, pp. 89{132.[Mil] R. Milner. Fully abstract models of typed �-calculi. Theoretical Computer Science 4, 1977,pp. 1{22.[Plo] G. Plotkin. LCF considered as a programming language. Theoretical Computer Science 5,1977, pp. 223{255.[Sto1] A. Stoughton. Fully Abstract Models of Programming Languages. Research Notes in Theoret-ical Computer Science, Pitman/Wiley, 1988.[Sto2] A. Stoughton. Equationally fully abstract models of PCF. Proceedings of the 5th InternationalConference on the Mathematical Foundations of Programming Semantics, Lecture Notes inComputer Science, vol. 442, Springer-Verlag, 1990, pp. 271{283.[Sto3] A. Stoughton. Interde�nability of parallel operations in PCF. Theoretical Computer Science,to appear, 1991.


