
Infinite Pretty-printing in eXene ∗

Allen Stoughton

Kansas State University

Manhattan, KS 66506, USA

allen@cis.ksu.edu

http://www.cis.ksu.edu/~allen/home.html

Abstract. We describe the design and implementation of a Standard ML of New Jersey

library for the interactive pretty-printing of possibly infinite syntax trees. The library

handles elision in a novel way, and is implemented using Concurrent ML and the eXene

X Window System toolkit.

1 Pretty-printing with Elision

In the modern approach to pretty-printing, as developed by Oppen [Opp80] and others

[Mik81, MCC86, Hug95, Wad98], and featured in Paulson’s textbook [Pau96], pretty-

printing of abstract syntax is a two-stage process:

• First, an abstract syntax tree is converted into a pretty-printing tree that abstractly

describes how the syntax tree should be formatted. Pretty-printing trees are made up

of strings, potential line-break points, and various kinds of blocks [Opp80, Pau96] or

boxes [Mik81, MCC86, Hug95, Wad98].

• Then, the pretty-printing tree is turned into a sequence of lines that will fit in a

window (or file) with a specified width. When a block must be printed at a given

indentation-level, the entire block is printed on the current line, if it fits. Otherwise,

the block is printed on multiple lines, by converting some or all of the block’s potential

line-breaks into actual line-breaks.

For example, Figure 1 shows three ways in which the block corresponding to a list might

be pretty-printed, depending upon the available line-width. Option (b), in which two block

entries are combined on a single line, would be forbidden with some block styles.

If a syntax tree can’t be pretty-printed in a window with a given width, then some

parts of the tree must be elided, i.e., suppressed. One approach to elision is to elide all

subtrees of the syntax tree that are deeper than some level, convert the abbreviated tree to

a pretty-printing tree, and then print this tree in the normal way [MCC86]. Unfortunately,

with this approach, it is difficult to figure out the best depth at which a given tree should

be elided; and, uniform elision at a particular depth may make poor use of the window’s

width.
∗Appears in K. Hammond and S. Curtis, editors, Trends in Functional Programming, vol. 3, pp. 13–24,

Intellect, 2002.

1



[x0, x1, x2]
[x0, x1,

x2]

[x0,

x1,

x2]

(a) (b) (c)

Figure 1: Pretty-printing Options

[first,

?

third]

Figure 2: Confusing Elision

Another approach is to carry out elision as the pretty-printing tree is converted into a

sequence of lines. This approach makes good use of the available window-width. Unfor-

tunately, it can result in a program construct being abbreviated in such a way that some

of its top-level keywords or symbols have been elided, which will be ugly and confusing.

E.g., some of the commas that separate the elements of a list might be elided, along with

the elements they follow; this has occurred in Figure 2, where the ellipsis “?” marks the

point where the text “second,” was elided. What is needed is a way of specifying what the

top-level syntax of a block is. An entire block should be elided, unless it is possible for all of

its top-level syntax to be printed. The brackets and commas comprise the top-level syntax

of the list of Figure 2. Thus, it would be better to pretty-print this list as in Figure 3.

In the pretty-printing trees of Mikelsons [Mik81], one can indicate the top-level syntax

of a block by marking certain of its entries as “requiring expansion” (pp. 111–112). A block

that is required to be expanded can itself contain certain entries that are required to be

expanded, and so on. An entire block will be elided, unless all of its parts that are required

to be expanded can be displayed.

Mikelsons’s pretty-printing algorithm selects a fragment of a pretty-printing tree to be

displayed, where a tree y is a fragment of a tree x, iff y can be formed by first selecting

a subtree z of x, and then removing certain sub-trees (possibly none) of z. Initially, the

fragment is a single node of the pretty-printing tree—typically, one selected by the user. It’s

not necessarily the tree’s root. Then, in a series of steps, controlled by a system of priorities,

the current fragment is expanded to include more of the original tree. Interestingly, this

expansion process works both down from the fragment’s leaves, and up from its root.

In comparison to the pretty-printing algorithms commonly used today, Mikelsons’s al-

gorithm is both complex and inefficient. On the other hand, it is the only existing algorithm

that I know about that handles elision nicely.

2



[first,

?,

third]

Figure 3: Appropriate Elision

datatype flex = Flex of int * int -> text

and text = Text of (char * flex option) vector vector

Figure 4: Flexible Text Values

2 Infinite Pretty-printing in eXene

This paper describes the design and implementation of a Standard ML of New Jersey

(SML/NJ) [AM91] library for interactive pretty-printing. The library’s method of handling

elision is influenced by, but simpler and more efficient than, that of Mikelsons [Mik81]. In

fact, the library is capable of pretty-printing infinite syntax trees. The library is imple-

mented using Concurrent ML (CML) [Rep99] and the eXene X Window System toolkit

[GR93], both of which are SML/NJ libraries.

In the following sections, we:

• Describe the flexible text values into which pretty-printing trees are translated. The

associated ML code makes no use of CML/eXene.

• Describe the pretty-printing trees themselves. The associated ML code uses CML at

one point; it makes no use of eXene.

• Describe the eXene flexible text widget, which is used to display flexible text values.

• Show how some example syntax trees of a simple functional language are pretty-

printed using the library.

3 Flexible Text Values

In our pretty-printing scheme, pretty-printing trees are translated into flexible text values

before being displayed. Figure 4 shows the mutually-recursive datatypes flex of flexible

text values and text of text values.

A value of type text consists of a two-dimensional vector (immutable array) of charac-

ters. When a character is an ellipsis, it is labeled by the flexible text value corresponding

to an elided tree.

A value of type flex consists of a function that formats a syntax tree so that it will

fit into a window of a specified size. The function takes in a pair (wid ,maxHt) and begins

3



formatting the tree so that each line has no more than wid characters. If no more than

maxHt lines are produced, then it returns the lines produced. Otherwise, it returns the

first maxHt −1 lines, followed by a line explaining that truncation occurred. In normal use,

maxHt will be large enough so that no truncation occurs; the user will be able to vertically

scroll through the lines produced.

The ML structure (module) for manipulating (flexible) text values also provides:

• Functions for incrementally producing text values efficiently.

• A datatype of selections, where a selection describes part of a text value—typically,

one that a user has selected. When the text value is displayed, the selected text will

be highlighted in some way. There is a function for extracting the selected part of

a text value. There is also a function for describing the drawing that must be done

when the selection is adjusted.

• A function that describes the drawing that must be done to display a rectangular part

of a text value, typically one that the window system wants to redraw, taking account

of the current selection.

Although our only source of flexible text values is pretty-printing trees, it would be

possible to generate these values in other ways.

4 Pretty-printing Trees

Figure 5 contains the body of the signature (interface) of the pretty-printing structure. The

types block and entry, of blocks and block entries, are abstract types; values of these types

can be constructed using the identically-named functions.

A block entry has five fields:

• An integer space, which is the number of spaces that should be printed at the begin-

ning of the entry, if the entry is printed on the same line as a previous entry of its

block.

• An integer indent, which is the number of spaces that should be printed at the

beginning of the entry, if the entry is not printed on the same line as a previous entry

of its block, i.e., if it is the first entry of its block, or it comes after a break.

• A string befor, which is printed after the initial space or indentation.

• A block block, which is printed next. If the entry is being printed without breaks,

then the block is printed without breaks. Otherwise, the block is printed

4



type block and entry

val block : (unit -> bool * entry list) -> block

val entry : {space : int,

indent : int,

befor : string,

block : block,

after : string} ->

entry

val blockToFlex : char * string * block -> FlexText.flex

val empty : block

val strEntry : string -> entry

val entryBlock : entry -> block

val strBlock : string -> block

Figure 5: Specification of Pretty-printing Structure

– at an indentation level of ind + n + size befor, where ind is the indentation

level at which the entry is being printed and n is space or indent, whichever is

being used (as the overall algorithm now stands, n will always be indent),

– and with the knowledge that size after+aft characters will follow the (final line

of the) block without an intervening break, where after is the string described

below, and aft is the number of characters that will come after the entry.

• a string after, which is printed last.

When an entry is printed in abbreviated form, its block is replaced by an ellipsis (or,

when the block would take up no space when printed without breaks, by the null string),

but the rest of the entry is printed in the usual way.

A block consists of a list of entries, along with a boolean, com, standing for “combine”,

which specifies whether some of the entries of a block may be printed on the same line,

even though the whole block won’t fit on a single line. The block function takes in a thunk

(function with domain unit) returning this data, so as to allow for infinite pretty-printing

trees. The top-level syntax of a block consists of the befor and after fields of its entries.

Such a block is printed without breaks by simply printing each of its entries without breaks.

The block is printed normally, at an indentation level of ind , and with the knowledge that

aft characters will follow the block without an intervening break, according to the following

rules:

• The block is printed without breaks, if it will fit in the available space.

5



val empty = block(fn () => (false, nil))

fun strEntry s =

entry{space = 0, indent = 0, befor = s, block = empty,

after = ""}

fun entryBlock x = block(fn () => (false, [x]))

val strBlock = entryBlock o strEntry

Figure 6: Pretty-printing Convenience Functions

• Otherwise, if the top-level syntax of the block won’t fit in the available space, i.e.,

if the block’s entries won’t fit even in an abbreviated form in which each entry is

abbreviated and each entry but the first is preceded by a break (and indented to level

ind), then the entire block is elided.

• Otherwise, if com is false, then each of the block’s entries except the first one is

preceded by a break (and indented to level ind). All entries except the last one will

be pretty-printed with the knowledge that no characters will follow them without an

intervening break; but the last entry will be pretty-printed with the knowledge that

aft characters will follow it.

• Otherwise, printing proceeds as in the preceding case, except that as many entries

as possible are combined on a given line, as long as each such entry can be printed

without breaks. (The printing of the block will take at least one break, though, since

otherwise we would be in the first case.)

The function blockToFlex takes in an ellipsis character, a truncation message and a

block, and produces a flexible text value that will pretty-print the block, marking elisions

with the ellipsis character and truncations with the truncation message.

The empty block and the remaining functions are provided for convenience, and are de-

fined as in Figure 6 (changing false to true in these definitions would make no difference).

The distribution of the pretty-printing library includes, as an example, a function that

translates the syntax trees of a simple functional language into blocks. For example, the

function turns the list expression

[x0, x1, x2]

into the block of Figure 7. Of course, the value of the space field of the first entry of this

block is irrelevant. The combine parameter is set to true, since it is not confusing for some

of the elements of a list to be combined on a single line.

As another example, the translation function turns the conditional expression

if x0 then x1 else x2

6



block(fn () =>

(true,

[entry{space = 0, indent = 0, befor = "[",

block = strBlock "x0", after = ","},

entry{space = 1, indent = 1, befor = "",

block = strBlock "x1", after = ","},

entry{space = 1, indent = 1, befor = "",

block = strBlock "x2", after = "]"}]))

Figure 7: Pretty-printing Block of a List Expression

block(fn () =>

(false,

[entry{space = 0, indent = 0, befor = "if ",

block = strBlock "x0", after = ""},

entry{space = 1, indent = 0, befor = "then ",

block = strBlock "x1", after = ""},

entry{space = 1, indent = 0, befor = "else ",

block = strBlock "x2", after = ""}]))

Figure 8: Pretty-printing Block of a Conditional Expression

into the block of Figure 8. In this case the combine parameter is false, making it impossible

for two parts of a conditional to appear on one line, with the remaining part appearing on

another line.

The abstract types block and entry are implemented by the datatypes of Figure 9. To

avoid the repetitive processing of pretty-printing trees, a block consists of a reference to a

storage location of type data. Initially, the contents of such a location will be a thunk passed

to the block function. But, when this part of the tree is explored, the thunk will be replaced

by the value it returns, annotated by an approximation to its size. A size of Exactly m

means that the block can be printed, without breaks, using exactly m characters. A size

of AtLeast m means that the block can’t be printed, without breaks, in m − 1 or fewer

characters.

When the pretty-printing procedure needs to know if a block can be printed, without

breaks, using no more than n characters, it begins by consulting the stored size, if it exists. If

this size is exact or is AtLeast m, where m > n, then the question is answered immediately.

Otherwise, a better approximation of the block’s size must be found by processing the block;

this new size will then be stored in the block’s storage location. A block is always measured

before it is otherwise processed.

Pretty-printing trees are measured using a depth-first, left-to-right, traversal. Unfortu-

nately, this process will fail to terminate for some pretty-printing trees. One reason for this

7



datatype size = Exactly of int | AtLeast of int

datatype block = Block of data ref

and data = LazyData of unit -> bool * entry list

| MeasData of size * bool * entry list

and entry =

Entry of

{space : int,

indent : int,

befor : string,

block : block,

after : string}

Figure 9: Implementation of Pretty-printing Types

is that the thunks stored in storage locations of type data may fail to return. But, since

it is legal for the space and indent fields of an entry to be zero, and for the befor and

after fields to be empty, the depth-first traversal may go on forever without determining

that a tree’s size exceeds a bound n. It is the programmer’s responsibility to avoid creating

pretty-printing trees that can’t be successfully measured.

Since parts of the same pretty-printing tree may be shared by different windows, and

thus operated on by different CML threads, and since the measuring of pretty-printing trees

involves the updating of storage locations, care must be taken to stop the different threads

from interfering with one another. The flexible text values produced by blockToFlex use

a global CML lock to avoid interference, during the brief periods when they are generating

text values. (There is no point in using finer-grained locking, since such interference will be

very rare.)

5 The eXene Flexible Text Widget

When using the eXene X Window System toolkit [GR93], a graphical user interface is

constructed out of a hierarchy of widgets. To enable flexible text values to be displayed as

part of a GUI, it seemed natural to write a new kind of widget called a flexible text widget.

An instance of a flexible text widget is created by:

• creating a vertical scrollbar widget;

• creating a command channel ;

• starting a controller thread in its initial state;

• creating an internal flexible text widget (IFTW);

8



• putting the scrollbar widget to the left of the IFTW using a layout widget;

• returning the layout widget plus the command channel.

When the controller thread is started, it is given an empty flexible text value to manage,

but a function is provided for sending, via the command channel, the controller thread a

new value to manage.

When the layout widget is realized, it is given the window that it will manage, along with

the window environment via which it will receive mouse and control messages. The layout

widget then creates windows for the scrollbar widget and IFTW to manage, positions these

windows within its window, creates window environments for these windows, and calls the

realize functions of these widgets with the appropriate windows and window environments.

When the realize function of the IFTW is called, it sends the information it is given

to the controller thread, via the command channel. We refer to the supplied window as

the parent window. The controller thread calls its flexible text value with the width of the

parent window (in characters, not points) and the maximum usable height of a window. It

then creates the child window of the parent window in which the resulting text value will

be displayed, and enters its main state. Typically, the child window will be bigger than the

parent window. Only the part of the child window that can be seen through the parent

window will be visible to the user. The user will use the scrollbar to scroll the child window

within the parent window.

In its main state, the controller responds to:

• mouse events, allowing the user to

– set the X Window System selection, and

– arrange for elided text to be displayed in new windows, by clicking on ellipses;

• control events,

– redrawing exposed parts of the child window,

– generating and displaying new text values, when the width of the parent window

changes, and

– entering its final state, when told that one of its windows has been destroyed;

• scrollbar events, moving the child window within the parent window, as appropriate;

• messages from the command channel, causing new flexible text values to be

displayed.

9



(a)

(b) (c)

Figure 10: Views of Finite Expression

6 Pretty-printing Examples

In this section, we show how some example expressions of our simple functional language

can be displayed using the pretty-printing library. Figure 10 shows three of the ways that

a single conditional expression can be displayed. Each of these examples was produced by

bringing up a window containing an initial version of the expression, resizing the window to

have the desired width, thus causing the window’s contents to be pretty-printed according

to that width, and then adjusting the height of the window so that all lines were visible and

there were no blank lines (adjusting a window’s height won’t cause the pretty-printing to

be redone). No elision has occurred in the first two cases. In the third case, however, four

sub-trees have been elided: the three elements of the list that forms the then-part of the

conditional, and the anonymous function that occurs in the else-part of the conditional.

Clicking on the first ellipsis (and then manually resizing the resulting window) produces the

contents of Figure 11.

Figure 12 shows two of the ways that an infinite syntax tree with a fairly obvious

structure can be pretty-printed. The window of Figure 12(a) displays the first two levels

10



Figure 11: Elided Text

(a) (b)

Figure 12: Views of Infinite Expression

of the tree. In contrast, the window of Figure 12(b) displays a vertical section—see the

scrollbar—of the first four levels of the tree.

7 Conclusion

The pretty-printing library can be obtained on the WWW at

www.cis.ksu.edu/~allen/pretty.html

I am currently using it in the implementation of an operational semantics framework [Sto98],

and I hope that many SML programmers will find it useful.

Programming the library using CML and eXene worked out well. CML is well docu-

mented and very pleasant to use. Although the eXene toolkit provides a very nice interface

to the X Window System, it still has some rough edges and is not completely documented.

Several eXene bugs were uncovered during the implementation of my library.

Since the library modules for processing flexible text values and pretty-printing trees

don’t make use of eXene, it should be possible to interface the library to another windowing

system. If the windowing system wasn’t concurrent in nature, then the CML lock used by

the blockToFlex function (see Section 1.4) could be dispensed with. Otherwise, it would

have to be replaced by some other kind of lock.

11



Acknowledgements

It is a pleasure to thank John Reppy for giving me a large amount of very useful advice

concerning CML and eXene. I would also like to thank the referees for their comments and

suggestions. This work was partially supported by NSF/DARPA grant CCR-9633388.

References

[AM91] A. W. Appel and D. B. MacQueen. Standard ML of New Jersey. In Programming

Language Implementation and Logic Programming, volume 528 of Lecture Notes

in Computer Science, pages 1–26. Springer-Verlag, 1991.

[GR93] E. R. Gansner and J. H. Reppy. A multi-threaded higher-order user interface

toolkit. In Bass and Dewan, editors, User Interface Software, volume 1 of Software

Trends. Wiley, 1993.

[Hug95] J. Hughes. The design of a pretty printing library. In J. Jeuring and E. Mei-

jer, editors, Advanced Functional Programming, volume 925 of Lecture Notes in

Computer Science, pages 53–96. Springer-Verlag, 1995.

[MCC86] E. Morcos-Chounet and A. Conchon. PPML: A general formalism to specify

prettyprinting. In H.-J. Kugler, editor, Information Processing 86, pages 583–

590. Elsevier Science Publishers, 1986.

[Mik81] M. Mikelsons. Prettyprinting in an interactive programming environment. In

ACM SIGPLAN SIGOA Symposium on Text Manipulation, volume 16 of SIG-

PLAN Notices, pages 108–116. ACM Press, Portland, Oregon, June 1981.

[Opp80] D. C. Oppen. Prettyprinting. ACM Transactions on Programming Languages

and Systems, 2(4):465–483, 1980.

[Pau96] L. C. Paulson. ML for the Working Programmer. Cambridge University Press,

second edition, 1996.

[Rep99] J. H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.

[Sto98] A. Stoughton. An operational semantics framework supporting the incremental

construction of derivation trees. In Second Workshop on Higher-Order Opera-

tional Techniques in Semantics (HOOTS II), volume 10 of Electronic Notes in

Theoretical Computer Science. Elsevier Science Publishers, 1998.

[Wad98] P. Wadler. A prettier printer. Bell Labs, Lucent Technologies, 1998.

12


